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Abstract: Schematization is a process of generating schematic network maps (e.g., metro network
maps), where the graphic complexity of networks is usually reduced. In the past two decades, various
automated schematization methods have been developed. A quantitative and accurate description of
the complexity variation in the schematization is critical to evaluate the usability of schematization
methods. It is noticed that fractal dimension (F) has been widely used to analyze the complexity of
geographic objects, and this indicator may be appropriate for this purpose. In some existing studies,
although F has been employed to describe the complexity variation, the theoretical and experimental
basis for adopting this approach is inadequate. In this study, experiments based on 26 Chinese cities’
metro networks showed that the F of all these metro networks have decreased in schematization, and
a significant positive correlation exists between the F of original networks and the reduction of F after
schematization. The above results were verified to have similar trends with the subjective opinions of
participants in a psychological questionnaire. Therefore, it can be concluded that F can quantitatively
measure the complexity change of networks in schematization. These discoveries provide the basis
for using F to evaluate the usability of schematization methods.

Keywords: schematization; complexity; fractal dimension; schematic map; metro network

1. Introduction

Schematization is a process of generating schematic network maps, where the com-
plexity of networks is reduced by removing geographical features, simplifying lines, re-
orientating lines, etc. (see Figure 1). Although some details are removed, and the geograph-
ical reality is changed for schematic network maps, the essential structures and topological
relationships are still preserved [1,2]. As a result, such maps are widely used for tasks that
can be performed without exact details and geographical reality, such as route planning
and orientation tasks [3–6]. One famous example of schematic network maps is the London
Underground map designed by Harry Charles Beck in the 1930s, which has been regarded
as one of the top ten maps in the twentieth century [7]. On this map, congested areas
are enlarged, and lines are re-orientated along specific directions with the preservation of
topological relationships [8]. Nowadays, schematic network maps have been widely used
in representing various spatial networks (e.g., bus route networks and metro networks)
and non-spatial networks (e.g., cancer path and project plan networks, see Figure 2).
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Figure 1. Hong Kong metro maps (China-Mike 2020; MTR 2020). 

 
 

(a) Cancer path (b) Project plan networks 

Figure 2. Examples of non-spatial schematic networks: cancer path [9] and project plan networks 
(https://www.biggerplate.com/mindmaps/ptloNDXs/project-schedule-network-diagram, accessed 
on 16 November 2023). 

In the past two decades, researchers from various fields, such as cartography, geo-
graphical information science, and computational geometry, have conducted a consider-
able number of studies in the development of automated schematization methods. Most 
methods follow a three-step procedure [10], outlined below: 
• to simplify lines to basic shapes; 
• to re-orient lines along grid lines; 
• to enlarge congested areas to spread the density of the network. 

The context that follows provides a limited review of automated schematization 
methods. Generally, the automated generation of schematic maps is treated as an optimi-
zation problem. It is time-consuming to solve this optimization problem due to its NP-
hard nature [11]. To achieve the optimal result within an acceptable time, various optimi-
zation algorithms (e.g., simulated annealing algorithms, genetic algorithms, and hill-
climbing algorithms) are used with one or more constraints [2,11–15]. On the other hand, 
the utility improvement of schematic maps has gained a great deal of attention. Compared 
with the traditional method, i.e., segment-based methods, a stroke-based method was pro-
posed for generating more usable schematic maps like the London Underground map 
[16]. To enlarge congested areas in an appropriate way, a fish-eye view technique was 
employed with an automated approach for schematic maps [17]. The labeling problem of 
stations is a critical point for the quality of schematic maps, but the attention to this prob-
lem is limited. In recent years, the name placement of stations has been revisited, and 
numerous official schematic metro networks have been studied manually to generate a 
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Figure 2. Examples of non-spatial schematic networks: cancer path [9] and project plan networks
(https://www.biggerplate.com/mindmaps/ptloNDXs/project-schedule-network-diagram, accessed
on 16 November 2023).

