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Abstract: Amid the global shift towards sustainable development, this study addresses the bur-
geoning electric vehicle (EV) market and its infrastructure challenges, particularly the lag in public
charging facility development. Focusing on Wuhan, it utilizes big data to analyze EV charging
behavior’s spatiotemporal aspects and the urban environment’s influence on charging efficiency.
Employing a random forest regression and multiscale geographically weighted regression (MGWR),
the research elucidates the nonlinear interaction between urban infrastructure and charging station
usage. Key findings include (1) a direct correlation between EV charging patterns and urban tem-
poral factors, with notable price elasticity; (2) the predominant influence of commuting distance,
supplemented by the availability of fast-charging options; and (3) a strategic proposal for increasing
slow-charging facilities at key urban locations to balance operational costs and user demand. The
study combines spatial analysis and charging behavior to recommend enhancements in public EV
charging infrastructure layouts.

Keywords: public charging stations; spatiotemporal characteristics of charging behavior; random
forest; SHAP; MGWR; optimization of charging station layout

1. Introduction

China committed to achieving carbon neutrality by 2060 during the 75th United
Nations General Assembly in 2020 [1]. The transportation sector, being the third-largest
energy consumer in China [2], also stands as a major source of carbon emissions. Elec-
tric vehicles, as an emerging eco-friendly mode of transportation, offer the potential to
significantly reduce carbon emissions and urban air pollution, thereby optimizing urban
energy structures and fostering sustainability [3]. Internationally, numerous countries
have recognized the electrification of transportation as a pivotal strategy for mitigating
greenhouse gas emissions. In a recent report published by the International Energy Agency,
it was revealed that, in 2020, the worldwide new electric vehicle registration count reached
a record-breaking 3 million, marking a 41% increase from the previous year. Notably,
the cumulative new electric vehicle registrations in Europe and China accounted for over
80%. Furthermore, in the first quarter of 2021, global electric vehicle sales experienced a
remarkable year-on-year increase of approximately 140% [4]. Among them, the number of
new energy vehicles in China has reached 18.21 million, accounting for 5.5% of the total
number of vehicles. In 2023, the registration of new energy vehicles accounted for 28.6% of
new car registrations. On the other hand, the sharp rise in the price of oil use and the low
cost of charging have led many drivers with average income to prefer the use of electric
vehicles, which further promotes the prosperity of the electric vehicle market. With the
rapid expansion of the electric vehicle market, a series of usage barriers, including limited
driving range, inadequate charging infrastructure, and extended charging durations, have
become increasingly conspicuous [5]. This trend necessitates fresh considerations for the
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planning of the public charging station (PCS) network. The optimization of public charging
facility construction can effectively alleviate range anxiety among electric vehicle drivers, a
factor of utmost significance for the future development of the electric vehicle market [6].
On the other hand, compared with fuel vehicles, electric vehicles have longer charging
times and lower charging station coverage, making range anxiety and time trade-offs more
pronounced for electric vehicle users. Therefore, in the development of charging stations,
a comprehensive evaluation of user charging behavior characteristics is indispensable to
ensure that these stations are aligned with user requirements and enhance their utilization
efficiency, thus avoiding the wasteful allocation of resources.

Previous research has employed diverse data sources for investigating charging behav-
ior and assessing potential demands, including GPS trajectory data, surveys, and vehicle
registration data [7–9]. However, these data can only indirectly estimate charging de-
mands, and errors may arise during the evaluation process due to variations in model
parameters or conversion methods. In reality, the normal operation of charging stations in
China necessitates unified access to the power grid system. The evolution of information
and communication technology has facilitated the acquisition of more intuitive charging
data through web mining, substantially enhancing the accuracy and scientific rigor of
the analysis. Presently, within studies utilizing charging station data, the scale of data
can only encompass a limited number of charging stations or a modest number of charg-
ing events [3,10], resulting in relatively low data granularity that may not fully capture
charging behavior. In this study, we procured data from nearly 1000 charging stations via
web mining, incorporating a substantial volume of charging event data in the millions.
Moreover, concerning data content, we ensured a sufficient level of detail, encompassing
various charging pile usage information within each charging station, enabling a more
intuitive and comprehensive exploration of user charging behavior.

Furthermore, research has demonstrated that the efficiency of public charging stations
can be influenced by numerous factors, such as population density, road characteristics,
location safety, and charging station operational conditions [11,12]. Consequently, in the
planning and construction of charging stations, it is imperative not only to consider actual
charging demands but also to account for the impact of the surrounding built environment
on user charging preferences [13,14]. Presently, research concerning the influence of the
built environment on charging station selection often lacks comprehensive consideration,
and the selection of influencing factors may lack precision. In reality, charging behavior
is shaped by three dimensions: the configuration of the charging stations themselves,
the surrounding traffic conditions, and charging demands [13–15]. Traffic conditions
encompass not only fundamental road characteristics but also spatial disparities in the
placement of charging stations due to variations in road network structure. Charging
demands include not only actual demands arising from the number of electric vehicles but
also variations in charging frequency and pricing demands based on the intensity of usage
needs (such as commuting) and economic capabilities. Consequently, it is imperative to
comprehensively and scrupulously consider urban built environment indicators that may
impact charging station utilization.

