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Abstract: International policy and humanitarian guidance emphasize the need for precise, subna-
tional malaria risk assessments with cross-regional comparability. Spatially explicit indicator-based
assessments can support humanitarian aid organizations in identifying and localizing vulnerable
populations for scaling resources and prioritizing aid delivery. However, the reliability of these
assessments is often uncertain due to data quality issues. This article introduces a data evaluation
framework to assist risk modelers in evaluating data adequacy. We operationalize the concept of “data
adequacy” by considering “quality by design” (suitability) and “quality of conformance” (reliability).
Based on a use case we developed in collaboration with Médecins Sans Frontières, we assessed data
sources popular in spatial malaria risk assessments and related domains, including data from the
Malaria Atlas Project, a healthcare facility database, WorldPop population counts, Climate Hazards
group Infrared Precipitation with Stations (CHIRPS) precipitation estimates, European Centre for
Medium-Range Weather Forecasts (ECMWF) precipitation forecast, and Armed Conflict Location and
Event Data Project (ACLED) conflict events data. Our findings indicate that data availability is gener-
ally not a bottleneck, and data producers effectively communicate contextual information pertaining
to sources, methodology, limitations and uncertainties. However, determining such data’s adequacy
definitively for supporting humanitarian intervention planning remains challenging due to potential
inaccuracies, incompleteness or outdatedness that are difficult to quantify. Nevertheless, the data hold
value for awareness raising, advocacy and recognizing trends and patterns valuable for humanitarian
contexts. We contribute a domain-agnostic, systematic approach to geodata adequacy evaluation,
with the aim of enhancing geospatial risk assessments, facilitating evidence-based decisions.

Keywords: geospatial data; data quality; risk assessment; malaria risk; spatial indicators

1. Introduction

The growing availability of freely accessible geospatial data with continental or global
coverage steadily expands the range of possible applications for integrated, indicator-based
risk assessments [1].

Geospatial risk modelers have access to a multitude of diverse data sources, including
satellite measurements and their derivatives, modeled and surveyed data, registry data,
multi-source data, volunteered geographical data and data from social media or other
involuntary sources. The plethora of available data necessitates a systematic approach
to evaluate the adequacy of a given dataset for a specific research question. Therefore,
this paper presents a data evaluation framework, designed to be domain-agnostic within
geospatial indicator-based risk assessments, to facilitate comparison and assessment of
diverse data sources systematically.

In this article, we demonstrate the application of our evaluation framework based
on a malaria risk assessment, which we conducted in collaboration with stakeholders
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from Médecins Sans Frontières (MSF). The use case showcases the practical utility of the
framework and highlights its potential to enhance the reliability of spatial risk assessments.

2. Problem Statement

Integrating data from various sources into a comprehensive risk assessment is a com-
mon approach to understanding risks with multiple drivers, and is used, for example, in
public health contexts such as vector-borne diseases [2–6] or humanitarian research [7–10].
However, in regions with limited health surveillance and general population data, traditional
quantitative validation of the final risk score and the reliability of the overall assessment
can be challenging [11]. This scarcity is especially prevalent in the WHO Africa region [12].
In contexts defined by data scarcity, the validity of an assessment inherently depends on
the conceptual framing of the risk and the adequacy of the used data, a concept referred to
as process validity [13]. Process validity involves defining a clear conceptual framework,
identifying data sources and associated assumptions, and ensuring transparency in the choices
of indicators, sub-indices and aggregation functions [13–15]. This paper focuses on the part of
process validity that is concerned with identifying reliable and suitable data, to which we will
refer as data adequacy.

In the current era, where institutions and researchers commit to adhering to FAIR
(findable, accessible, interoperable, reusable) data sharing principles as part of the wider
movement to create research that is replicable and reproducible (R&R) [16], the individual
reusing a dataset does not need to possess a comprehensive understanding of underlying
methodologies and constraints. It is technically simple to integrate the data into their model
or assessment and obtain seemingly conclusive results. This also applies to integrated
risk assessments that often rely on open geospatial data, but a thorough assessment of the
adequacy of the used data is often not explicitly provided. This can be problematic, as
limitations such as incompleteness, inaccuracy or outdatedness can affect the reliability of
the findings and conclusions drawn.

Sensitivity on the (in-)adequacy of data is currently driven by the machine- and
deep-learning (DL) community, raising awareness for the potential of models trained on
biased or incomplete data to exhibit, for example, discrimination against underrepresented
groups [17,18]. However, potential harm caused by inadequate data is relevant in all
data-driven applications, in particular those that impact humans [19,20], including risk
assessments. In the geospatial community, the recent wave of DL-derived insights have
triggered criticism pertaining to their varying quality [21–23]. Ref. [24] found that datasets
may assert representativeness, when in reality, they only capture a subset of the population,
such as social media users or the heads of households. This misperception can result in
interventions being designed for only a fraction of the true population, rather than its
entirety. Consequently, while data generated through DL methodologies are of great poten-
tial, they may have limitations for specific use cases that require careful consideration [25].
If, however, adequate data are used and the indicators are reliable and informative, the
assessment can become a crucial aid in resource allocation, and may even serve as an early
warning tool for anticipatory action [26–28].

