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Abstract: Traffic congestion is a globally widespread problem that causes significant economic losses,
delays, and environmental impacts. Monitoring traffic conditions and analyzing congestion factors are
the first, challenging steps in optimizing traffic congestion, one of the main causes of which is regional
spatiotemporal imbalance. In this article, we propose an improved spatiotemporal hierarchical
analysis method whose steps include calculating road carrying capacity based on geospatial data,
extracting vehicle information from remote sensing images to reflect instantaneous traffic demand,
and analyzing the spatiotemporal matching degree between roads and vehicles in theory and in
practice. First, we defined and calculated the ratio of carrying capacity in a regional road network
using a nine-cell-grid model composed of nested grids of different sizes. By the conservation law
of flow, we determined unbalanced areas in the road network configuration using the ratio of the
carrying capacity of the central cell to that of the nine grid cells. Then, we designed a spatiotemporal
analysis method for traffic congestion using real-time traffic data as the dependent variables and five
selected spatial indicators relative to the spatial grids as the independent variables. The proposed
spatiotemporal analysis method was applied to Chengdu, a typical provincial capital city in China.
The relationships among regional traffic, impact factors, and spatial heterogeneity were analyzed.
The proposed method effectively integrates GIS, remote sensing, and deep learning technologies. It
was further demonstrated that our method is reliable and effective and enhances the coordination of
congested areas by virtue of a fast calculation speed and an efficient local balance adjustment.

Keywords: traffic congestion; road carrying capacity; geospatial grid; load balance; multi-grid;
spatial heterogeneity

1. Introduction

Since the end of the 20th century, with the rapid development of urbanization, traffic
congestion has become increasingly severe in large cities of China. Traffic congestion not
only causes delays, economic losses, and environment problems but also considerably
affects the urban transportation system. Traffic congestion occurs when travel demand
exceeds road capacity; while improving road traffic infrastructure is a solution; road
capacity cannot be infinitely increased. Further, the unreasonable allocation of road traffic
infrastructure restricts the sustainable development of cities [1]. A feasible method that
policy makers may implement to reduce traffic congestion in large cities is optimizing
road supply and guiding traffic demand. Moving objects in urban road traffic include
motor vehicles, non-motor vehicles, and pedestrians, with the driving conditions of motor
vehicles most obviously reflecting the overall conditions and operation status of urban
traffic [2]. Most studies on road congestion focus on the techniques of monitoring motor
vehicles, detecting traffic jams, and characterizing traffic conditions [3]. The analysis of the
spatial and temporal distribution and variation characteristics of urban road congestion can

ISPRS Int. J. Geo-Inf. 2024, 13, 59. https://doi.org/10.3390/ijgi13020059 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi13020059
https://doi.org/10.3390/ijgi13020059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://doi.org/10.3390/ijgi13020059
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi13020059?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2024, 13, 59 2 of 23

provide basic support for the study of the spatiotemporal imbalance between road supply
and traffic demand and provide direct guidance for congestion management and trend
assessment [4]. At present, the grid-based method has become popular in many fields due
to its fast and convenient calculation. The construction of a traffic geographic information
data set based on spatial grids can aid not only urban traffic management but also urban
intelligent platforms, which have important application value and broad development
prospects [5]. The structure of the considered spatial grid affects the accuracy of using this
method for traffic management and urban management. Failing to take into consideration
spatial grid heterogeneity greatly affects the accuracy of analyses applying grid-based
methods [6]. In urban transportation planning, following the construction of a road, the
carrying capacity is calculated as a quantitative value within a range, where the upper
limit indicates the maximum number of vehicles of values the road can withstand; carrying
capacity is also used as a parameter in road traffic planning and design configuration [7,8].
Furthermore, for certain carrying-capacity value ranges and specific areas, combining
carrying capacity and spatial grids to conduct a spatiotemporal analysis and ascertain
the spatiotemporal imbalance of resource allocation is an effective method to analyze and
locate urban traffic congestion problems and propose solutions.

In this study, we constructed a road carrying capacity analysis model for the city
of Chengdu by employing GIS technology and geospatial data. The vehicle information
extracted from remote sensing images reflected the instantaneous traffic demand. The
spatiotemporal matching relation between roads and vehicles was analyzed according
to theoretical and actual carrying capacity. First, we chose the traditional nine-cell-grid
model [9], including nested grids of different sizes, to construct an evaluation model
of road carrying capacity balance. The ratio of carrying capacity, Q, was calculated to
measure the configurational rationality of regional road network carrying capacity. Then,
we designed a spatiotemporal analysis method for traffic congestion optimization, with
the dependent variables being represented by real-time traffic data and the independent
variables being five selected spatial indicators of the grids, namely, density of road network,
node complexity, carrying capacity of road network, density of bus lines, and coverage
rate of bus stops. The relationships among regional traffic, impact factors, and spatial
heterogeneity were analyzed using the proposed method and variables. We took the city of
Chengdu as an example to test our method.