In the past two decades, researchers from various fields, such as cartography, geo-
graphical information science, and computational geometry, have conducted a considerable
number of studies in the development of automated schematization methods. Most meth-
ods follow a three-step procedure [10], outlined below:

• to simplify lines to basic shapes;
• to re-orient lines along grid lines;
• to enlarge congested areas to spread the density of the network.

The context that follows provides a limited review of automated schematization meth-
ods. Generally, the automated generation of schematic maps is treated as an optimization
problem. It is time-consuming to solve this optimization problem due to its NP-hard
nature [11]. To achieve the optimal result within an acceptable time, various optimization
algorithms (e.g., simulated annealing algorithms, genetic algorithms, and hill-climbing
algorithms) are used with one or more constraints [2,11–15]. On the other hand, the utility
improvement of schematic maps has gained a great deal of attention. Compared with the
traditional method, i.e., segment-based methods, a stroke-based method was proposed
for generating more usable schematic maps like the London Underground map [16]. To
enlarge congested areas in an appropriate way, a fish-eye view technique was employed
with an automated approach for schematic maps [17]. The labeling problem of stations is a
critical point for the quality of schematic maps, but the attention to this problem is limited.
In recent years, the name placement of stations has been revisited, and numerous official
schematic metro networks have been studied manually to generate a series of labeling
rules [18]. Moreover, an artificial neural network-based method was presented for the
automated labeling of schematic metro maps [1].

https://www.biggerplate.com/mindmaps/ptloNDXs/project-schedule-network-diagram
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These studies improve the automated level of schematization. However, how to
evaluate the usability of schematization methods is not well considered. In the existing
work, questionnaires [19–21] and eye-tracking-based experiments [22–25] are two main
methods of evaluation. Unfortunately, these two methods cannot quantitatively measure
the complexity change of networks in schematization. Fractal dimension is widely used
to analyze the complexity of geographic objects [26–31], and such an indicator may be
appropriate for this purpose. To verify our hypothesis, in this study, fractal dimension
was employed to measure the complexity change of 26 Chinese metro networks in schema-
tization, and the acquired results were then compared with the results acquired from a
psychological questionnaire.

The remainder of this article is organized as follows. Section 2 introduces the employed
metro networks and fractal theory. Section 3 analyzes the change in fractal dimensions in
schematization and compares them with results from the psychological questionnaire. In
Sections 4 and 5, the discussion and conclusion are provided, respectively.

2. Data and Method
2.1. The Metro Networks of 26 Chinese Cities as the Experimental Data

More than 100 cities in the world have constructed their own metro operation systems
and designed corresponding schematic metro maps (https://en.wikipedia.org/wiki/List_
of_metro_systems, accessed on 16 November 2023). These maps may be very different
because of the design differences (e.g., different line design rules). To diminish these effects,
it is better to employ metro networks from the same country or region. In the past decade,
China has constructed the largest number of metro operation systems in the world, and we
have collected metro networks of 26 Chinese cities from two sources (official websites and
Gaode map) as the experimental data, all of which have two or more lines. It is important
to note the differences between schematic metro networks produced by official websites
and Gaode map; that is, official websites adopt the octilinear design of lines (i.e., lines are
re-orientated into horizontal, vertical, and diagonal directions), but Gaode maps adopt the
multilinear design of lines (i.e., any angle of lines can be used), as shown in Figure 3. The
complete network data can be found in the supplementary material.
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Figure 3. Some examples of original and schematic network maps (all of the network data of 26
Chinese cities can be found in the supplementary material).

2.2. Fractal Theory

• The development of fractal theory

The term “fractal” refers to “a curve or pattern that includes a smaller curve or
pattern which has exactly the same shape” (https://www.oxfordlearnersdictionaries.com/
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definition/english/fractal?q=fractal, accessed on 16 November 2023). Such fractals are
strictly self-similar, and they only exist in mathematical patterns, such as Koch Snow and
Sierpinski Triangle. Gradually, in order to describe those complex objects in nature (such as
coastal lines), the concept of the fractal is extended to refer to those statistically self-similar
objects measured by power-law relationships between the measurement scale and the
number of scales needed to cover objects [32]. The absolute value of the scaling exponent
in such a power-law relationship is the fractal dimension [33]. It was reported that the
power-law-based fractal dimension is “too strict for many geographic features” [34], and
an alternative indicator called “ht-index” was recently proposed based on power-law-like
distributions [35,36]. In this study, the research objects are metro networks that are usually
described by the power-law-exponent-based fractal dimension, so the fractal dimension
hereafter refers to the exponent of a power-law relationship.