In the current context of investigating the influence of the built environment on the
efficiency of charging station utilization, the predominant methods include the application
of analytic hierarchy process (AHP) [11] and GIS-based regression models [16,17]. Never-
theless, due to the intricate network characteristics of urban PCS networks, this process,
where the built environment affects charging choices, may entail nonlinear or sublinear
relationships, along with threshold effects. These threshold effects manifest when an im-
pact on usage efficiency becomes evident only once a factor surpasses a certain threshold.
Consequently, relying solely on linear regression models proves inadequate. Machine
learning, however, provides a viable solution for addressing these nonlinear phenomena.
Tree-based algorithms such as gradient-boosted regression trees (GBRT), eXtreme gradient
boosting (XGBoost), and random forest regression (RFR), in contrast to neural networks
that solely predict outcomes, offer the capability to elucidate the intricate relationships
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between influencing factors and the dependent variable [18,19]. On the other hand, ma-
chine learning necessitates a substantial number of parameters to achieve a high degree
of accuracy, surpassing the requirements of traditional statistical models, which often
suffice with only a few parameters. The output of machine learning models tends to be
intricate and challenging to interpret. To interpret the roles of feature factors in the model,
a method apart from Friedman’s proposed visualization through partial dependence plots
(PDP) [20] has been developed successfully through collaborative efforts, known as the
SHAP (SHapley Additive exPlanations) algorithm [21,22]. Presently, SHAP is primarily
employed in tandem with XGBoost ensembles [23], with fewer instances of its application
in conjunction with other machine learning models. Furthermore, there exists a limited
body of research that delves into the spatial interaction among factors and their impact on
charging station usage. To surmount the constraints posed by traditional global regression
models, stemming from their failure to account for spatial variables, and to address estima-
tion biases arising from the spatial heterogeneity of different influencing factors, this study
opts for multiscale geographically weighted regression (MGWR). This choice allows for the
description of spatial heterogeneity in the influence coefficients of key factors within the
study area and subsequently informs the formulation of optimization strategies.

This research leverages an extensive dataset of one million charging events to extract
and analyze the spatiotemporal aspects of user charging behavior. Additionally, it intro-
duces a factor system, based on multiple data sources, designed to evaluate the influence
of the urban environment on the efficiency of charging stations. We employ RFR to inves-
tigate the nonlinear relationship between these variables, further complemented by the
use of SHAP and PDP techniques to elucidate the inner workings of machine learning.
Moreover, by examining the spatial interactions among crucial factors in the MGWR results,
we propose optimization strategies for charging station layout. For urban planners and
charging station operators, it is imperative to assess user charging behavior preferences
and comprehend the correlation between the urban environment and charging station
efficiency. Such insights are vital for enhancing PCS configuration and network layout,
ultimately fostering the development of new energy vehicles and curbing urban carbon
emissions. Our study contributes to this field in three significant ways. Firstly, it enhances
the charging station database to a million-unit scale, offering a more precise description
of user charging behavior. Secondly, it introduces a comprehensive and detailed urban
environment indicator system to scrutinize its impact on charging station efficiency. Lastly,
it provides a thorough exploration of the nonlinear relationship between these aspects and
illustrates the application of XAI in charging station efficiency research. We also propose
optimization strategies based on the spatial interactions of essential factors.

The structure of this paper is organized as follows: Section 2 introduces the study area
and the utilized dataset, Section 3 outlines the applied methodologies, and Sections 4–6
present the results, analysis, and conclusions, respectively.

2. Study Area and Dataset

In this section, we will explain the reasons for choosing Wuhan as the research area.
We will also provide a detailed explanation of the methods of obtaining research data, its
specific content, and the processing procedures.

2.1. Study Area

We have chosen Wuhan as our research area to investigate the spatiotemporal patterns
of user charging behavior and analyze the influence of the urban environment on the
efficiency of charging stations. Wuhan, the largest central city in central China, was among
the first cities to initiate pilot projects for new energy vehicles and possesses a robust
foundation in the new energy industry. As of 2022, Wuhan has established a network of
more than 1000 charging stations, and the average spacing between charging stations in
the central urban area has been reduced to less than one kilometer. Hence, Wuhan offers a
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highly suitable context for studying charging station usage. To ensure the precision of our
research, we confined our investigation to the primary urbanized zone of Wuhan (Figure 1).
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2.2. Data Source and Processing

This study explores the use of charging stations based on multi-source data, which
is conducive to enhancing the scientific nature of the research. When processing data,
attention must be paid to data cleaning and the uniformity of the research scale.