2.1. Evaluating Data Adequacy

While the general commitment in the geospatial community to adopt FAIR data shar-
ing principles as a part of the general R&R principles ensures that someone can reuse a
dataset, a standardized set of metadata that aids the decision of whether a dataset should be
reused is not yet fully mature. However, various ongoing efforts aim to develop common
metadata standards to enhance the user’s ability to make an informed and confident deci-
sion of whether or not to use a given dataset for their purposes [29,30]. Often, guidance
documents and methodological explanations are published, which detail used methodolo-
gies and the resulting strengths and limitations [12,31–36]. Among the users of Essential
Climate Variable (ECV) data, ref. [29] identified a strong need for guidance on data products
and their quality metrics, traceability chains for product algorithms and inter-comparisons
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of datasets with similar aims. Simultaneously, the Humanitarian Data Exchange (HDX) plat-
form is currently developing strategies to inform about dataset adequacies in humanitarian
contexts, where often timeliness and accuracy must be weighed against each other [37].
Riedler and Lang [30] developed a data evaluation framework that supports evaluating the
adequacy of a satellite image to be used as the basis for a given information layer. However,
currently, no prevailing framework is recognized among data users developing geospatial
risk assessments. Consequently, adequacy is often determined unsystematically, risking a
tendency to rely on familiar or frequently used datasets only. Another current challenge
users face is the time-consuming need to gather information from various sources, such
as different websites, journal publications and methodology reports, as these details are
typically not directly or consistently part of the dataset metadata.

2.2. Aim

In this article, we present a data evaluation framework that is tailored towards geospa-
tial data, while the individual evaluation criteria are designed to be domain agnostic. We
demonstrate its usability on a use case of an indicator-based malaria risk assessment that
was developed in partnership with stakeholders from MSF. MSF is a global humanitar-
ian organization that provides essential medical assistance to people affected by conflict,
epidemics and natural disasters. The manifold benefits of engaging stakeholders in risk
assessment development are well documented [38–40]. The evaluation criteria were dis-
cussed with and deemed relevant by the different stakeholders. We applied the framework
on various datasets to gain insight whether they would exhibit an adequate quality to sup-
port operational intervention planning. Organizations working in the health-provisioning
humanitarian domain need to be able to quickly respond to various disasters and circum-
stances. Therefore, having a robust overview of the available data’s qualities is paramount
to offer the best possible support to humans in need of assistance.

Our target audience includes both geospatial experts who are involved in mapping
and providing information services, as well as domain experts. From any user’s perspective,
the framework may aid in planning a systematic approach to data adequacy evaluation.
From a provider’s perspective, including the creators of the datasets themselves or any
derived product of them, it shows real-world applications in which their data are being
considered for use. The framework lays open the characteristics that are relevant from the
user’s perspective.

3. Background and Methods
3.1. Development of the Geodata Evaluation Framework

Our geodata evaluation framework operationalizes the concept of adequacy based
on criteria selected from Nightingale [29,41], Riedler and Lang [30], GRID3 [42] and the
Dublin Core Metadata Standards [43].

We define adequacy as follows:

Adequacy (fitness for purpose) = Suitability (quality by design) × Reliability
(quality of conformance)

Adequacy describes the fitness of a dataset for a given purpose, which is determined by
two factors. Suitability or “quality by design” refers to the inherent and intentional quality
constraints in the production of data (e.g., spatial resolution of a satellite image, raster cell size
of a population dataset, etc.). Reliability or “quality of conformance” focuses on accuracy and
completeness in representing a certain geographical area, the population under concern or any
other phenomenon. For both factors, the extent to which the data aligns with the particular
needs of the use case must be evaluated (definitions based on [30,44]).

In addition, we utilize a range of general metadata to describe the dataset, its capa-
bilities and the data producer. All criteria are listed and described in Table 1. Assessing a
dataset’s “quality of conformance” is comparatively more difficult, as “quality by design”
criteria are generally known a priori and are well documented (e.g., the spatial coverage
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of a dataset). “Conformance” may require the data creator’s judgment, particularly when
comparing data with a reliable validation source is not possible. Therefore, the framework
determines “quality of conformance” through the availability of documentation regarding
data and the methodologies and sources used. The evaluation supports in qualitatively
assessing data adequacy, but it does not provide a means for quantitative comparisons
between datasets that use scoring or ranking systems. While having all the information in
one place does not enable a definitive and binary decision, it does facilitate a comprehen-
sive overview of potential limitations and opportunities that should be considered when
deciding whether to use a dataset.

Table 1. List of data evaluation criteria. The criteria are used to operationalize the concept of adequacy.

Criteria
Quality by Design Criteria

Coverage Spatial coverage The geographical extent covered by the resource
Temporal extent The earliest and latest times covered by the resource

Resolution
Spatial resolution The level of detail in the resource’s spatial

representation

Temporal resolution The time interval represented by the resource, e.g.,
daily, monthly

Quality of conformance criteria

Methodology

Comprehensive method
documentation

Availability of a detailed explanation of the resource’s
content and origin by its creators

Short and easy user guide Availability of a brief overview of the data’s content
and origin by its creators

Availability of code Availability of the model’s source code if applicable

Traceability of source data Input/ancillary data Traceability of datasets used as input or support for
modeling resources

Strengths and limitations of data Limitations Limitations of the resource as stated by its creators
Strengths Strengths of the resource as stated by its creators

Uncertainty characterization

Uncertainty characterization
method

The approach used to express uncertainty in the
resource

Sources of uncertainty Origins of uncertainty in the resource’s data

Temporal stability uncertainty Addresses comparability issues due to changes in
methodology over time

Geolocation accuracy Precision of the resource’s spatial accuracy
Validation Validation method The method employed to validate modeled resources

Intercomparison Description of intercomparison
activities

Availability of a document that compares resources
with similar aims

General metadata

Dataset

Title A name given to the resource
Identifier An unambiguous reference to the resource

Date published/produced A time associated with an event in the resource’s
lifecycle