2. Related Works

At present, there are many definitions of traffic carrying capacity [10]. Calculation
theories and models of road network carrying capacity include the space–time consumption
method, the nearest-neighbor query method, the linear programming method, the cut set
method, the traffic distribution simulation method, and the narrow road network carrying
capacity model [2,11,12]. Some models and algorithms have strong theoretical guiding
significance, but it is difficult to obtain parameters and data and to apply these methods
in practice [7,13]. The space–time consumption method considers the capacity balance
relationship between carriers and individuals in traffic, and it is suitable for studying
the carrying capacity of road networks in large areas [14]. However, this method cannot
comprehensively study all aspects of traffic, including the impact of different road types
on key parameters such as speed and lane, the difference between the front distance
between vehicles and the space they occupy, the impact of safe vehicle distance, and the
impact of roads connecting main streets and residential areas on traffic flow congestion
reduction [15,16]. The spatial information grid is an important form of geospatial grid
in research on urban traffic [17–19]. On the basis of urban spatial grids, the analysis of
road carrying capacity and congestion can effectively solve the complexity and difficulty
of obtaining parameters for the abovementioned existing models and ensure the accuracy
and timeliness of calculation [20]. Accordingly, the analysis of spatiotemporal changes in
road congestion using traffic information from urban spatial grids is of great significance
to the study of frequent traffic congestion in large cities. Liu et al. adopted the grid
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mapping method to process floating car GPS data and determine the location and pattern
of traffic congestion [21]. Both vehicle speed and impact factors present heterogeneity, and
factors relative to different spatial positions affect each other and cause variations in vehicle
speed. Geographical detectors not only analyze the spatial heterogeneity of impact factors
but also quantify the interaction between pairwise independent variables and dependent
variables [22,23].

Grid-based data management and analysis methods are commonly used in resource
management, analysis applications of geographic information systems and geospatial
information system platforms, and management and analysis applications of road traffic.
On the one hand, grid models are used to establish resource and scene organization based
on geospatial partitioning; an example is the organization method of two-dimensional base
maps in combination models of two-dimensional image data or three-dimensional city
models [24]. On the other hand, in national land, planning, and transportation applications,
grid models are also used for regional resource analysis and planning, such as grid-based
traffic flow analyses, vehicle-to-grid networks [25], vehicle-to-grid layout-based sustainable
urban networks [26], and vehicle-to-grid power-grid service methods [27], which are used
for electric vehicle location planning. Finally, OD grids are used in transportation resilience
processes [28].

In previous research, an improved cellular automata model (CA model) considering
driving styles was employed to analyze traffic flow characteristics and study traffic con-
gestion reduction mechanisms [29]. Further, a cellular automaton traffic flow model was
employed for online simulations of traffic in road networks; the model uses real-time traffic
data stemming from inductive loops as input for high-speed micro-simulations to spatially
and temporally classify information about traffic states in road networks [30]. The cellular
automata model has also been widely applied in the field of transportation, especially to
explore the underlying causes of congestion in large cities. For instance, the three-lane
CA traffic flow model was applied on a ternary optical computer [31]. Further, in order
to improve traffic efficiency and safety, the cellular automata model for mixed traffic flow
was employed to analyze traffic congestion considering the driving behavior of connected
automated vehicle platoons [32]. In another study, a heterogeneous traffic flow cellular au-
tomata model was proposed to establish safety conditions for following and lane-changing
rules for heterogeneous traffic flow consisting of intelligent controlled vehicles (ICVs)
and human-driven vehicles (HDVs) [32]. A multi-cell cellular automata model was also
proposed for allowing emergency vehicles to travel rapidly in cities both by implementing
new technologies in cars and road infrastructure and by educating drivers [33].

It is challenging to analyze road traffic congestion, as it is caused by multiple factors,
such as road traffic capacity, travel needs at different times, and the differences in social and
workplace conditions among residents in different regions. Such an analysis also presents
computational difficulties in terms of locating, searching for, and preparing to calibrate the
key elements, time periods, and locations of congestion. Heuristic algorithms can perform
an effective analysis from any starting point. Metaheuristic algorithms are a group of
techniques used to solve transportation-related optimization problems [34]. The problem in
this study can be considered to consist of the non-linear multi-objective optimization of the
transportation location routing problem (TLRP). In previous research, two metaheuristic
solution algorithms based on the scatter tabu search procedure achieved efficient results
in solution quality and computation time [35]. The enhanced bat algorithm was shown to
enhance the original algorithm by incorporating adaptive parameter tuning and guided
exploration techniques [36]. A genetic algorithm (GA)-based metaheuristic approach to
deriving the OD demand pattern was employed in [37]. Finally, artificial neural network
trained by particle swarm optimization (ANN-PSO) was used to unravel the problem of
traffic congestion, which extends knowledge of traffic flow modeling at a signalized road
intersection using metaheuristics algorithms [38].
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3. Data and Methods
3.1. Study Area and Data Acquisition

The study area included selected core areas of the city of Chengdu, Sichuan Province,
China: Qingyang District, Wuhou District, Jinjiang District, Jinniu District, and Chenghua
District. The study area is located on a plain (103.9◦E~104.2◦E, 30.8◦N~30.5◦N) and is
464.7 km2 large. Chengdu is the capital city of Sichuan Province and one of the earliest
developed cities in southwestern China. With a high level of municipal infrastructure
and public services, Chengdu is defined by the government as an important economic,
science and technology, cultural and innovation, diplomatic, and transportation center
in the western region of China [39]. Therefore, we chose Chengdu as the study area for
analyzing and optimizing road congestion in large cities. Our research has significance in
terms of demonstration and reference in traffic congestion management in large cities and
medium-sized cities in China. The map of the study area is shown in Figure 1.
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verify the effectiveness of the proposed method. The data used in this study are listed in
Table 1.

Table 1. Research data sources.