2.2.1. Electric Vehicle Charging Data

The charging station usage data for this study were acquired using web scraping on
the Python platform. The initial dataset comprises one million charging events from a
total of 1029 charging stations. The data cover a three-month period, from 19 June 2023,
to 17 September 2023. Due to the limitations of network mining, this study is unable to
obtain information on all operational charging stations in Wuhan. The charging event
dataset includes essential information, such as the charging station’s unique ID and name,
timestamp of data collection, pricing details, the total count of DC (direct current) and
AC (alternating current) charging units, and the real-time utilization of both DC and AC
charging units, as depicted in Table 1. Low-quality data can significantly compromise
the accuracy of results, necessitating data cleaning to enhance data quality. Charging
station data with zero counts for both DC and AC charging units are considered invalid.
This condition signifies that the charging station did not interface for usage, rendering it
irrelevant to our research; consequently, these data points have been excluded. Moreover,
our study rigorously focused on publicly accessible charging stations while excluding data
with nonzero values for “private pile sharing”. Consequently, we identified 858 valid
charging stations and 940,000 records of charging events. We performed geocoding on the
names of the charging stations to obtain geographical spatial information.
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Table 1. Charging station information description.

Data Field Description Sampling Data

ID Unique ID of the station 1,485,167

Name Name of the charging station “Wuhan University Doctoral
Apartment Charging Station”

Capture time Data scraping timestamp 16 September 2023, 22:46:20
Price Real-time charging price 0.6

In-use DC chargers 1

Total DC chargers 10

In-use AC chargers 3

Total AC chargers 8

Private chargers shared If the data are not zero, they represent private charging piles 0

2.2.2. Mobile Signal Data

This study employs data obtained from a telecommunications company in Wuhan,
China, in March 2017. The dataset includes user call records, which capture user calling be-
havior and information about base stations. To begin, we categorized travel data, extracted
user age information, and conducted a summary analysis of the demographic age distribu-
tion within specific spatial units. Recognizing the high density of base stations in the central
urban area, we filtered out data points with travel distances of less than 100 m. This process
resulted in a dataset of 3,037,616 valid records and encompassed 1515 spatial units with
valid data. Subsequently, we determined the spatial locations of user call stations and the
corresponding time periods of user calls. Building upon this information, we demarcated
spatial units representing user residences and workplaces, enabling us to summarize the
population density within these temporal and spatial segments. Lastly, we computed the
distances between these home and workplace spatial units, ultimately deriving the average
commuting distance for the population within these designated spatial units. Detailed
sample data are presented in Table 2.

Table 2. Sample mobile signal data.

User ID Base Station ID Area ID Travel Distance (m)

2705381166310 2893326775 A01010302 70,550.81
2705180683220 2872345954 A01010502 71,476.55
2705277594080 2869955752 A02010103 58,374.75

2.2.3. Urban Statistical Information and Geographic Data

Urban statistical data encompass housing price and consumer purchasing power in-
formation, while geographic data include point of interest (POI) data, application program-
ming interface (API) travel records, and city road data. The original dataset is consolidated
and summarized at the level of traffic analysis zones (TAZ), resulting in an attribute table
that contains geographical spatial details. Housing price data are acquired through web
scraping from designated websites using multiple IP addresses, while POI data are sourced
from the Amap platform.

3. Methodology

In this section, we will focus on explaining the main model methods for constructing
and applying the index system of influencing factors, according to the research approach.
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3.1. Research Framework

Figure 2 depicts the workflow of this comprehensive study. (1) Multiple data sources
are procured through methods such as web scraping. Employing TAZ as analytical units,
separate databases are established for Wuhan’s charging stations and the built environment
factor system. (2) The spatiotemporal attributes of user charging behavior are diligently
extracted and examined. (3) Appropriate machine learning models are selected to assess
the spatial, nonlinear effects of the built environment on charging station efficiency. A
spatial model is used to investigate the spatial heterogeneity of the most influential factors,
and optimization ideas are proposed accordingly.
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3.2. TAZ Generation and Influencing Factors System Construction

TAZ are vital for scrutinizing urban functional structures. In urban and transportation
research, city blocks are commonly embraced as the quintessential analytical units [24].
Consequently, adhering to Wuhan’s meticulous urban planning, traffic zones, totaling 2383,
are designated as the fundamental spatial units for an in-depth examination of the central
urban area.

Taking into full account the elements in the built environment that pertain to charg-
ing station utilization and drawing from extant literature [11–15], this paper formulates
12 indicators across three dimensions: charging station self-configuration, surrounding
traffic conditions, and regional demand levels, with the objective of scrutinizing the impact
of the built environment on charging station efficiency. The configuration of the charging
station itself and its surrounding environment influence whether users choose to charge
at that location, resulting in variations in the efficiency of each charging station. At the
same time, the level of charging demand is an important aspect affecting the efficiency
of charging station use. Therefore, we explore three major aspects: the supply side, the
demand side, and the usage environment. Table 3 presents descriptions and calculation
methodologies for all these indicators. All computed information is appended to the
geographical attribute table of TAZ. Following this, a spatial linkage is established with
the charging station database, retaining TAZ data with charging station distribution and
discarding the remainder. This meticulous process culminates in the creation of the final
research database.
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Table 3. Impact factors and descriptions.