Language The language of the resource
Description A description of the resource’s content
Creator The main entity responsible for creating the resource
Citation An official reference provided by creators/publishers

Associated project The project name where the resource was or is being
developed

Publisher An entity responsible for making the resource
available

Capabilities

Access options Methods available to access the resource, such as web
scraping

Login required Indicates if access to the resource requires registration
or access key

Format The file format(s) in which the resource is available
Rights Information about rights associated with the resource

Reputation of data producer Background of data producer A brief description of the data producer
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3.2. Use Case Scoping and Indicators

Our malaria risk use case aimed at identifying locations of populations in possible
need of malaria-related healthcare assistance in a transboundary region encompassing
Uganda, Rwanda, Burundi and the provinces of Ituri, North Kivu and South Kivu in the
Democratic Republic of the Congo (DRC) (see Figure 1). This region of interest (ROI) as
well as the critical malaria risk-related information needs were identified through a series
of online meetings with MSF stakeholders working in epidemiology. The defined target
was to identify regions exhibiting “emergency settings”, which were jointly defined as
locations experiencing an interplay of violence, forced migration and limited healthcare,
which are known to be prone to malaria outbreaks, and which are expected to experience
above-average precipitation during the upcoming malaria season. The last point adds a
forecasting component to the assessment, enabling proactive intervention planning ahead
of the peak malaria transmission season. The use case is centered around the year 2020.
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The indicators we settled for were the following:

1. The seasonal malaria pattern during a normal year;
2. The climate in the upcoming months being particularly conductive to mosquito

breeding, i.e., expectations of above-average precipitation;
3. Limited access to healthcare;
4. Ongoing conflicts.

Knowing the spatial variation of these factors would aid in intervention planning,
including health post distribution, bednet distribution, indoor residual spraying and
awareness-raising campaigns.

3.3. Malaria in the Region of Interest

Past efforts to improve access to malaria treatment and prevention have led to a
significant reduction in malaria morbidity and mortality in the ROI and beyond [12,45].
However, sustaining this progress remains challenging, e.g., due to ongoing conflict and
displacement, political instability, weak health systems and limited healthcare access in
rural and remote areas [12,46]. Furthermore, the emergence of drug-resistant malaria strains
and re-emergence of the disease in previously controlled areas are of growing concern [47].
Due to this spatially fragmented risk situation, malaria control activities have shifted from
(inter-) national interventions to more targeted sub-national interventions [45,48].

The INFORM Epidemics Risk Index 2020 classifies DRC and Burundi as “Very high
risk” countries in terms of epidemics risk. Uganda is categorized as “High risk”, and
Rwanda as “Medium risk” [49]. MSF provides essential medical care to individuals im-
pacted by conflict and displacement in the ROI. In 2022, MSF was active in in all of the
countries except for Rwanda, effectively treating 757,800 malaria cases in DRC and 571,000
in Burundi [50].

3.4. Applying the Framework to the Use Case

For each indicator, we selected geodata sources that are common choices in spatial
malaria risk assessments and related domains; see, e.g., [51] (Table 2). Additionally, a
prerequisite for selection was that the data had to be openly accessible for research purposes
and encompass the entire ROI. We applied the developed framework to each of the datasets
to evaluate their adequacy for our use case. The following sections provide a brief overview
of the evaluated data sources and the indicators we calculated based on them. The complete
evaluation details are provided in Annex I (Supplementary Materials).

Table 2. The left column shows the identified risk drivers, the right column shows the data sources
selected to address them.

Indicator Evaluated Data Source

The seasonal malaria pattern during a normal year
“Number of newly diagnosed Plasmodium falciparum cases per
1000 population, on a given year” datasets from the Malaria Atlas
Project (MAP) [52]

The climate in the upcoming months being particularly
conductive to mosquito breeding, i.e., expectations of
above-average precipitation

“Total precipitation anomalous rate of accumulation” from the
“Seasonal forecast anomalies on single levels” dataset [53]

30 years of monthly “CHIRPS—Rainfall Estimates from Rain Gauge
and Satellite Observations” precipitation estimates [32]

Limited access to healthcare

“Walking-only Travel Time to Nearest Healthcare Facility without
Access to Motorized Transport” from the MAP [31,34]

“Population Counts—Unconstrained individual countries 2020 UN
adjusted, 1 km resolution” by WorldPop [33]

Ongoing conflicts Armed Conflict Location and Event Data (ACLED 2023)
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3.4.1. The Seasonal Malaria Pattern

The dataset we chose to represent malaria incidence was created by the Malaria Atlas
Project (MAP) [12,54]. We chose the dataset that quantifies the incidence of Plasmodium
falciparum (Pf) malaria, which is the predominant parasite in sub-Saharan Africa [55]. The
MAP is a renowned academic group, offering geospatially and temporally disaggregated
estimations of malaria incidence and mortality. However, the yearly temporal resolution
of the dataset is not suitable for the determination of seasonality. This limitation was
addressed by reformulating the indicator to emphasize development of yearly average
malaria incidence over time. A visual analysis indicated a general trend of a substantial
decrease in malaria incidence from 2000 until approximately 2013 across the majority of
locations in the ROI, followed by a resurgence in numbers since 2013 (see Figure 2). This
led us to calculate the final indicator based on the percentage change in malaria incidence
in each location between 2013 and 2020.
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Figure 2. Shows the development of diagnosed Pf cases. Each line represents one 5 × 5 km grid cell.
The bright point marks the year 2013 after which a trend reversal is noticeable. Source data: Malaria
Atlas Project.