Data
Category Format Area Date Coordinate

System Sample

Routers from
Amap Vector Chengdu city 2015 GCJ-02
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3.2. Research Methodology
3.2.1. Overview of Proposed Method

In this study, we employed multi-resource data, including GIS vector data, high-
resolution remote sensing data, and traffic operating condition data. We first applied the
GIS data to calculate the road network carrying capacity for the research area; afterward, we
extracted vehicle information for each road to calculate the carrying capacity and identify
traffic congestion.The flowchart of the study is shown in Figure 2.
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3.2.2. Calculation Model of Road Network Carrying Capacity

If we consider the geometric shape of a road to be a regular narrow belt or strip,
the area of a road is approximately equal to the product of its length and width, and the
calculation formula is

A = L·W (1)

where A, L, and W are the area, length, and width of the road; the unit of length and width
is kilometer.

We assumed that a vehicle is traveling at constant speed corresponding with the
maximum speed designed for the road and that the number of lanes is ideally equal to the
width of the road divided by the average width of the lane, with the result being forced to
assume integral values.

Under ideal assumptions, the number of vehicles passing through a single lane is
equal to the length of the road divided by the sum of the average length of the vehicles and
the safe distance between them. If there are r types of roads in common, then the carrying
capacity (C) of the entire road network is the sum of the carrying-capacity values of all
roads, and the calculation formula is

C = ∑r
j=1 Cj = ∑r

j=1 ∑n
i=1

Wi
wi

Li
li + si

(2)

where Cj is the theoretical carrying capacity of the jth road; Wi and wi are the width of the
road and the width of lane, respectively; Li is the length of the road; li and si are the average
length of the vehicles and the safe distance between them, respectively, with i = 1, 2, . . ., n.

Thus, under certain road conditions, the width of the lane and the safe distance
between two vehicles become the key factors restricting the carrying capacity of the road.
li can be calculated from statistical vehicle data; si is directly related to the driving speed
of a vehicle; Wi and Li can be calculated from spatial data; and wi can be determined in
accordance with the state standards on road construction, with lane information extracted
from high-resolution remote sensing images being employed for assessment. The maximum
value of si was set according to national regulations, which means that when the vehicle
speed exceeds 100 km/h, the safe distance is above 100 m; when the vehicle speed is below
100 km/h, the safe distance, in meters, is not lower than the spatial component of vehicle
speed, in kilometers.

3.2.3. Calculation of Road Carrying Capacity Based on Number of Motor Vehicles

Deep learning is a method for learning data representation and modeling high-level
abstractions in data. The basic network architecture proposed in this study is based on the
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that of two commonly used deep learning algorithms, U-Net and Retinanet. In order to
optimize the data set construction process and the loss algorithm, we constructed a model
for vehicle extraction from high-resolution remote sensing images. The overall technical
framework is shown in Figure 3.
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We employed the concept of probability density field [40] to measure the probability
density distribution of each pixel in remote sensing images, analyze the contribution of
samples to all pixels of the image in probability density, and control the weights of every
category. The closer a pixel in the image is to the center point of the vehicle, the greater the
probability of it belonging to the vehicle. Taking the spatial position of a pixel as a random
variable, the probability density field was established by calculating the distance between
the pixel and the center point of the vehicle, thus obtaining the probability of every pixel in
the image belonging to the vehicle.

We used Equation 3 to calculate the density of the vehicles in the remote sensing
images. The pixel density field kernel probability density function, F(x,y), was used to
measure the probability density distribution of each remote sensing image belonging to
a vehicle target. Pixels in remote sensing images were distributed discretely, so pixel
coordinates (x,y) were discrete variables. According to the definition of probability density
function, F(x,y) needs to satisfy two conditions, normalization and non-negativity, that
is, the sum of the probability density function has to be equal to 1 throughout the entire
domain, and the value of the probability density function must always be greater than or
equal to 0. Therefore, F(x,y) needs to satisfy the following conditions:

∑x ∑y F(x, y) = 1; F(x, y) ≥ 0 ∀(x, y) (3)

where F(x,y) is the pixel density field kernel probability density function, and x and y are
the coordinates of any point P in the remote sensing image.

Then, the joint probability density distribution is

J(x, y) =
1

Nc
∑Nc

j=1 F
(

x − xj, y − yj
)

(4)

where Nc is the number of vehicle samples, and xj and yj are the coordinates of the center
point of every vehicle sample, with j = 1, 2, . . ., Nc.

The closer pixel P is to the center point of the vehicle, the greater the probability of
it belonging to the vehicle. In the same way, the farther its distance is, the smaller the
probability of the point belonging to the vehicle. Therefore, the Gaussian function can be
selected as the kernel function, and Formula (4) can be presented as

J(x, y) =
1

Nc
∑Nc

j=1
1√
2π

e(
(x−xj)+(y−yj)

2 ) (5)
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By using Formula (5), the probability density of each pixel in the image can be calcu-
lated as the weight of every category. Then, the loss function of vehicle extraction can be
obtained with the following formula:

lossb f l =

{
−J(x, y)(1 − pi)

γlogpi, i = 1
−(1 − J(x, y))pγ

i log(1 − pi), i = 0
(6)

where lossbfl is the binary focal loss function for Gaussian function J, which controls the
proportion of positive and negative samples; γ represents hyperparameters, which adjust
the weights of difficult and easy samples; pi is the predicted probability of class i samples; i
is the label of the real sample, where 1 is positive and 0 is negative.

Figure 4 shows the probability density field results obtained using the proposed
method.
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from remote sensing images. (b) Probability density estimation of vehicle targets in remote sensing
images.

3.2.4. A Spatiotemporal Analysis Method for Congestion Management through
Calculation of Road Carrying Capacity

1. A Road Network Carrying Capacity Balance Model Based on Geospatial Grids

A geospatial grid is a continuous unit grid with multi-resolution whose settings follow
certain rules and whose uncertain spatial factors can be controlled within the corresponding
scale range [41]. By constructing a road traffic geospatial grid, an integrated description
of the spatial location and feature information of road traffic geographic entities can be
realized.