Indicator Description

charging station self-configuration
X1: Charging Price The average charging price for all charging piles at each station.
X2: DC Ratio The ratio of DC chargers to all chargers.
X3: Operating Scale The total number of charging piles at each charging station.
surrounding traffic conditions

X4: Transportation attraction The ability of a space to attract traffic as a destination, reflecting the centrality of the space in
the entire system.

X5: Utilization potential The advantages of a spatial unit as the shortest path for travel, reflecting the likelihood of a
space being traversed.

X6: Metro accessibility Obtained using Amap API for walking time from the centroids of various spatial units to
the nearest subway or bus station.X7: Bus accessibility

regional demand levels
X8: Population Calculated using mobile signaling data to estimate potential usage intensity distribution.
X9: House price Calculated by averaging housing prices within spatial units.
X10: Per capita consumption Calculated using per capita restaurant consumption within spatial units.
X11: Commuting distance Calculated using mobile signaling data.
X12: Functional mixing degree Calculated by the entropy of POI categories within spatial units.

3.3. Research Model and Main Algorithms

We utilize partial dependence plots (PDP) and SHAP (SHapley Additive exPlanations)
to explain our predictive model, opening up the black box of machine learning. Moreover,
we use multiscale geographically weighted regression (MGWR) to conduct spatial analysis
on the most important features and propose relevant optimization strategies.

3.3.1. Random Forest Regression Model

The random forest model represents a machine-learning algorithm grounded in classi-
fication trees [25]. It is an ensemble learning-based algorithm widely used for regression
problems. It models data using multiple decision trees and integrates their prediction
results, thereby enhancing the model’s performance and stability. This model exhibits
notable algorithmic advantages, manifesting robustness against both noise and outliers.
Its versatility extends to applications in clustering, classification, regression, and survival
analysis, all the while facilitating the assessment of variable significance. Within the
scope of this study, RFR was executed within the R language environment utilizing the
“RandomForest” package.

3.3.2. Partial Dependency Plots and Shapley

Friedman’s pioneering concept of partial dependency plots [20] serves to visualize
the influence of a single independent variable on the dependent variable, elucidating the
marginal effects of these independent variables [26]. Shapley [27] quantifies and visually
represents the evolving contributions of individual features within the model. Building
upon the foundation laid by PDP, this approach further demystifies the “black box” of
machine learning [28,29]. The calculation of Shapley values for features is achieved through
the following formula:

Shapley
(
Xj

)
= ∑S⊆N\{j}

k!(p − k − 1)!/p!( f (S
⋃
{j})− f (S)) (1)

In the formula, p represents the number of features, N\{j} is the set of all possible feature
combinations except X, j is the set of features in N\{j}, S is the feature set in N\{j}, f (S)
represents the model prediction corresponding to the feature set S, and f (S ∪ {j}) is the
model prediction with the feature X in the feature set S.

The Shapley value obtained from the model refers to the marginal contribution of
a particular feature to the model’s prediction. Shapley values can explain many useful
properties, such as symmetry, dummy, and additivity, among others [27]. Symmetry means



ISPRS Int. J. Geo-Inf. 2024, 13, 37 8 of 20

that if multiple features contribute equally to the model, their Shapley values are equal.
Dummy implies that if a feature’s marginal contribution to the model is zero, then its
Shapley value is also zero. The additivity property requires that the prediction set from a
single model equals the predictions from all combined models. In existing research, the
methods to calculate Shapley values are primarily based on Monte Carlo approximations
and the creation of SHAP [28]. The former can be inaccurate with a small number of
iterations, so we opt for the latter, as shown in Equation (2).

ŷi = shap0 + shap(X1i) + shap(X2i) + . . . + shap
(
Xpi

)
(2)

In the formula, ŷi represents the model’s prediction result for observation i, shap0 is the
average prediction value for all observations, and shap(Xxi) is the SHAP value of the j-th
feature for the i-th observation, indicating the marginal contribution of that feature to the
model. Therefore, the SHAP value reflects the degree to which a feature influences the
model’s predictions and can serve as an importance score for that feature [23].

The use of SHAP can be implemented individually in Python (using the shap library)
and R libraries (shapper and fastshap). It can also be used in conjunction with existing
machine learning packages, such as scikit-learn, XGBoost, and LightGBM. Current research
outcomes predominantly integrate XGBoost and SHAP, while there are fewer achievements
in the integration of random forest regression models with SHAP. Additionally, mature
integrated algorithm packages such as the “SHAPforxgboost” library in R have not yet
been developed. Therefore, it necessitates the development of custom code for combined
applications. This process is implemented in the R programming language environment.