3.4.2. Precipitation Being Conductive to Mosquito Breeding

Informed by the stakeholders, it was conveyed that above-average precipitation
either during or prior to the rainy season serves as a current indicator for anticipating a
strong malaria season, as it promotes mosquito breeding conditions. To operationalize this
insight, understanding the timing of the rainy season in the ROI was essential. The diverse
topography and associated differences in precipitation regimes disqualified hard-coding
season boundaries. Instead, we conducted an analysis of 30 years of monthly CHIRPS
precipitation estimates [32], spanning 1991–2020, with a resolution of 0.05◦ × 0.05◦, in order
to identify year-round monthly precipitation patterns across all locations (see Figure 3).

To determine the upcoming potential for higher malaria occurrences, we utilized the
“Total precipitation anomalous rate of accumulation” from the “Seasonal forecast anomalies
on single levels” dataset accessible through the Copernicus Climate Change Service (C3S)
Climate Data Store (CDS) [53] (see Figure 4). The data are based on the SEAS5 real-time
seasonal forecast system run by the European Centre for Medium-Range Weather Forecasts
(ECMWF) [36].
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Figure 3. For each location, the months were categorized into three seasons based on their 30-year
average rainfall: dry, transitional and rainy. To allocate months to the seasons, the annual precipitation
at each location was divided by 12 to establish the average monthly rainfall without seasonal variation.
Months with an average rainfall exceeding one or more standard deviations above this average were
labeled as rainy season and assigned 1 point. Conversely, months with an average rainfall of one
standard deviation or more below this average were classified as dry season and assigned −1 point.
Months falling in between were designated as transitional season and assigned 0 points.

To combine both information layers, the points acquired for each location were sum-
marized. The assessed timeframe covered February to July 2020. The results, comprising
six layers, one for each month, were then summarized into a single final layer for easier
integration with the rest of the assessment.

3.4.3. Limited Access to Healthcare

To highlight areas with limited access to healthcare, we developed two related indica-
tors. The first assesses the average walking time to the nearest healthcare facility. We used
the “Walking-only Travel Time to Nearest Healthcare Facility without Access to Motorized
Transport” dataset, provided by the MAP [52]. The healthcare facilities’ locations underly-
ing this dataset were initially compiled by [34]. The accessibility information is derived
from a friction surface, available globally, that enables calculation of travel times (by foot)
from and to all locations [56]. This surface, in combination with the healthcare facility
locations, was eventually used by Weiss et al. [31] to model the healthcare accessibility layer.

The second healthcare accessibility indicator estimates the number of individuals
expected to seek care at a specific facility, assuming they would choose the facility that is
easiest to reach. To achieve this, the previously described accessibility layer and healthcare
facility layer were combined with population counts from WorldPop (unconstrained indi-
vidual countries 2020, UN adjusted, 1 km resolution) [57]. The WorldPop data were selected
for their global coverage, spatial resolution and suitability in cases where census data is of
poor quality, outdated or non-existent [33]. We applied the “Allocated cost” algorithm, as
implemented by SAGA GIS [58], to calculate service areas around each facility, for which
we then summed the population counts.



ISPRS Int. J. Geo-Inf. 2024, 13, 33 9 of 25ISPRS Int. J. Geo-Inf. 2024, 13, 33 10 of 29 
 

 

 
Figure 4. In the ECMWF precipitation forecast data, negative values denote below-average 
anticipated precipitation, while positive values indicate above-average expectations. To identify 
areas with expected above-average precipitation relative to the anomalies projected throughout the 
ROI, we first calculated the global mean of the forecast data for the ROI. Locations with expected 
anomalies exceeding one standard deviation from the global mean were assigned 1 point, whereas 
areas with expected anomalies one standard deviation or more below the global mean received −1 
points. Locations that fall in between were assigned 0 points. 

The second healthcare accessibility indicator estimates the number of individuals 
expected to seek care at a specific facility, assuming they would choose the facility that is 
easiest to reach. To achieve this, the previously described accessibility layer and healthcare 
facility layer were combined with population counts from WorldPop (unconstrained 
individual countries 2020, UN adjusted, 1 km resolution) [57]. The WorldPop data were 
selected for their global coverage, spatial resolution and suitability in cases where census 
data is of poor quality, outdated or non-existent [33]. We applied the “Allocated cost” 
algorithm, as implemented by SAGA GIS [58], to calculate service areas around each 
facility, for which we then summed the population counts. 

3.4.4. Ongoing Conflicts 
To determine ongoing conflicts, we utilized the Armed Conflict Locations and Events 

Database (ACLED). We used three years of events (2017–2019, divided into 3-month 
intervals) in conjunction with a space-time hotspot detection algorithm [59] to classify the 
ROI into regions of persistent, intermittent, emerging and former hotspots of conflict, and 
regions with no discernible conflict pattern. 

  

Figure 4. In the ECMWF precipitation forecast data, negative values denote below-average anticipated
precipitation, while positive values indicate above-average expectations. To identify areas with
expected above-average precipitation relative to the anomalies projected throughout the ROI, we
first calculated the global mean of the forecast data for the ROI. Locations with expected anomalies
exceeding one standard deviation from the global mean were assigned 1 point, whereas areas with
expected anomalies one standard deviation or more below the global mean received −1 points.
Locations that fall in between were assigned 0 points.

3.4.4. Ongoing Conflicts

To determine ongoing conflicts, we utilized the Armed Conflict Locations and Events
Database (ACLED). We used three years of events (2017–2019, divided into 3-month
intervals) in conjunction with a space-time hotspot detection algorithm [59] to classify the
ROI into regions of persistent, intermittent, emerging and former hotspots of conflict, and
regions with no discernible conflict pattern.