In order to calculate the grid, it was first necessary to convert the spherical coordinate
system into the Cartesian coordinate system. This is achieved with Formula (7), where
X and Y are the projected Cartesian coordinate values, Lon and Lat are the longitude and
latitude coordinates of the Earth’s surface, and G1 and G2 are the transformation functions:{

X = G1(Lon, Lat)
Y = G2(Lon, Lat)

(7)

In the geospatial grid of an urban road network, each grid usually contains multiple
roads; under certain conditions of road traffic and traffic control, if the number of vehicles
entering the roads of a grid and that of vehicles exiting the roads of an adjacent one are
consistent, then the total traffic flow in that urban area is considered constant. This is
the basis of the conservation of regional traffic flow. Nine-palace-grid region analysis is a
fast and effective method for determining the balance of regional road network carrying
capacity. We propose a road network carrying capacity balance model based on geospatial
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grids. Taking into account the flow conservation concept by Lighthill [42], we defined the
directions of the grid as either “in” or “out”, so that the number of vehicles departing from
the center cell should be equal to the number of vehicles entering its adjacent eight cells
within the nine-cell-grid model. If the road network carrying capacity of the central cell is
greater than the total road network carrying capacity of its adjacent cells, then the former
reaches a saturation state. Due to the inability of adjacent cells to carry the vehicles flowing
out of the central cell, the regional road network becomes congested. In summary, the
equilibrium of the regional road network configuration can be identified by analyzing the
relationship between the carrying capacity of the central cell and the total road network
carrying capacity of its adjacent 8 cells.

The encoding rule of the nine-cell-grid model is shown in Figure 5. The center cell is
marked as S9, and the other grids are numbered clockwise as S1–S8. The road network
carrying capacity of the entire area is equal to the sum of the road carrying capacity values
of every cell. In the nine-cell-grid model, we defined Q as the ratio of the road network
carrying capacity of the central cell to that of the other eight grid cells; thus, Q represents
the rationality of the structure and configuration of the road network within this area. The
calculation formula is

Q =
Cs9

C − Cs9
=

∑r
j=1 Cs9,j

∑8
m=1 ∑r

j=1 Csm,j
(8)ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 10 of 23 

 

 

 
Figure 5. Diagram of the nine-cell-grid model for regional road network configuration. 

For geospatial research at different scales, grids of different sizes and their combina-
tions are usually designed. As shown in Figure 6, we constructed an equilibrium model 
with a combination of nine-cell grids at three levels, where the grid size at a higher level 
is one-third of that at a lower level. The construction process of the combination of nine-
cell grids at three levels is shown in Figure 7. First, we divided study area A into 9 grid 
cells at the first level, where parameter Q of area A was obtained by calculating the carry-
ing capacity ratio of 9 cells. Then, every grid cell at the first level was divided into 9 cells 
at the second level, and parameter Q of a grid at the first level was obtained by calculating 
the carrying capacity ratio of 9 cells at the second level. Therefore, we can obtain parame-
ter Q at different levels in order to analyze the balance of road carrying capacity at differ-
ent scales, especially for areas of interest, as shown in Figure 8, Figure 8a for small scale 
and Figure 8b for large scale.  

 
Figure 6. Three-level nine-cell-grid model of different sizes (red grid for the second level and the 
yellow grid for the third level). 

Figure 5. Diagram of the nine-cell-grid model for regional road network configuration.

In the limit state, the minimum value of CS9 is 0, which means there are no roads in
the central cell. At this time, Q = 0, which means it is impossible to evaluate the regional
road network configuration. Therefore, further analysis of the spatial configuration of the
road network should be conducted in conjunction with the grids at different scales and
the related road parameters. Conversely, Q = 1, which means that the carrying capacity of
the central cell is equal to the total carrying capacity of the surrounding 8 cells; the road
network configuration within this area reaches a critical state in theory. Based on the above
assumption, without considering the departure of vehicles from the road network, the
number of vehicles flowing out of S9 should be equal to the number of vehicles flowing into
S9. When Q > 1, the number of vehicles flowing out of S9 is greater than that of the other
8 cells, resulting in a severely unbalanced road network configuration. When 0 < Q < 1,
a smaller Q value indicates a better traffic configuration and a larger Q value indicates
a worse traffic status in the nine-cell-grid area. Therefore, by analyzing the Q value, the
equilibrium status of the regional road network spatial configuration can be identified; the
Q value can be further used as a parameter for exploring the balance of carrying capacity.

For geospatial research at different scales, grids of different sizes and their combina-
tions are usually designed. As shown in Figure 6, we constructed an equilibrium model
with a combination of nine-cell grids at three levels, where the grid size at a higher level is
one-third of that at a lower level. The construction process of the combination of nine-cell
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grids at three levels is shown in Figure 7. First, we divided study area A into 9 grid cells
at the first level, where parameter Q of area A was obtained by calculating the carrying
capacity ratio of 9 cells. Then, every grid cell at the first level was divided into 9 cells at the
second level, and parameter Q of a grid at the first level was obtained by calculating the
carrying capacity ratio of 9 cells at the second level. Therefore, we can obtain parameter
Q at different levels in order to analyze the balance of road carrying capacity at different
scales, especially for areas of interest, as shown in Figure 8, Figure 8a for small scale and
Figure 8b for large scale.
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2. Analysis of spatiotemporal changes in urban road congestion and spatiotemporal
detection of impact factors

Recently, real-time traffic data obtained using ArcGIS or QGIS have been increasingly
used to study traffic congestion due to their advantages of comprehensive coverage, efficient
updating, and flexible acquisition through multiple channels. By analyzing the overall
traffic conditions of an urban road network, congested sections of roads can be identified.
Furthermore, by integrating the real-time traffic conditions of surrounding roads and
historical road condition data, the development trend of road conditions can be predicted
and provided to users, such as drivers and pedestrians, who, in turn, also provide references
for urban road network operation and management. In this study, we employed real-
time traffic data from electronic navigation maps as the main data source to analyze the
spatiotemporal changes in road congestion conditions and locations in large cities.