3.4. Multiscale Geographically Weighted Regression

Ziqi Li [30], based on a generalized weighted model, introduced MGWR. This model
can determine the most suitable bandwidth for different variables, enabling regression mod-
eling and producing spatial process models that are closer to reality and more explanatory.
The model is formulated as follows:

yi = ∑k
j=1 βbwj(ui, vi)xij + εi (3)

where bwj represents the bandwidth used for the regression coefficient of the jth variable, yi
denotes the average usage efficiency of charging stations in the ith TAZ, xij denotes the jth
built environment in the ith grid, (ui, vi) denotes the center-of-mass coordinates of the ith
TAZ, βbwj denotes the regression coefficient of the jth variable in the ith grid at bandwidth
bwj, k denotes the sample size, and εi denotes the random error term. This study was
conducted on the GISpro platform, where the domain type was selected as “number of
adjacent elements”, and the domain selection method was set to “golden search”.

4. Results

We analyze the spatiotemporal characteristics of user charging behavior based on the
charging database. Then, we explore the impact mechanism of the urban built environment
on charging behavior.

4.1. Extraction and Analysis of Spatiotemporal Charging Characteristics

By extracting the spatiotemporal characteristics of the current usage of charging
stations, the analysis results are as follows.

4.1.1. Macroscopic Analysis of User Charging Behavior

(1) Efficiency-time:

From a comprehensive utilization perspective (Figure 3), it is evident that user charging
displays three distinct peak periods. These peaks primarily occur just before the morning
rush hour (6–7 a.m.), preceding the evening rush hours (15–17 p.m.), and during the late-
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night resting period (23–24 p.m.). In essence, users predominantly charge their vehicles
during periods of lower road traffic. The temporal utilization patterns of DC fast-charging
stations closely mirror the overall usage trends, whereas AC charging station usage remains
relatively stable over time. In the case of charging stations equipped with both AC and DC
charging facilities, the variations in DC charging usage with time are more pronounced
than those of AC facilities. This phenomenon can be attributed to the heightened time
sensitivity of users opting for DC fast-charging, as they must consider immediate traffic
conditions due to their direct impact on the possibility of queues and congestion during
the charging process. Conversely, users who choose AC charging, or slow charging, exhibit
diminished sensitivity to immediate environmental factors. Consequently, their charging
time selections tend to be more random. This underscores the necessity of incorporating
the proportion of fast charging when exploring factors influencing usage efficiency.
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(2) Efficiency-price-time:

Figure 3 reveals that, from a comprehensive perspective, peak charging behaviors are
predominantly observed during time intervals characterized by lower prices throughout
the day. Conversely, troughs in charging behavior primarily coincide with time periods of
elevated prices. Additionally, during continuous price fluctuations, noticeable surges or
declines in the efficiency of charging station utilization become apparent. This underscores
users’ consistent preference for selecting charging stations with lower prices and highlights
the heightened sensitivity of charging behavior to price variations. Notably, between 8 and
10 a.m., even with price increases, the morning rush hour gradually wanes. This implies
that users prioritize traffic flow considerations over pricing factors when determining their
charging times. Likewise, owing to the significant pricing distinction between fast and slow
charging methods, users opting for fast charging exhibit heightened sensitivity in their
choice of charging times. In summary, it is evident that, for all public charging stations, the
fluctuations in usage efficiency correspond to low- and high-priced periods, respectively,
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reflecting the concept of user price elasticity. This underscores the imperative consideration
of charging prices as a determining factor in the investigation of usage efficiency.

4.1.2. Spatial Characterization of Charging Station Usage Efficiency

Traffic zones were adopted as units for the statistical analysis of charging station usage
efficiency, along with a kernel density assessment of the spatial distribution of these stations
(Figure 4). Remarkably, the spatial distribution of charging stations exhibits a pronounced
clustering pattern, a phenomenon corroborated by the results of spatial autocorrelation
analysis (Table 4). This pattern is characterized by a positive spatial correlation. Although
Moran’s index is relatively modest, the z-score and p-value outcomes substantiate the
rejection of the null hypothesis, effectively dismissing the possibility of this spatial pattern
arising randomly. Consequently, there is a compelling need to investigate the influencing
factors and mechanisms underpinning this spatial distribution pattern. Concurrently,
observations from Figure 4 reveal a clear association between high-efficiency charging sites
and areas with lower kernel densities. Conversely, in regions characterized by higher kernel
densities, charging station efficiency levels tend to exhibit uniformity. This phenomenon is
attributed to areas with lower kernel densities having a diminished level of charging facility
supply. Even when confronted with similar demand, traffic zones with fewer charging
stations must accommodate a larger user base, resulting in elevated utilization rates. This
underscores the paramount role of charging station supply as a fundamental determinant
of user charging behavior.
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Table 4. Global Moran index.