3.5. Data Integration

Once adequacy was evaluated and indicators were formed, the different datasets were
integrated using a hexagonal discrete global grid system (DGGS) with target hexagons of
252 km2 [60]. DGGSs have the ability to provide a consistent spatial framework, ensur-
ing uniform data representation and analysis [61–63]. While it is common to aggregate
indicators to administrative units, our use case aimed to maintain more spatial detail by
displaying data on relatively small spatial units that can later be aggregated based on the
variability of the phenomenon under concern [64].

This research builds the foundation to subsequent assessment steps such as weighting
indicators and performing spatial clustering. These subsequent steps are not part of
this article.
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3.6. Code Availability

The developed analysis workflow, including data access, processing and analysis,
were coded in R, with the aim to make the workflow automated and reproducible. All used
scripts can be found on GitHub [65].

4. Results

In the results section, we analyzed the extent to which each data source aligns with our
use case (adequacy), as evaluated through our framework. We concentrated on a limited set
of criteria, as a comprehensive analysis of all criteria falls beyond the scope of this article.
All of the evaluated datasets are described first by their quality by design features, and
then by their quality of conformance.

4.1. Percentage Change in Malaria between 2013 and 2020

Data: Number of newly diagnosed Plasmodium falciparum cases per 1000 population
in a given year (Malaria Atlas Project).

4.1.1. Quality by Design

To create these data, the MAP applied geostatistical models to malaria parasite survey
points and routine surveillance reports, along with comprehensive geospatial covariates
characterizing Anopheles mosquito habitats [12].

The dataset’s design aligns well with the objectives of the use case due to its global
coverage and spatial resolution of 0.05◦ (circa 5 km), which renders it sufficiently granular
for interventions targeted at the local scale. Furthermore, the temporal coverage of two
decades (2000–2020) aligns with the specifics of our use case.

Figure 5 shows a map of the MAP input data (left) and our indicator (right).
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4.1.2. Quality of Conformance

The methodology and input data for the MAP data are extensively documented (see
Table 3). Strengths and limitations, sources of uncertainty and attempts to validate the data
are described in [12]. However, the methodology employed contains uncertainties that are
challenging to quantify. This includes, for example, the fact that there is no independent
source that the results could be compared to, as the only other two global malaria burden
estimates, the World Malaria Report and Global Burden of Diseases (GBD) studies, are in
part informed by the MAP data [12]. Furthermore, the spatial disaggregation technique
relies on various input data that come with their own inaccuracies and uncertainties, which
are propagated into the final product. These uncertainties provoke the question of how
accurate the data are at the cell level. However, given that our target spatial scale is a
hexagonal grid of 252 km2 and the exact case numbers are less interesting than the general
trend, we deemed the source insightful for revealing patterns of change, especially in areas
where adjacent hexagons exhibit the same trend.

Table 3. The information presented in this table all comes from [12].

Input/ancillary data • Malaria endemicity based on 43,187 parasite rate points in sub-Saharan Africa collected from
2000 to 2017.

• Malaria Control Interventions: Insecticide-treated bednets, indoor residual spraying and
effective antimalarial drug treatment.

• Temperature: Daytime land surface temperature (LST), nighttime LST, delta LST and
temperature suitability for P. falciparum transmission.

• Precipitation: Magnitude, variability and seasonal rate of change in precipitation.
• Land cover types.
• Surface Moisture and Vector Breeding Sites: Normalized difference wetness index, Tasseled Cap

wetness, Tasseled Cap brightness, potential evapotranspiration, and aridity index.
• Enhanced Vegetation Index.
• Slope angle, flow accumulation, and topographic wetness index.
• Population density, nighttime lights data, and accessibility to cities with populations exceeding

50,000, represented as cost distance friction raster.
Strengths • Fine-grained evaluation of intervention-burden links.

• Offers more detail than other studies that pooled Pf estimates by admin level.
Limitations • Data contribute to World Malaria Report 2017 and GBD studies, making comparisons with

alternate global burden estimates challenging (as these seem to be the only alternate sources).
Uncertainty • Parasite rates predicted using Bayesian space-time geostatistical model.

• Various co-variates with own uncertainties as model input data.
• Some co-variates themselves are modeled data (e.g., malaria control intervention).

Validation • Results compared to two World Malaria Report 2017 and GBD studies: 2000-10 results were
similar. In 2016, MAP estimated fewer cases than GBD and WMR 2017. Fatalities: MAP
estimated fewer deaths than GBD 2016. MAP estimated more deaths (40.7%) than WMR 2017
due to different mortality calculation approaches.

4.2. The Climate in the Upcoming Months Being Particularly Conductive to Mosquito Breeding,
i.e., Expectations of Above-Average Precipitation

For this indicator, two input data sources were used: Historical precipitation patterns
based on CHIRPS and precipitation forecasts provided by ECMWF.

Data: CHIRPS—Rainfall estimates from rain gauge and satellite observations.