Spatial clustering and statistical algorithms were applied to analyze the spatiotem-
poral changes in congestion distribution during morning and evening peak hours and
to determine the areas where congestion occurred frequently. Severely congested road
sections were selected for spatial clustering analysis. Kernel density analysis, an important
algorithm in spatial analysis, was used to calculate the spatial aggregation effect of spatial
points or line elements. The entire research area was treated as a continuous density surface,
and the density changes in elements within the search radius were automatically searched
for and calculated in a certain window. The calculation formula is

fh(x) =
1
n ∑n

i=1 wi Hh(x − xi) (9)

where fh(x) is the kernel density function, F denotes an independent distribution, xi is
the sample point, n is the number of total sample points, x − xi is the distance between
the calculated point and the sample point, wi is the power value, and h is the selected
search radius.

Geographic detectors, a set of statistical methods based on the theory of geographic
spatial differentiation, were used to detect the impact factors and driving mechanisms of
the spatial patterns of geographical elements [43]. Compared with common statistical anal-
ysis methods, geographic detectors can demonstrate the similarity in spatial distribution
between independent variables and dependent variables, which has significant impacts on
the dependent variables. In this study, factor detection and interaction detection modules
were used to explore the impact factors affecting vehicle driving speed and the interaction
among different factors, respectively. The equation for the detection module is as follows:

q = 1 − 1
nσ2 ∑m

i=1 niσ
2
i (10)
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where q is an impact factor affecting vehicle driving speed (value range of [0,1]), where the
larger its value, the stronger its influence on vehicle driving speed; n is the number of grids;
m is the number of types of impact factors; ni is the number of grids with type i impact
factors; σ is the variance in vehicle speed in all grids of the study area; σi is the variance in
vehicle speed in grids of type i.

The ultimate goal of factor detection is to solve the bottleneck problem of congestion,
and the impact factors selected for this goal should be quantifiable at a small spatial scale.
From the perspective of road resource allocation, the impact factors were selected according
to three objective aspects, which included the scale and structure of the road network,
the connectivity and carrying capacity of the road network, and the scale and structure
of public transport. Finally, the five impact factors selected included the density of the
road network, node complexity, carrying capacity, and bus lines and the coverage rate of
bus stops. In this study, we employed geospatial grids to spatially discretize factors using
spatial information technology and detect the correlation between carrying capacity and
other factors, providing a scientific basis for optimizing road resource allocation.

4. Case Study and Results Analysis
4.1. Analysis of Road Carrying Capacity Balance

The spatial statistics of the road network in the study area show that the average
length of the road was 72 m and the maximum value of safe distance was 100 m. According
to the traffic standard, we set the distance between the main roads to 800–1200 m and
constructed three-level grids, with the first level of 3 × 3 km, the second level of 1 × 1 km,
and the third level of 1/3 × 1/3 km. The structure and overlay of the nine-cell grids of
different sizes are shown in Figures 5 and 6, respectively. For the built-up area of Chengdu,
the number of grid cells in the study area was calculated from the number of rows and
columns. The resulting number of grid cells of the first level was 11 × 12 = 132; that of the
second level was 33 × 36 = 1188; that of the third level was 99 × 108 = 10,692.

At the first level, the maximum carrying capacity of the grid was found to be 15,356 ve-
hicles, and the minimum value, 5521 vehicles. At the second level, the maximum carrying
capacity of the grid was calculated to be 2148 vehicles, and the minimum value 76 vehicles.
At the first level, the average value of Q was calculated as 0.125, and the proportion of
grid cells with a Q value greater than 0.125 was approximately 50%. The road network
configuration within the area was assumed to be uniformly distributed, so the carrying
capacity of the central cell was 1/9 of the total carrying capacity of the nine grid cells, and
Q = 1/8 = 0.125. In this study, we took Q = 0.125 as the basis for determining whether the
regional road network configuration was balanced. If Q > 1, the regional road network
configuration was severely unbalanced and expected to experience congestion upon satura-
tion of the carrying capacity of the central cell of the nine-cell-grid model. At the first and
second levels, there were no grid cells with Q > 1. At the first level, there were 17 grid cells
with Q > 0.125, and the maximum value of Q was 0.243. At the second level, there were
189 grid cells with Q > 0.125, and the maximum value of Q was 0.392. Figure 9 shows the
distribution of Q values at the first level.