Moran Index Expectation Index Variance z-Score p-Value

0.0503 −0.0011 0.0002 3.4287 0.0006

4.2. Analysis of Influencing Factors of Charging Station Utilization Efficiency

This study first employs multiple machine learning models for regression and selects
the model with the best results for further analysis.
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4.2.1. Model Comparison and Selection

In order to reduce the intensity of sample heteroscedasticity and minimize the fluctua-
tion of variables while adapting to the fluctuation levels of other variables, we performed a
logarithmic transformation on the data. Table 5 presents the fitting results of the machine
learning regression models. We use R2 and RMSE to describe the model results. R2 indicates
the degree of fit of the results, with a higher value signifying a better fit of the model to the
data. RMSE is used to measure the average difference between predicted and actual values,
with a smaller value indicating greater conformity with reality and a more reliable model.
The random forest regression model has the highest R2 and the lowest RMSE, indicating
that it performs the best. Therefore, we choose the random forest (RF) model to explore
nonlinear relationships and combine it with SHAP and PDP for the interpretation of the
“black box” internals, which is our final choice.

Table 5. Tree-based machine learning model regression results.

Model Type GBRT XGBoost RFR

R2 0.100 0.173 0.840
RMSE 13.953 13.302 5.862

4.2.2. Nonlinear Relationship

Utilizing the random forest regression model as the foundational framework and lever-
aging the Shapley algorithm in conjunction with partial dependence plots, we conducted
an in-depth exploration of the nonlinear relationship between charging station efficiency
and its influencing factors. The outcomes are outlined below.

(1) Relative importance of factors:

Figure 5 portrays the global importance results, which were computed utilizing the
SHAP algorithm. These results provide a comprehensive reflection of the collective impact
of various factors on the efficiency of charging stations. Each factor is meticulously ranked
in descending order of significance. Notably, vehicle usage demand emerges as the most
influential factor, accounting for a substantial 40.74% of the overall influence, significantly
surpassing all other factors. Following closely is the DC ratio at 19.87%, trailed by subway
accessibility and consumer purchasing power level at 17.04% and 12.31%, respectively. The
disparities in importance among the remaining eight factors are relatively marginal.
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However, it is imperative to acknowledge that, in practice, the influence of factors on
efficiency is not a static phenomenon, particularly when considering the collective impact
of factors with diverse numerical values. In Figure 6, the horizontal axis represents the
computed SHAP values. Higher SHAP values in the positive direction signify a more
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substantial positive contribution. Each point on the graph signifies a data point extracted
from the database, and their vertical stacking illustrates density, color-coded based on
their values. The lower color strip delineates the values of each point, with higher feature
values depicted in yellow and lower values in purple. For instance, the red-purple point
associated with the charging price factor indicates that lower charging prices (as indicated
in the lower color strip) exert a considerable negative impact on efficiency, corresponding
to smaller negative values on the x-axis.
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More specifically, Figure 7 elucidates the intricate interplay of factor value fluctuations
and corresponding shifts in their importance, underpinned by the SHAP algorithm. No-
tably, factors such as vehicle usage demand, operational scale, charging price, and housing
price exhibit a pattern where, as their values increase, the magnitude of their negative
impact on charging station efficiency progressively diminishes, adhering to a logarithmic
linear relationship with a base exceeding 1. Conversely, factors such as subway accessibility,
potential usage intensity, functional diversity, average consumption level, and traffic attrac-
tiveness demonstrate an escalating negative impact as their values increase, forming an
inverse proportional relationship with efficiency. Factors like bus accessibility, fast charging
ratio, and usage potential exhibit a nuanced pattern where, as their values increase, the
importance of these factors initially weakens, subsequently intensifying, predominantly
resulting in negative impacts. The relationship between the DC ratio factor and usage
potential approximates a sigmoid function, whereas the interaction between usage potential
and bus accessibility forms a distinctive reverse U-shaped relationship.

(2) The relationship between various factors and charging station usage efficiency:

Figure 8 provides a comprehensive illustration of the intricate relationship between
independent variables and the dependent variable, shedding light on the multifaceted
dynamics influencing charging station efficiency. Vehicle usage demand, recognized as the
pivotal variable for efficiency, unveils two distinct inflection points on the graph at 7.94 and
8.81, corresponding to real-world vehicle usage demands of 2.8 km and 6.7 km, respectively.
Below 2.8 km, efficiency exhibits gradual growth as vehicle usage demand increases. Within
the range of 2.8 to 6.7 km, efficiency experiences a sharp ascent with increasing distance,
reaching a peak before displaying fluctuations. Beyond 6.7 km, variations in vehicle usage
demand no longer yield significant changes in efficiency.
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Similarly, DC ratio, the second most influential factor, manifests two critical inflection
points at −1.07 and −0.55, corresponding to actual ratios of 89.21% and 56.67%, respectively.
Efficiency remains constant when the ratio exceeds 89.21%, while within the 56.67% to
89.21% range, efficiency progressively improves as the ratio diminishes. This observation
aligns with the coefficient changes observed in the MGWR analysis. Below 56.67%, as the
ratio continues to decrease, efficiency experiences a swift, pronounced upsurge.