4.2.1. Quality by Design

CHIRPS covers 50◦ N to 50◦ S and all longitudes, meaning that our ROI is fully
covered, with a spatial resolution of 0.05◦. The data are offered in different temporal
resolutions, from which we chose monthly, and the temporal coverage ranges from 1981
to near real time. These design criteria align with our use case objectives by allowing
concrete insights into the seasonal precipitation patterns of our ROI. However, CHIRPS
state that their primary goal is to monitor agricultural drought [32], i.e., the absence of
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precipitation, while we were interested in the presence of precipitation. While this seems
like the same phenomenon, it had implications in that it introduced negative biases until the
year 2000, which were effectively removed for the more recent years [66]. Figure 6 shows
the combination of historical CHIRPS data with ECMWF forecast data in one integrated
precipitation risk indicator.
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4.2.2. Quality of Conformance

The methodology used in generating CHIRPS data is comprehensively
documented [32,67,68]. Research indicates that in regions with limited ground-based
weather station coverage, and where satellite data play a more significant role, the esti-
mations tend to be less reliable (see Table 4) [66,69–71]. Additionally, areas with complex
topography also pose challenges for accurate estimations. Both sources of inaccuracy are
likely present in our ROI. While we cannot precisely judge the impact of these limitations
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on our ROI, our primary focus was not on precise precipitation values. We analyzed the
data in a more aggregated manner, and for this purpose, we estimated that CHIRPS data
serve as an adequate source for understanding long-term seasonal precipitation patterns.
In comparison to other datasets with a comparable spatial coverage, they have furthermore
been shown to be more reliable, and provide better insights [32].

Table 4. The information presented in this table comes from [32,69,72].

Input/ancillary data • Meteorological station data: From various public and private organizations worldwide [32].
• Satellite data: Tropical rainfall measuring mission, monthly mean geostationary infrared

brightness temperatures, land surface temperature (MODIS) [32].
• Topographic and physiographic surfaces: Elevation and slope, 30 arc seconds [32].

Strengths • More reliable globally than comparable products [32].
• Provides reliable information on monthly or yearly scale [32].
• Estimations available with few latencies [32].

Limitations • Studies have found that it tends to over- or underestimate, especially in complex terrains [32].
• In areas with very few station observations, some other models perform better [32].

Uncertainty • Low coverage of ground stations means higher weighting of satellite data, increasing
uncertainty [69].

• Higher topographical complexity leading to higher deviations [69].
• Studies show different results in different areas globally (see Annex I (Supplementary Materials)

for details).
Validation • Compared their results for Afghanistan, Colombia, Ethiopia, Mexico and the Sahel (Senegal,

Burkina Faso, Mali, Niger and Chad) to high-quality gauge data obtained from the national
meteorological agencies of the regions [72].

Data: ECMWF—Seasonal precipitation forecast.

4.2.3. Quality by Design

The ECMWF’s seasonal precipitation forecast is a global dataset derived from the
SEAS5 model, featuring a spatial resolution of approximately 1◦ × 1◦ (about 111 km). It
provides precipitation anomaly projections up to six months in advance, offering valuable
early warning capabilities. However, the dataset’s resolution is notably coarser than our
target hexagonal grid, resulting in abrupt boundaries within our ROI (see Figure 4). These
sharp edges may not accurately represent actual precipitation patterns. The forecast data
are primarily intended for a broader-scale analysis than our ROI. Consequently, it remains
uncertain how adequate this dataset is for our specific use case, given the differences in
design and scale.

4.2.4. Quality of Conformance

The quality evaluation showed that the ECMWF dataset comes with user guides and
several other quality assessment criteria, as suggested by [41]. However, not all of the
criteria have been documented yet. As shown in Table 5, the precipitation forecasts have
been found to be most reliable for tropical ocean areas, with land forecasts presenting
challenges [73]. Despite limited utility in local seasonal rainfall predictions, average values
for tropical regions show significant skill, and are crucial for extratropical predictability. The
SEAS5 sea-surface temperature (SST) forecast for El Niño—Southern Oscillation (ENSO)
prediction exhibited high to very high skill levels across the Pacific, regardless of lead
times. This is valuable because ENSO is associated with higher malaria risk in parts of
Africa [74]. It is important to note that seasonal forecast systems exhibit biases with varying
spatial patterns that tend to increase as the forecast time lengthens. While it is difficult
for us to estimate this dataset’s adequacy for the use case, in particular its use as part of
a composite indicator, we acknowledge its relevance in malaria intervention planning. It
may be more prudent to ensure consistent monitoring of this dataset by MSF staff on a
broader continental to global scale, rather than limiting the focus to the region of interest.
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Table 5. The information in this table comes from the C3S Climate Data Store Website [73] and the
C3S Knowledge Base [75].

Input/ancillary data • Input data provided by various meteorological offices globally [75].
Strengths • See limitations [73].
Limitations • Seasonal forecast quality is generally better over the (tropical) oceans than over land [73].

• SEAS5 SST forecast skill for ENSO prediction is generally high to very high across the Pacific at
all lead times [73].

• Precipitation is best predicted over parts of the tropical oceans, while seasonal prediction for
rainfall over land is, with some exceptions, challenging [73].

• Although seasonal local rainfall predictions are often not useful, average values on tropical
regions have significant skill and play a crucial role for extratropical predictability [73].

Uncertainty • Seasonal forecast systems have biases with spatial heterogeneity that grow with forecast time,
stemming from different biases of the model [73].

Validation • Scientific evaluation and validation carried out as part of the implementation of SEAS5,
reported in [36,76].

4.3. Limited Access to Healthcare—Walking Time to Closest Healthcare Facility and Population per
Healthcare Service Area

Limited healthcare access is represented by two indicators. The first relies on the
“Walking Only Travel Time to Nearest Healthcare Facility without Access to Motorized
Transport” dataset [31], which was built upon healthcare facility location data by [34]. Due
to the significance of this underlying healthcare facility dataset, we also evaluated it, with
the results documented in Table 6. However, the written text focuses on the “Walking Only
Travel Time to Nearest Healthcare Facility without Access to Motorized Transport” dataset.
The second indicator is built on the same two data sources, complemented by the inclusion
of a WorldPop dataset.