In this study, we obtained real-time urban traffic data from Gaode Map for verification
and analysis. The top 10 congested roads within one week were selected, with a total of
8 roads being in the study area. At the first level, there were five road sections overlapping
grid cells with Q > 0.125. Among these five roads, three road sections overlapped the
area with the highest Q value, with the congestion rank orders of 1st, 5th, and 6th. At the
second level, there were seven road sections overlapping grid cells with Q > 0.125, with an
average Q value of 0.18. According to the grid analysis, the matching degree between the
large-scale grid at the first level and the actual conditions was 62.5%, while that between
the small-scale grid at the second level and the actual conditions was 87.5%.
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The analysis of the correlation between the road network conditions and the carrying
capacity ratio (Q) showed that at a 95% confidence level, there was a significantly negative
correlation between morning and evening peak hours. The higher the Q value is, the greater
the possibility of an unbalanced regional road network configuration, and the more likely a
road is to be congested. A spatial matching analysis was conducted on the areas with Q
> 0.125 and the areas frequently congested during morning and evening peak hours. At
the first level, the proportion of road sections overlapping the marked grid cells was 68%,
and at the second level, it was 73%. Therefore, the Q value can be used as an important
reference indicator to purposefully optimize the allocation of road carrying capacity.

The main vehicles on urban roads are small cars. According to statistical data, the
total number of vehicles in Chengdu was 4.35 million in 2018, of which 3.98 million were
private cars, with nearly 90% being estimated to be small cars. Generally, the length of
a small car is 4–5 m, with an average length of 4.5 m. The theoretical carrying capacity
of the road network in the core areas of Chengdu was calculated to be 464,552 vehicles.
Based on the natural breakpoint method, the carrying capacity per kilometer was divided
into five categories. The spatial statistical results of every district are shown in Figure 10,
where Figure 10a–e represent the visualization results of the road network carrying capac-
ity grading for Wuhou District, Chenghua District, Jinniu District, Jinjiang District, and
Qingyang District, respectively. The proportion distribution of road carrying capacity in
each district and category showed certain similarities, with the section with the highest
carrying capacity per unit length ranging from 20 to 50 vehicles, accounting for more than
30% of the total road length. The carrying capacity of most roads was 20–50 vehicles per
kilometer, and these road sections accounted for over 30% of the total road length. Jinniu
District had the highest carrying capacity, 35.82%, and Wuhou District had the lowest
carrying capacity, 31.75%.

We firstly selected high-resolution remote sensing images of three time points to
extract vehicle information for our experiment. Taking Wuhou District as an example,
as shown in Figure 11, the numbers of vehicles extracted from the images of three time
points were 2.2663, 4.0757, and 1.5886, respectively. The comparison of the theoretical
carrying capacity and the actual vehicles on the road showed that the carrying capacity
was greater than the number of actual vehicles on the road during non-peak hours; thus,
the contradiction between road supply and vehicle demand was not obvious.
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We matched the carrying capacity of the road network with the extracted road vehicle
samples to the same 1 × 1 km spatial grid to calculate the matching degree between carrying
capacity after grid transformation and actual transport vehicles, as shown in Figure 11. We
then analyzed the spatiotemporal changes in the spatial distribution of supply and demand
hotspots, from which we extracted heat maps. From the results, it can be seen that at the
first time point, presenting relatively idle traffic (b), the conditions most closely matched
the distribution of road carrying capacity (a). At the second time point, presenting peak
traffic (c), the hotspots were concentrated within a radius of one kilometer around Tianfu
Interchange. At the third time point, presenting relatively severe traffic (d), several traffic
hotspots centered on Third Ring Road–Wuhou Avenue, Renmin South Road–Second Ring
Road, Jiannan Avenue, and Tianfu Second Street formed.

Finally, we analyzed the spatiotemporal changes in road supply and vehicle demand in
the hotspot areas, from which we obtained heat maps, as shown in Figure 12. Similar to the
heat map results reported above, at the first time point, with relatively idle transportation,
the traffic conditions were the most visually similar to the distribution of road carrying
capacity. At the second time point, with mid-peak-hour transportation, the hotspot areas
were concentrated within a radius of one kilometer centered on Tianfu Interchange. At
the third time point, with relatively severe traffic, several hotspot areas appeared at the
intersection of Third Ring Road and Wuhou Avenue, the intersection of Renmin South
Road and Second Ring Road, Jiannan Avenue, and Tianfu Second Street.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 16 of 23 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 12. Supply and demand analysis of road carrying capacity in Wuhou District. (a) Carrying 
capacity. (b) First time point. (c) Second time point. (d) Third time point. 

4.2. Analysis of Road Congestion Status and Impact Factors 
The road congestion status in Chengdu was analyzed using comprehensive geo-

graphic information technologies. Figure 13 shows the analysis results of the distribution 
of road congestion over different periods, i.e., a day and a week. On weekdays, the morn-
ing peak period was found to start at around 7:00 am and reach its peak at around 8:00 am. 
The evening peak period was found to start at around 5:00 pm and continue until around 
7:00 pm. The morning peak period showed a trend of spreading from the surrounding areas 
to the central urban area, while the evening peak period showed the opposite trend. On 
weekends, traffic was different from that on weekdays, with the morning peak period ap-
pearing at around 9:00 am and the evening peak period showing a longer duration. 

During the week, congestion was the most severe on Monday and Friday, with the 
lowest average vehicle speed occurring on Monday, followed by Friday. Congestion dur-
ing the evening peak period was more severe than that during the morning one because 
of the lower average vehicle speed and longer congestion mileage. During the week, the 
daily accumulated congestion mileage on weekdays was longer than that on weekends. 

Figure 12. Supply and demand analysis of road carrying capacity in Wuhou District. (a) Carrying
capacity. (b) First time point. (c) Second time point. (d) Third time point.