• Calculation of fractal dimension

A variety of methods for the calculation of fractal dimension are available, such as
the divider method [36], area-based method [37], and box-counting method [38]. Among
these methods, the box-counting method is the most appropriate one for analyzing the
complexity of transport networks [39–42], so we have employed the box-counting method
for the calculation of fractal dimension. Based on the box-counting method, the number
of boxes Ng is acquired by overlaying a grid of squares with size lg on the object to be
measured (see Figure 4). By progressively reducing lg, we can acquire a series of box
numbers Ng, and fractal dimension can then be calculated as follows:

Ng ∝ l
−Fg
g , (1)

where lg refers to the side length of boxes, Ng refers to the number of boxes covering the
feature, and Fg is the box-counting fractal dimension.
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3. Analysis of Complexity Change in Schematization

In this section, the complexity change of metro networks in schematization will
be firstly analyzed by fractal dimensions. To further verify the reliability, these fractal-
dimension-based results will be compared with the subjective opinions of participants
acquired from a psychological questionnaire.

3.1. Complexity Change in Schematization by Fractal Dimension

The fractal dimensions of original metro networks, schematic Gaode metro networks,
and schematic official metro networks (i.e., F1, F2, and F3) in 26 Chinese cities have been
calculated based on the box-counting method. All values of adjusted R-square in the
calculation of fractal dimensions are larger than 0.998, which ensures that the acquired
fractal dimensions are reliable. The differences in fractal dimensions between original
networks and schematic Gaode networks (i.e., D1) and between original networks and
schematic official networks (i.e., D2) are also presented. All of the data are given in Table 1.
In order to facilitate the understanding of the relationship between graphic complexity
variations after schematization and D, the schematic metro networks with the largest,
medium, and smallest of D1 and D2 are displayed in Figure 5, respectively.

Table 1. Fractal dimensions of metro networks in 26 cities.

City F1 R1 F2 R2 F3 R3 D1 D2

Beijing 1.373 0.999 1.187 0.998 1.210 0.998 0.186 0.163
Shanghai 1.309 0.998 1.162 0.998 1.157 0.998 0.147 0.152
Shenzhen 1.272 0.998 1.257 0.998 1.195 0.998 0.015 0.077

Chongqing 1.265 0.998 1.097 0.999 1.095 0.999 0.168 0.170
Chengdu 1.256 0.999 1.107 0.998 1.135 0.999 0.149 0.121
Wuhan 1.232 0.999 1.170 0.999 1.161 0.999 0.062 0.071

Guangzhou 1.201 0.998 1.148 0.998 1.120 0.998 0.053 0.081
Changsha 1.181 0.999 1.041 0.999 1.049 0.999 0.140 0.132

Tianjin 1.173 0.999 1.077 0.999 1.058 0.999 0.096 0.115
Hangzhou 1.170 0.998 1.097 0.999 1.107 0.999 0.073 0.063

Nanjing 1.135 0.999 1.088 0.998 1.092 0.998 0.047 0.043
Xi’an 1.135 0.998 1.062 0.999 1.051 0.999 0.073 0.084

Ningbo 1.125 0.999 1.033 0.999 1.019 0.999 0.092 0.106
Hong Kong 1.124 0.999 1.123 0.999 1.109 0.999 0.001 0.015
Shenyang 1.111 0.999 1.056 0.999 1.036 0.999 0.055 0.075
Kunming 1.068 0.999 1.046 0.999 1.043 0.999 0.022 0.025