In the context of metro accessibility, two inflection points correspond to real values
of 0.07 and 0.20. When accessibility falls below 0.07, efficiency remains relatively stable.
Within the range of 0.07 to 0.20, efficiency displays reduced fluctuations. Once accessibility
surpasses 0.20, efficiency experiences a sharp decline. The inflection point for the average
consumption factor is noted at 4.61, corresponding to a real value of 100 yuan per person.
Prior to surpassing this threshold, efficiency remains relatively steady. However, once this
point is exceeded, efficiency follows a nearly linear descent, stabilizing at a lower level.
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Turning our attention to the remaining eight influencing factors with relatively minor
variations in importance, such as bus accessibility, charging price, potential usage intensity,
traffic attractiveness, and functional diversity, a consistent pattern emerges. Initially,
efficiency remains relatively stable, but once a critical threshold is crossed, it precipitously
plummets to its lowest point, maintaining that level. In contrast, the factors of housing
price and operational scale display a gradual increase followed by a sudden peak, leading
to sustained high efficiency levels. Notably, the usage potential factor augments the
previous pattern with a subsequent stage of stepwise decline, ultimately stabilizing at the
lowest level.

5. Discussion
5.1. Nonlinear Effects of Built Environment on Charging Station Use

Commuting distance, as the most important variable affecting the efficiency of charg-
ing station usage, shows that the further the commuting distance, the greater the efficiency
of the charging station. This is because longer commuting distances make nonmotorized
modes such as walking and biking less feasible [31], thus increasing the demand for motor
vehicles and consequently the frequency of charging. However, when the distance exceeds
a certain threshold, destinations that are too far do not promote charging behavior, which
differs from existing research conclusions [31]. This is because, on one hand, long com-
muting distances provide a wider range of charging stations to choose from [32], reducing
the likelihood of using charging stations within the residential area. On the other hand,
considering economic and time costs, very long distances increase the likelihood of using
mixed-mode commuting [33], likely owing to the proliferation of charging options along
longer routes and the adoption of multimodal transportation methods, which in turn
reduces the proportion of electric vehicle usage and weakens the impact of commuting on
charging station usage. This nuanced understanding both challenges and extends previous
research, highlighting the complexity of urban mobility patterns.

Charging speed, as the second most important variable affecting efficiency, shows
that an increased proportion of fast charging enhances the efficiency of charging stations,
indicating that more convenient charging methods are more attractive to users. However,
when the proportion of fast charging at a station is too high and the supply of cheaper slow
charging is insufficient, it can adversely affect the overall efficiency of the charging station,
which differs from existing studies [14,34]. This is because, for stations offering both fast
and slow charging, a higher proportion of fast charging equates to higher efficiency. In
contrast, stations offering only fast charging are less efficient due to higher prices and lack
of cheaper alternatives, and their efficiency is very sensitive to this single mode of charging.

Metro accessibility, the third critical factor, exhibits an inverse relationship with
EV charging demand. Regions with improved subway access observe a decrease in EV
usage [35]. This indicates a competitive relationship between public transit availability and
EV adoption. These insights are crucial for urban planners and policymakers, especially in
integrating EV infrastructure with public transportation networks to promote sustainable
urban mobility [36].

Regions with higher consumption levels show lower charging station efficiency [37],
possibly due to more transportation options and prevalent traffic congestion [38,39]. Addi-
tionally, the study identifies clear price elasticity in charging behavior; when charging prices
surpass a certain point, station usage sharply decreases. This highlights the importance of
pricing strategies in influencing EV adoption and charging station usage.

The correlation between higher housing prices and increased charging station effi-
ciency, in line with studies emphasizing the prevalence of public charging infrastructure
in affluent areas [38,39], suggests a socioeconomic aspect to EV adoption. Higher income
levels frequently correlate with increased environmental consciousness and the financial
ability to own EVs, potentially explaining this trend. This relationship merits further
investigation into how economic status affects sustainable transportation choices. The
findings suggest that users prefer charging stations in more desirable locations with higher
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usage potential [40]. However, excessive traffic resulting from crossing a usage threshold
negatively impacts charging station efficiency. This highlights the need for strategic urban
planning that balances accessibility and traffic management for optimal charging station
placement. The study shows a positive correlation between the operational scale of charg-
ing stations and their efficiency, indicating that stations built for substantial demand can
optimize usage [35]. Although increased traffic flow indicates a high potential user base, it
paradoxically deters charging station use due to the preference for quick and convenient
charging options [40,41]. Regions with varied business formats attract higher charging
demand by offering accessibility to multiple destinations [35]. However, this functional
diversity’s downside is potential traffic congestion, negatively affecting charging station
utilization. This indicates the need to integrate commercial development with strategic
transportation planning for efficient EV charging infrastructure use.