ISPRS Int. J. Geo-Inf. 2024, 13, 59 16 of 23

4.2. Analysis of Road Congestion Status and Impact Factors

The road congestion status in Chengdu was analyzed using comprehensive geographic
information technologies. Figure 13 shows the analysis results of the distribution of road
congestion over different periods, i.e., a day and a week. On weekdays, the morning peak
period was found to start at around 7:00 a.m. and reach its peak at around 8:00 a.m. The
evening peak period was found to start at around 5:00 p.m. and continue until around
7:00 p.m. The morning peak period showed a trend of spreading from the surrounding
areas to the central urban area, while the evening peak period showed the opposite trend.
On weekends, traffic was different from that on weekdays, with the morning peak period
appearing at around 9:00 a.m. and the evening peak period showing a longer duration.
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Figure 13. Spatial distribution of congested road sections during the day (red roads represent for
congested).

During the week, congestion was the most severe on Monday and Friday, with the
lowest average vehicle speed occurring on Monday, followed by Friday. Congestion during
the evening peak period was more severe than that during the morning one because of the
lower average vehicle speed and longer congestion mileage. During the week, the daily
accumulated congestion mileage on weekdays was longer than that on weekends.

Figure 14 shows the extracted distribution maps of congested road sections during
peak hours on weekdays. The extraction results of commonly congested areas in Chengdu
as a whole are shown in Figure 15. There was a certain degree of similarity between morning
and evening peak congestion areas, as well as significant differences. The southwestern
section of Chengdu Ring Expressway outside Third Ring Road was a frequently congested
area, with a clear trend of congestion during morning and evening peak hours. In the
central urban area, the southern section of Second Ring Road presented a high incidence
of morning and evening peak congestion. Overall, the congestion trend in the southeast
of the core urban area was more pronounced during morning rush hours and that in the
southwest was more severe during evening rush hours.

In order to analyze the traffic data of roads and vehicles at different times of the day,
we selected vehicle speed as the dependent variable and five spatial indicators, including
density of road network, node complexity, carrying capacity, density of bus lines, and
coverage rate of bus stops, as the independent variables. The geographical exploration
results are shown in Table 2. The explanatory power of each factor was the strongest at 8:00
a.m. and 6:00 p.m., while it was the weakest in the early morning and at 9:00 a.m.
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Table 2. Factor interaction results during morning peak hours.

Factor Road Network
Density

Bus Network
Density Node Density Carrying

Capacity
Bus Stop

Coverage Rate

Road network 0.113632568
Bus network density 0.325978842 0.228960028

Node density 0.313461364 0.435280958 0.121162787
Carrying capacity 0.216198816 0.348898826 0.368858841 0.164306987

Bus stop coverage rate 0.433570493 0.473625342 0.446629476 0.405571841 0.315829605

The experimental results are consistent with the previous analysis of the congestion
status. Among these five factors, the coverage rate of bus stops had the strongest explana-
tory power, with the value of 0.32 at 8:00 a.m. and the value of 0.29 at 6:00 p.m. during
peak hours. The explanatory power of road network density was the weakest, with the
value of 0.11 at 8:00 a.m. and the value of 0.09 at 6:00 p.m. during peak hours. Overall,
the explanatory power of the five factors during peak traffic hours was ranked as follows:
bus station coverage rate, bus network density, carrying capacity, node degree, and road
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network density. Lastly, the explanatory power of the node degree during idle traffic hours
was greater than that of carrying capacity, as shown in Figure 16.
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We further explored the interactive influence of the above factors. The type of in-
teraction among various factors was classified into dual-factor enhancement mode and
non-linear enhancement mode. We found no weakening nor independent relationship
between any two factors, indicating that compared with the impact of a single factor, the
dual interactions of different factor combinations had a stronger explanatory power for
the spatial distribution of vehicle speed; in other words, the spatial distribution of vehicle
speed was the result of the joint action of multiple factors. From the perspective of the role
of single factors in dual-factor interactions, the influence of public transport factors on the
interaction among factors was greater than that of other factors at 8:00 a.m. The interaction
proportions between bus station coverage and road network density was above 0.4, and
the interaction proportions between bus station coverage and node degree, the interaction
proportions between bus station coverage and carrying capacity, the interaction proportions
between bus network density and node degree/bus station coverage were all above 0.4;
these results indicate that each of the above two factors of public transport had a strong
impact on dual-factor interactions and greatly enhanced the influence of dual factors when
combined with other factors. At 8:00 a.m., during morning peak hours, the interaction
influence between bus station coverage and bus network density was 0.47, the interaction
influence between bus station coverage and node degree was 0.45, the interaction influence
between bus network density and node degree was 0.44, the interaction influence between
bus station coverage and road network density was 0.43, and the interaction influence
between bus station coverage and carrying capacity was 0.41.

There was significant spatial heterogeneity in the factors influencing vehicle speed.
The impact of single factors on road traffic status varied significantly at different times and
showed a certain regularity. As shown in Figure 17, the impact of road network density and
node degree on vehicle speed was positive in idle traffic in the early morning. However,
during peak traffic, the density of bus network and road carrying capacity increased, vehicle
speed significantly decreased, and the impact of the node degree on vehicle speed first
showed a negative trend and then a positive one.