Zhengzhou 1.067 0.999 1.060 0.999 1.055 0.999 0.007 0.012
Dalian 1.061 0.999 1.003 0.999 1.002 0.999 0.058 0.059
Suzhou 1.057 0.999 1.030 0.999 1.011 0.999 0.027 0.046

Nanchang 1.046 0.999 1.032 0.999 1.022 0.998 0.014 0.024
Changchun 1.043 0.999 1.023 0.999 1.034 0.999 0.020 0.009

Wuxi 1.035 0.999 1.016 0.999 1.011 0.999 0.019 0.024
Xiamen 1.031 0.999 1.001 0.999 1.002 0.999 0.030 0.029
Hefei 1.030 0.999 1.021 0.999 1.022 0.999 0.009 0.008

Fuzhou 1.025 0.999 1.007 0.999 1.001 0.999 0.018 0.024
Nanning 1.024 0.999 1.018 0.999 1.024 0.999 0.006 0.000

Note: F1, F2, and F3 refer to the fractal dimensions of original metro networks, schematic Gaode networks,
and schematic official networks, respectively; R1, R2, and R3 refer to the values of the adjusted R-square when
calculating F1, F2, and F3 in the log–log plots; D1 and D2 are the differences between fractal dimensions of original
and schematic networks, i.e., D1 = F1 − F2 and D2 = F1 − F3.

It was found that F2 and F3 are decreased when compared with F1. This result indicates
that the complexities of metro networks have been reduced in schematization. Figure 6
shows the scattered data between F1 and D1 and between F1 and D2. Visually, both scattered
data have a positive correlation. To further understand the complexity reduction in various
networks, the potential correlations between F1 and D1 and between F1 and D2 were
explored with the values of Spearman’s correlation coefficient (SCC). As a result, the value
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of SCC between F1 and D1 was 0.715, while that between F1 and D2 was 0.853. As the
pairs (F, D) are not independent observations, statistical tests were not appropriate for
this study. To further confirm the possible relationships, various confidence intervals of
SCCs were calculated using bootstrapping (i.e., a nonparametric statistical method). To
enhance statistical robustness, two strategies for bootstrapping were applied in this study.
Firstly, the original paired observations (2 × 26) were replicated to form multi-repeated
observations (2 × 2600) through 100 replications. Secondly, 1000 iterations were performed
for calculating confidence intervals, generating sets of paired resamples from the multi-
repeated observations, with each resampling size matching that of the multi-repeated
observations. In addition, the extracted elements were put back after each sampling.
The outcomes, as presented in Table 2 and Figure 7, demonstrate that the calculated
confidence intervals exhibit narrow widths (with a maximum width of approximately
0.05). Importantly, all lower and upper bounds of the confidence intervals are positive.
These results prove a positive correlation between F1 and both D1 and D2, and they
indicate that an original metro network with a large fractal dimension may suffer more
in complexity reduction than an original one with a small fractal dimension. In addition,
when comparing F3 with F2, it was found that the F3 values of 17 metro networks were
smaller (e.g., Shenzhen and Chongqing), while the F3 values of the other 9 metro networks
(e.g., Beijing and Chengdu) were larger. These results imply that no schematization method
can state with certainty that the resultant schematic network maps are an improvement.
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Table 2. Confidence intervals of SCC between F and D calculated using bootstrapping.

Paired Observations F1 and D1 F1 and D2

Spearman correlation coefficient 0.715 0.853

95% Confidence Interval (0.690, 0.739) (0.844, 0.861)
90% Confidence Interval (0.694, 0.736) (0.846, 0.860)
85% Confidence Interval (0.696, 0.733) (0.846, 0.859)
80% Confidence Interval (0.698, 0.731) (0.847, 0.858)
75% Confidence Interval (0.700, 0.729) (0.847, 0.858)
70% Confidence Interval (0.702, 0.728) (0.848, 0.857)
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Table 2. Cont.