Data: Walking-only travel time to nearest healthcare facility without access to motor-
ized transport.

Table 6. The details for the dataset “A spatial database of health facilities managed by the public
health sector in sub-Saharan Africa”. Information presented is taken from [31,34].

Input/ancillary data • 93 different sources: for example, Ministries of health (MoH), UN bodies, non-governmental
organizations, personal communications [34].

Strengths • Includes public facilities and private-not-for-profit health facilities [34].
• Duplicates removed by authors [34].

Limitations • Excludes private-for-profit health facilities, government facilities (e.g., prisons), blood
transfusion centers, HIV voluntary counseling and testing centers, maternity and nursing
homes, family planning clinics and specialist facilities (e.g., dental); spatial locations not
universally documented across national health facilities listings [34].

• Definitions of facility types vary between countries [34].
• Completeness and accuracy of facilities vary by country [31].
• Facility may be open but understaffed or closed seasonally or permanently [31].
• Not all facilities offer the same services [31].
• Focus is on geographically fixed facilities, no mobile or temporary clinics (important for

facilities in remote areas) [31].
Uncertainty • Completeness of input data varies by country [34].

• Possible geolocation uncertainty for facilities where no coordinates were available (in those
instances, different manual techniques were used to locate the facilities) [34].

Validation • Visual inspection in Google Earth [34].
• Checked whether health facilities are in correct administrative zone and on land [34].
• Country-specific definitions of service levels compared with existing databases [34].
• Number of health facilities at each level compared to health sector strategic plans (HSSP) data,

revealing mostly similar numbers and occasional discrepancies (often due to underreporting of
NGO facilities and temporal data differences) [34].
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4.3.1. Quality by Design

The dataset estimates travel times in minutes from every location to the nearest health-
care facility by walking, with a spatial resolution of 1 km (see Figure 7). A limitation is that
the healthcare facility data were last curated in mid-2019 and, to the best of our knowledge,
no updated version is yet available. Considering potential changes that happened since
then, this dataset may be outdated for future applications, although new initiatives are
underway [77,78].

4.3.2. Quality of Conformance

The methodology and input sources are described in several journal publications [31,34,56].
The adequacy of the walking time hinges on the completeness and location accuracy of the
healthcare facilities. This, however, varies by country, and it is uncertain to us how each country
performs (see Table 6). However, the healthcare facility data by [34] are still considered to be the
most comprehensive dataset currently available [79]. The walking time itself is to be considered
an estimate of potential, rather than actual travel times, and it does not account for possible
differences in travel time due to seasonality, age or health status (see Table 7). We found the
resulting indicator sufficient for providing a broad overview of regions with limited healthcare
accessibility. However, given the uncertainties that we identified, and after comparing it with an
internally used MSF healthcare facility database, we would advise against using this data source
for operational planning.
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4.3.3. Quality by Design

The data contain population figures per pixel, with country totals adjusted to align
with official United Nations population estimates [80]. We opted for WorldPop’s “uncon-
strained” dataset, which assigns population values to all land grid cells, in contrast to their
“constrained” datasets, where population is allocated exclusively to areas recognized as
buildings and settlements [81]. This choice was made for its enhanced accuracy in regions
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where satellite-based settlement mapping is uncertain, particularly for small rural settle-
ments [81]. In terms of spatial and temporal coverage, global data are available for each
year from 2000 to 2020. We chose the data that have a resolution of 1 km. Furthermore, we
chose the UN-adjusted version of the data because it is recommended to use the adjusted
version in areas where no recent census data are available, which is the case in our ROI. See
Figure 8 for an overlay of the population counts with healthcare service areas.

Table 7. The details for the dataset “Walking-only Travel Time to Nearest Healthcare Facility without
Access to Motorized Transport”. Information presented is taken from [31].

Input/ancillary data • Healthcare facilities, see Table 6 or [34].
• Walking time: OSM and Google, roads, railways, waterways, land types and associated travel

times, slope angle and atmospheric density (Tobler Hiking Function) [31].
Strengths • First global-scale, high-resolution maps of facility accessibility [31].

• Friction surface and travel time mapping code freely provided, allowing for producing custom
maps of travel time [31].

Limitations • Variability in travel times not accounted for (e.g., due to seasonal conditions, age or
health status) [31].

• Travel time is merely an estimate of potential [31].
Uncertainty • Uncertainty mostly comes from uncertainty related to healthcare facility data, which vary by

country [31].
Validation • Results compared to Google Maps [31].

• Travel times on average ± 15.8 min of those from the alternative source [31].
• Spatial variability in model accuracy, some areas prone to overestimates and others to

underestimates [31].
Data: WorldPop: Population counts—unconstrained individual countries 2020, UN adjusted.
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4.3.4. Quality of Conformance

WorldPop has documented their methods in a series of journal publications [33,82].
However, our task of gathering all relevant information was challenging, given its dispersion
across multiple sources, including WorldPop, UN reports and the previously mentioned
publications.

To generate population counts, WorldPop used national UN population estimates from
two specific points in time. These estimates could be derived from either census data or
estimations [80]. Utilizing these two reference points, they calculated population estimates
for each year from 2000 to 2020. Then, the national statistics were spatially disaggregated
based on various input data sources, with their own imperfections (see Table 8). The
most recent of these input data date back to 2017, with road data, for example, sourced
from OpenStreetMap (OSM) in 2016. We compared the number of OSM road elements
for our ROI in January 2017 and October 2023, and found that the number of elements
labeled as roads increased by 841%. Given the multiple input datasets, it is uncertain how
adequate the population estimates are. Furthermore, the referenced dataset was found
to underestimate populations in slums and high-density urban areas in Namibia [25]. It
remains uncertain how well WorldPop data can reflect larger-scale migration movements,
let alone rapid displacement, which play a role in our context.