According to the analysis of the equilibrium of road carrying capacity in Chengdu
applied using the proposed method for congestion coordination, we advise that the node
degree and public transport factors be combined to adjust the spatial distribution of bus
stops in areas with a relatively high node degree. This adjustment is expected to opti-
mize the resource utilization rate of congested road sections, achieve optimized resource
allocation, improve travel efficiency, and thus increase road speed in congested areas.
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5. Discussion

Methods for identifying and optimizing road congestion represent a challenging topic
in interdisciplinary research. Traffic carrying capacity has dynamic, fuzzy, and uncertain
characteristics, and its influencing factors have obvious spatiotemporal heterogeneity
characteristics. In this study, we aimed at addressing existing needs of traffic management
departments and travelers by combining GIS technology and the classic spatiotemporal
consumption method [44] to construct an urban road carrying capacity analysis model
based on geospatial data. Our method effectively solves the complexity and difficulty
of obtaining historical model parameters and improves the accuracy and timeliness of
calculations. Taking high-resolution remote sensing images as the research object, by
detecting and identifying vehicle targets through this method, one can quantitatively
analyze the actual number and spatial distribution of motor vehicles on the road on
a large scale [45]. This traffic carrying capacity analysis method was designed from a
spatiotemporal perspective, and a spatiotemporal balance analysis model of road network
carrying capacity was constructed based on spatial geographic grids. Taking the regional
balance of road network carrying capacity in Chengdu at different spatial scales as an
example, we explored the spatiotemporal variation characteristics of the factors influencing
carrying capacity and the spatial variation characteristics and rules of the dependent and
independent variables [46], explaining the causal relationships among them. Compared
with the actual congestion status, our analysis results achieve good accuracy. Thus, this
method is effective in detecting traffic congestion in urban areas.

The advantage of the spatial nine-cell-grid-based equilibrium analysis model proposed
in this study is that it can efficiently perform the dynamic calculation of the equilibrium
degree at different spatial levels of the road network. Based on this, the established criteria
for judging the equilibrium degree of regional carrying capacity can provide a basis for
adjusting road supply capacity at the micro- and meso-levels. Based on a regional repre-
sentation grid, the integrated description of the spatial positions and feature information
of road traffic geographical entities can be achieved. Further, the use of spatial grids can
provide a reference framework for the spatial location of transportation elements and
represents a means of integrating various road traffic spatial information.

However, this method also has some shortcomings and limitations. For example,
although it provides new solutions for analyzing road traffic supply optimization in the
experiment, there may be inconsistencies in the experimental conclusions under conditions
of complex road environments, management methods [47], etc. In this study, we only
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focused on the overall region, without considering the state of the road network, flow
direction, attributes of urban areas, and other traffic facilities other than road traffic in
the region in detail. As for the nine-cell-grid equilibrium model, its use only allows for
the detection of problems from the perspective of road configuration itself. To avoid
introducing too many parameter conditions, the following ideal assumptions were set:
(1) vehicles in the nine-cell-grid area operated at a set speed; (2) the situation where vehicles
leave the road network was not considered. In practical applications, when using the
nine-cell-grid model to assess actual road vehicle conditions, it is necessary to further
consider key factors such as road driving direction, entrances and exits, and large parking
lots for vehicle allocation. In future work, traffic control data could be considered to further
improve the matching of model and reality [48].

In addition, using high-resolution remote sensing data to extract vehicles has its own
inherent limitations. For instance, the limitation of transit time on high-resolution remote
sensing data makes it difficult to obtain morning and evening peak hour data. High-
resolution data make it difficult for a single image to cover the entire research area, and
extracting vehicles cannot strictly reflect the instantaneous distribution of vehicles. Due to
the shadow of buildings and the obstruction of elevated bridges, there is a deviation in the
estimated number of vehicles based on vehicle speed.

We compared the complexity requirements of previous models and those of our model
in Table 3. The proposed method reduces the necessary steps for road network key element
extraction for analysis. Further, our model uses grid computing for quickly performing
road network carrying capacity calculations. Finally, the proposed method uses a nine-
cell-grid regression analysis for easily accomplishing the balance analysis of regional road
network carrying capacity.

Table 3. Comparison of the complexity requirements of previous models and our model.

Factors Previous Models Proposed Model

Road network key element
extraction

Multi-steps using GIS tools
and image processing tools

One-step extraction using
deep learning method

Road network carrying
capacity calculation

Difficulty in obtaining
correction coefficients

Spatiotemporal analysis with
grids to obtain results quickly

Balance analysis of regional
road network carrying

capacity

The inversion calculation of
multiple types of data is

complex and difficult

Nine-cell-grid balanced
regression analysis

6. Conclusions

From the perspective of spatial management, in this study, we propose a method
for urban road carrying capacity calculation based on geospatial grids. The study area
was divided into spatial grids of different sizes, nesting three levels of nine-cell grids.
By calculating the carrying capacity ratio between the central cell and the surrounding
cells in the nine-cell-grid model, the areas where the road network configuration may be
unbalanced are identified. For our experiment, we took actual traffic operating condition
data (dependent variables) and five spatial indicators (independent variables), including
density of road network, node degree, carrying capacity, density of bus lines, and coverage
rate of bus stops. The relationships among regional traffic conditions, impact factors, and
spatial heterogeneity were analyzed. It was found that the proposed method effectively
reduces the complexity requirements of parameters of previous theoretical models and the
difficulty of obtaining such parameters; it also improves the accuracy and timeliness of the
results, representing a new and quick processing technique for the planning of smart cities
and smart transportation.
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The method proposed in this study may represent a new solution for regional road
traffic resource allocation. However, there may be inconsistencies between theoretical and
experimental results because of the conditions of complex road environment, management
methods, regional disequilibrium, etc.; therefore, more geographical and practical factors
should be considered. Finally, in line with the significant existing research interest in traffic
congestion, the following should be pursued in future work: the selection of impact factors
needs to be further discussed; more types of urban and road traffic modes should be selected
for further exploration; and the adaptability of this model needs further investigation.
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