Paired Observations F1 and D1 F1 and D2

65% Confidence Interval (0.703, 0.726) (0.848, 0.857)
60% Confidence Interval (0.704, 0.725) (0.849, 0.857)
55% Confidence Interval (0.705, 0.724) (0.849, 0.856)
50% Confidence Interval (0.707, 0.724) (0.850, 0.856)
45% Confidence Interval (0.708, 0.723) (0.850, 0.855)
40% Confidence Interval (0.709, 0.722) (0.850, 0.855)
35% Confidence Interval (0.709, 0.721) (0.851, 0.855)
30% Confidence Interval (0.710, 0.720) (0.851, 0.855)
25% Confidence Interval (0.711, 0.719) (0.851, 0.854)
20% Confidence Interval (0.712, 0.719) (0.851, 0.854)
15% Confidence Interval (0.713, 0.718) (0.852, 0.854)
10% Confidence Interval (0.714, 0.717) (0.852, 0.853)
5% Confidence Interval (0.714, 0.716) (0.852, 0.853)
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Figure 6. Relations between fractal dimensions of original metro networks and the difference of
fractal dimensions after schematization. The abbreviation of cities’ names is as follows. BJ: Beijing,
SH: Shanghai, SZ 1: Shenzhen, CQ: Chongqing, CD: Chengdu, WH: Wuhan, GZ: Guangzhou, CS:
Changsha, TJ: Tianjin, HZ: Hangzhou, NJ: Nanjing, XA: Xi’an, NB: Ningbo, SY: Shenyang, HK: Hong
Kong, KM: Kunming, ZZ: Zhengzhou, DL: Dalian, SZ 2: Suzhou, NC: Nanchang, CC: Changchun,
WX: Wuxi, XM: Xiamen, HF: Hefei, FZ: Fuzhou, NN: Nanning.
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3.2. Comparison of Complexity Change between Fractal Dimension and
Psychological Questionnaire

The fractal dimensions of metro networks computed in the previous subsection in-
dicated that schematic Gaode and official metro networks exhibit lower complexity than
original metro networks. This subsection compares the complexity change between the
fractal dimension and subjective opinions acquired by a psychological questionnaire.

This study conducted a psychological questionnaire to acquire subjective opinions
about the complexity change when comparing the original and schematic metro networks,
as shown in Figure 8, and the main body of the questionnaire can be found in the supple-
mentary material. This questionnaire requires participants to score the complexity change
from 26 cities’ metro networks using a 5-grade marking system (Table 3). To facilitate
participants’ comprehension of complexity change, the questionnaire included three illus-
trative instances representing “very high”, “medium”, and “very low” levels of complexity
change, respectively, as illustrated in Figure 9. The questionnaire was designed using the
“Wenjuanxing” online platform, and we sent the link to the questionnaire to 80 participants
from Southwest Jiaotong University. More precisely, each questionnaire designed with
the Gaode or the official schematic method was filled out by 40 participants. The detailed
information (e.g., gender and age) of participants is listed in Table 4.
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Figure 8. An example of the original and schematic metro networks in the psychological questionnaire.

Table 3. The 5-grade marking system for scoring complexity change.

Aspect
Score (Total 5 Scores)

1 2 3 4 5

Complexity change comparing the
original schematic metro networks Very low Low Medium High Very high

Figures 10 and 11 illustrate the proportions of each grade for 26 cities in questionnaires
with the Gaode and official schematic methods, respectively. Table 5 shows the average
score of the complexity change of 26 cities’ metro networks simplified by the Gaode and
official schematization methods. Figure 12 shows scatter plots with the fractal dimension
difference (D1 and D2) on the x-axis and average scores (S1 and S2) on the y-axis. SCC
was calculated to explore the correlation between D and S. The SCC value between
D1 and S1 was 0.411, while the correlation between D2 and S2 was 0.687. The same
bootstrapping statistical method was employed, and the calculated confidence intervals (see
Table 6) exhibit narrow widths (with a maximum width of approximately 0.07), as shown in
Figure 13. Meanwhile, all lower and upper bounds within these intervals present positive
values. These results prove a positive correlation between D and S, and they indicate that
the complexity change in schematization measured by fractal dimension and scored by
subjective opinions has a positive correlation. In addition, such a positive correlation is
more evident in official schematization methods than in Gaode schematization methods. It
can be inferred that the complexity reduction by official schematization methods is more
consistent with subjective opinions than that using Gaode schematization methods.
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complexity change in the psychological questionnaire.
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Figure 10. The proportions of each grade in questionnaires with Gaode schematic methods.
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Figure 11. The proportions of each grade in questionnaires with official schematic methods.