5.2. Discussion of MGWR-Based Spatial Optimization Strategies

This study employs a rigorous methodological approach, including a detailed collinear-
ity diagnosis and an R-squared value of 0.665, demonstrating the robustness of the multi-
scale geographically weighted regression (MGWR) model. The model’s exceptional ability
to manage spatial heterogeneity and interactions between variables renders it particularly
adept at analyzing the complex dynamics that affect the efficiency of electric vehicle (EV)
charging stations. It effectively captures the intricate spatial variations and collinear re-
lationships among diverse urban factors, offering a comprehensive understanding of the
determinants of charging station efficiency.

Utilizing MGWR, the study explores spatial variations in key factors that impact the
efficiency of charging stations. It uncovers significant spatial differences in vehicle usage
demands, particularly in areas with distinct functions, such as industrial or residential
zones [42,43]. These differences directly influence the efficiency of EV charging stations.
For example, in Optics Valley (Zone A), it is recommended that the deployment of charg-
ing stations be aligned with workforce commuting patterns to enhance efficiency. This
strategy aligns with wider urban development goals, promoting sustainable and effective
infrastructure utilization.

In regions like Zone A, marked by industrial activities, and Zone B, primarily residen-
tial, the increased demand for commuting significantly affects the use of charging stations.
This effect is further heightened by the limited availability of alternative transportation
options, such as subways and buses, as shown in Figure 9c,d [42,43]. The relationship
between commuting patterns and transportation choices highlights the necessity for inte-
grated urban planning that encompasses various mobility solutions.

Charging station placement optimization strategies, especially in critical areas such
as Optics Valley, are centered on harmonizing with user commuting behaviors [44,45].
These strategies not only aim to improve charging facilities in these areas but also con-
sider environmental and social equity aspects. The goal is to achieve a balance between
charging convenience, ecological impact minimization, and accessibility for all community
members. Additionally, the current placement of charging stations, closely linked with
existing parking facility developments, presents an opportunity for strategic urban resource
optimization. In Area A (Figure 10a,b), the availability of unused parking spaces near
efficient charging stations indicates room for expansion. However, this expansion should
be thoughtfully planned, considering local demographics, commuting destinations, and
the distribution of private chargers [46]. This method ensures that new installations align
with actual demand and contribute to the overall effectiveness of the urban transportation
system. Similarly, in Area B (Hanyang), which is primarily residential, charging mainly
occurs before work and after returning home, considering commuting. Before work, to
reduce time costs, there should be an increase in the proportion of fast charging stations.
After returning home, when there is more time, slower charging at a relatively lower
price is preferable. However, considering construction costs, indiscriminate incremental
construction is not feasible. Instead, promoting the sharing of private charging piles is



ISPRS Int. J. Geo-Inf. 2024, 13, 37 17 of 20

advisable. Idle private charging piles can be integrated into the market and managed
uniformly, allocating charging demand reasonably according to relevant requirements.
This approach can also bring additional economic benefits to the owners of charging piles,
achieving a win-win situation.
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6. Conclusions

This study represents a significant advancement in understanding the spatiotemporal
characteristics of EV charging station usage. By analyzing millions of charging records,
it overcomes the limitations of smaller datasets used in previous studies. Compared
with existing research, this study presents many supplementary conclusions. It delves
deeper into the exploration of marginal effects between influencing factors and the usage
of charging stations, providing scientific support for investment and resource regulation in
the construction of charging stations.

Employing a random forest regression model, the study elucidates the nonlinear
relationships between various urban factors and charging station efficiency. The SHAP
algorithm and partial dependence plots offer detailed explanations of these relationships,
highlighting the importance of considering multiple factors in the design and placement of
charging stations. The study’s use of advanced MGWR modeling further refines the spatial
analysis, allowing for targeted optimization strategies based on vehicle usage demand and
other critical variables.

The findings underscore the complex interplay between the built environment and
EV charging station efficiency, challenging traditional linear perspectives. This research
contributes to the broader field of urban sustainability by providing empirical evidence
and methodological approaches that can inform the construction and optimization of EV
charging infrastructure. The results offer a scientific basis for investment decisions and
resource allocation in this rapidly evolving sector.

However, the study is not without limitations. The data employed exhibit temporal
incongruities, and the three-month dataset used primarily represents summer months,
potentially influencing the findings. Future research will expand the data collection period
and consider seasonal variations in charging behavior. Additionally, future studies will
aim to incorporate micro-level analyses, such as agent-based simulations, to gain deeper
insights into user charging preferences and behavior patterns.

In conclusion, this research makes a substantial contribution to the field of smart city
technologies and urban sustainability, offering practical insights and strategies for the
efficient deployment of EV charging stations in urban areas. It paves the way for future
studies that will further refine our understanding of the dynamic relationship between
urban environments and sustainable transportation infrastructure.
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