Table 4. The detailed information of questionnaires.

Method Valid Records Gender
(Male/Female) Age Range Cartography

Background
Other

Backgrounds

Gaode 40 22/18 18–60 33 7
Official 39 25/14 18–50 35 4

Table 5. Average scores of complexity change of 26 cities’ metro networks simplified by Gaode and
official schematization methods.

City

Original
Network

Schematic Gaode
Network

Schematic Official
Network

F1 S1 D1 S2 D2

Beijing 1.373 3.300 0.186 3.256 0.163
Shanghai 1.309 3.625 0.147 3.692 0.152
Shenzhen 1.272 3.575 0.015 3.769 0.077

Chongqing 1.265 3.500 0.168 3.692 0.170
Chengdu 1.256 3.600 0.149 3.821 0.121
Wuhan 1.232 2.975 0.062 2.923 0.071

Guangzhou 1.201 3.650 0.053 3.821 0.081
Changsha 1.181 2.925 0.140 3.077 0.132

Tianjin 1.173 3.400 0.096 3.590 0.115
Hangzhou 1.170 2.925 0.073 3.231 0.063

Nanjing 1.135 3.525 0.047 3.641 0.043
Xi’an 1.135 2.925 0.073 2.538 0.084

Ningbo 1.125 2.950 0.092 2.667 0.106
Hong Kong 1.124 3.450 0.001 3.744 0.015
Shenyang 1.111 3.000 0.055 2.821 0.075
Kunming 1.068 3.050 0.022 2.154 0.025

Zhengzhou 1.067 3.000 0.007 1.692 0.012
Dalian 1.061 3.500 0.058 3.077 0.059
Suzhou 1.057 3.000 0.027 2.590 0.046

Nanchang 1.046 2.475 0.014 2.359 0.024
Changchun 1.043 2.025 0.020 2.077 0.009

Wuxi 1.035 2.425 0.019 1.744 0.024
Xiamen 1.031 2.300 0.030 2.026 0.029
Hefei 1.030 1.975 0.009 1.923 0.008

Fuzhou 1.025 2.275 0.018 2.026 0.024
Nanning 1.024 2.175 0.006 1.923 0.000
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3.3. Correlation between the Original Metro Network’s Complexity and the Complexity Change of
Subjective Opinions

Based on the investigation of the previous section, an original metro network with
a large fractal dimension may suffer more in complexity reduction than an original one
with a small fractal dimension. Naturally, an inquiry arises regarding the correlation
between the original metro network’s complexity measured by fractal dimension and the
complexity change in schematization scored by subjective opinions. This section explores
this correlation.

Figure 14 shows scatter plots with the fractal dimensions of the original networks (F)
on the x-axis and average scores (S) on the y-axis. Visually, both plots display a significantly
positive correlation. To further quantitatively explore the correlation, this study calculated
the SCCs between F1 and both S1 and S2. The SCC between F1 and S1 is 0.745, while that
between F1 and S2 is 0.824.
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Table 7 and Figure 15 show the calculated confidence intervals with narrow widths
(with a maximum width of approximately 0.07). All lower and upper bounds within these
intervals present positive values. These results indicate a positive correlation between F
and S, and they imply that the greater complexity of the original metro network appears to
correspond with a more significant complexity reduction in its schematic metro network,
as discerned through subjective viewpoints.
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Table 7. Confidence intervals of SCC between F and S calculated using bootstrapping.

Paired Observations F1 and S1 F1 and S2

Spearman correlation coefficient 0.745 0.824

95% Confidence Interval (0.723, 0.764) (0.812, 0.835)
90% Confidence Interval (0.728, 0.762) (0.814, 0.832)
85% Confidence Interval (0.730, 0.759) (0.816, 0.831)
80% Confidence Interval (0.732, 0.758) (0.816, 0.830)
75% Confidence Interval (0.733, 0.756) (0.817, 0.829)
70% Confidence Interval (0.734, 0.755) (0.818, 0.829)
65% Confidence Interval (0.735, 0.754) (0.818, 0.828)
60% Confidence Interval (0.736, 0.753) (0.819, 0.828)
55% Confidence Interval (0.737, 0.752) (0.819, 0.828)
50% Confidence Interval (0.738, 0.752) (0.820, 0.827)
45% Confidence Interval (0.738, 0.751) (0.820, 0.827)
40% Confidence Interval (0.739, 0.751) (0.821, 0.827)
35% Confidence Interval (0.740, 0.750) (0.821, 0.826)
30% Confidence Interval (0.741, 0.749) (0.821, 0.826)
25% Confidence Interval (0.741, 0.748) (0.822, 0.825)
20% Confidence Interval (0.742, 0.747) (0.822, 0.825)
15% Confidence Interval (0.743, 0.747) (0.823, 0.825)
10% Confidence Interval (0.743, 0.746) (0.823, 0.824)
5% Confidence Interval (0.744, 0.745) (0.823, 0.824)

4. Discussion

To evaluate fractal dimension in a thorough way, we compared F with two metrics,
i.e., Feature Congestion (FC) and Edge Density (ED), that are widely used for measuring
the clutter or complexity of images [43]. The core idea of FC is to consider the differences
among features (e.g., luminance contrast and color) of pixels. The calculation of FC for
an image is to average the features for all pixels, and the larger FC is, the more complex
the image, and vice versa. A MATLAB code for the calculation of FC [43] has been used
in this study, and the luminance contrast, color, and orientation of pixels are considered
in this code. The core idea of ED is to count the number of pixels covered by the object
edge. The calculation of ED follows two steps: (1) detecting the object edges for an image,
and (2) calculating the percentage of edge pixels. It is clear that the larger ED is, the more
complex the image, and vice versa.

We calculated FC and ED of the original, Gaode schematic, and official schematic
metro networks, respectively, for 26 cities, as shown in Table 8. It was found that FC and ED
of the schematic metro networks for almost all of the cities are increased when compared
with that of the original metro networks. This result indicates that the metro networks
become more complex after schematization, which is inconsistent with that of F.

Indeed, the calculation of FC takes the background pixels into consideration. These
background pixels make up a large percentage of the pixels, and they have the same
luminance contrast, color, and orientation. This leads to an inaccurate measure of the
complexity of metro networks. To eliminate the effect of background pixels, we calculated
the average of local FC for all metro line pixels, and the results are shown in the “FCmodi f ied”
column of Table 8. It was found that FCmodi f ied of the schematic metro networks for almost
all of the cities is decreased when compared with that of the original metro networks. This
indicates that FC is able to measure the complexity change of networks in schematization
but needs to eliminate the effect of background pixels.

The calculation of ED considers the number of metro line pixels; that is, the more
pixels there are, the larger the ED. As described in the introduction section, it is essential to
enlarge congested areas in schematization (see Figure 16). In this process, the number of
metro line pixels usually increases, leading to a larger ED.
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Table 8. FC, ED, and FCmodi f ied of metro networks in 26 cities.

City
Original Network Gaode Schematic Network Official Schematic Network

ED FC FCmodified ED FC FCmodified ED FC FCmodified

Beijing 0.0151 3.1781 6.0530 0.0203 3.6445 5.6173 0.0212 3.7852 5.8693
Shanghai 0.0144 3.1051 5.6247 0.0241 4.1072 6.2593 0.0246 4.1209 6.3228
Shenzhen 0.0161 3.3284 5.5108 0.0187 3.4417 5.8338 0.0213 3.7005 5.4791

Chongqing 0.0113 2.8493 5.6135 0.0157 3.1417 5.3954 0.0186 3.5835 5.2646
Chengdu 0.0140 3.0658 5.4578 0.0213 3.6486 5.5535 0.0276 4.3587 5.2923
Wuhan 0.0118 2.8689 5.3100 0.0116 2.6224 5.1009 0.0148 2.8890 4.9391

Guangzhou 0.0095 2.5655 5.2333 0.0175 3.3668 4.9164 0.0186 3.4706 4.8253
Changsha 0.0094 2.5872 4.6973 0.0107 2.5834 4.1849 0.0091 2.3707 4.3177

Tianjin 0.0074 2.2731 5.0508 0.0143 2.9904 4.3920 0.0141 2.9322 4.3624
Hangzhou 0.0075 2.3324 4.9070 0.0092 2.4010 4.8283 0.0120 2.7170 4.6717

Nanjing 0.0054 1.9841 4.8054 0.0097 2.3794 4.4608 0.0109 2.5638 4.4574
Xi’an 0.0109 2.7765 4.4517 0.0093 2.4392 4.2356 0.0114 2.7378 4.2618

Ningbo 0.0078 2.3936 4.3218 0.0098 2.4261 3.9233 0.0087 2.2531 3.8586
Hong Kong 0.0103 2.7048 4.6339 0.0163 3.1324 4.6263 0.0168 3.1359 4.5962
Shenyang 0.0083 2.4020 4.3281 0.0090 2.4133 4.2148 0.0070 2.0984 3.9724
Kunming 0.0074 2.3169 4.6283 0.0082 2.1955 4.2482 0.0069 2.0858 4.3488

Zhengzhou 0.0096 2.5677 4.9129 0.0108 2.5976 4.6702 0.0094 2.4503 4.7618
Dalian 0.0041 1.8817 4.4539 0.0054 1.9474 3.8893 0.0058 1.9943 3.7701
Suzhou 0.0086 2.5058 4.6823 0.0086 2.3585 4.3295 0.0082 2.2785 4.3417

Nanchang 0.0065 2.1404 4.3399 0.0067 2.0943 4.0181 0.0074 2.1687 4.0834
Changchun 0.0075 2.2475 4.1624 0.0077 2.1875 3.9589 0.0069 2.0725 3.9943

Wuxi 0.0064 2.1544 4.1673 0.0066 2.1062 3.9428 0.0066 2.0811 3.9722
Xiamen 0.0060 2.1143 3.9569 0.0063 1.9891 3.6094 0.0053 1.8717 3.5871
Hefei 0.0079 2.3279 4.1853 0.0083 2.2814 3.8880 0.0078 2.2020 3.9378

Fuzhou 0.0049 1.9234 3.7903 0.0048 1.8334 3.5991 0.0053 1.9127 3.7133
Nanning 0.0077 2.3531 4.2286 0.0079 2.2158 3.8978 0.0083 2.2363 3.8855
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5. Conclusions

Schematization has been widely used to represent various spatial and non-spatial
networks. How to quantitatively evaluate the usability of schematization methods is still
a problem. It is believed that measuring the complexity change of networks in schemati-
zation can help to solve this problem. In this study, fractal dimension is employed as an
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indicator to measure the complexity change. To diminish the effects of design differences
in schematization, 26 metro operation systems from one country (i.e., China) with their
original and schematic networks were considered. It was found that (1) fractal dimensions
of all these metro networks have decreased in schematization, and (2) an original network
with a large fractal dimension may suffer more in the fractal dimension reduction than
an original network with a small fractal dimension. These results were verified to have
trends similar to those of the subjective opinions of participants in a psychological ques-
tionnaire. Therefore, it can be concluded that fractal dimension can quantitatively measure
the complexity change of metro networks in schematization. These discoveries can provide
the basis for using fractal dimensions to evaluate the usability of schematization methods.
Future work would explore the effect of design differences (e.g., octilinear and multilinear
designs of metro lines) on the complexity change in schematization.
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