Table 8. The details for the dataset “Population Count—Unconstrained individual countries 2020
UN adjusted”, created by WorldPop. Information presented here is taken from [82] and different
WorldPop sub-websites [57,81,83].

Input/ancillary data • UN population estimates on admin 0 level [57].
• Land cover [82].
• Raster: Annual NPP 2010, lights at night, mean temperature 1950–2000, mean precipitation

1950–2000, elevation, slope [82].
• Vector: Distances to roads, distances to rivers/streams, generic populated places, water bodies,

protected areas, canals, communities, district seats, cities, hamlets, villages, suburbs, towns,
populated points, railways, generic health facilities, health clinics, dispensaries, hospitals,
schools, settlement points, built land cover [82].

Strengths • The datasets are suitable where the accuracy of the satellite-based mapping of settlements is
uncertain, especially in the detection of small rural settlements. The global multi-temporal
nature of the datasets also makes these data the best option for historical or change analyses [83].

• Multi-temporal global data available for each year, 2000–2020 [57].
Limitations • Method produces a non-zero allocation of population to all land grid cells, resulting in

misallocations of population to uninhabited areas, and underestimates urban population in
some areas [83].

Uncertainty • Proxies used to determine likelihood of population occurrence (e.g., occurrence of healthcare
facilities, night lights, distance to roads, etc.) [82].

• Estimation method only suitable for stationary communities [82].
• Reliance on auxiliary data creates a dependency on and reproduction of uncertainties in source

datasets [82].
• Comparison data (e.g., census), relatively old in parts (e.g., 1999–2008 for Burundi) [80].
• Random forest classification algorithm can predict numbers beyond the maxima in the training

data [82].
Validation • Comparison with census data of each respective country used as validation (a challenge, given

that census designs differ by country).

4.4. Ongoing Conflicts
4.4.1. Quality by Design

The armed conflict locations and events database (ACLED) [84] dataset provides
real-time, event-based information on global political violence, demonstrations and related
non-violent events. It includes event type, actors, location, date and other details, following
established methodologies for weekly publication [85,86].
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The data support the objective of identifying conflict-affected regions within the ROI,
offering city or village-level precision, which aligns with our targeted scale. Input and
output data are shown in Figure 9.

ISPRS Int. J. Geo-Inf. 2024, 13, 33 21 of 29 
 

 

Validation • Comparison with census data of each respective country used as validation (a 
challenge, given that census designs differ by country). 

4.4. Ongoing Conflicts 
4.4.1. Quality by Design 

The armed conflict locations and events database (ACLED) [84] dataset provides real-
time, event-based information on global political violence, demonstrations and related 
non-violent events. It includes event type, actors, location, date and other details, 
following established methodologies for weekly publication [85,86]. 

The data support the objective of identifying conflict-affected regions within the ROI, 
offering city or village-level precision, which aligns with our targeted scale. Input and 
output data are shown in Figure 9. 

 
Figure 9. The map on the left displays the original data as provided by ACLED. The map on the 
right shows our hexagonal grid classification into different types of hotspots based on events’ 
locations and timing. 

4.4.2. Quality of Conformance 
The ACLED methodology is comprehensively documented in the resource library, 

providing insights into its strengths, limitations, sources of uncertainty and attempts to 
validate the data [86] (see Table 9). However, assessing the database’s reliability in a 
specific area presents challenges. In regions under the control of militia or rebellious 
groups, as is the case in parts of the ROI, these groups may be the only source of 
information [35]. These sources are not necessarily impartial in their reporting, and 
neutral entities lack oversight in these areas. However, the uncertainties introduced by 
potentially biased sources are likely minimized in significance due to our rather coarse 
temporal and spatial resolution objectives. In general, the in-depth evaluation of the 
ACLED data underlined its leading role as a conflict database over others: it outperforms 
comparable databases in terms of data collection and oversight, inclusion, coverage and 
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and timing.

4.4.2. Quality of Conformance

The ACLED methodology is comprehensively documented in the resource library,
providing insights into its strengths, limitations, sources of uncertainty and attempts to
validate the data [86] (see Table 9). However, assessing the database’s reliability in a specific
area presents challenges. In regions under the control of militia or rebellious groups, as
is the case in parts of the ROI, these groups may be the only source of information [35].
These sources are not necessarily impartial in their reporting, and neutral entities lack
oversight in these areas. However, the uncertainties introduced by potentially biased
sources are likely minimized in significance due to our rather coarse temporal and spatial
resolution objectives. In general, the in-depth evaluation of the ACLED data underlined
its leading role as a conflict database over others: it outperforms comparable databases in
terms of data collection and oversight, inclusion, coverage and classification, usability and
transparency, and sourcing [35]. The described methodology indicates a robust strategy for
data collection and systematization.

Table 9. The information shown here describes the ACLED database.

Input/ancillary data • Traditional Media: Subnational, national, regional and international outlets following journalistic
verification principles [87].

• Reports: From NGOs, international institutions, human rights organizations, investigative journalism
groups, and, in specific situations, ministries of defense, armed groups, NATO, etc. [87].

• Local Partner Data: Collected from local-level observatories and activists [87].
• New Media (verified): Includes Twitter, Telegram, WhatsApp, with direct source contact or

alternative verification methods—no crowdsourcing or web scraping involved [87].
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Table 9. Cont.

Strengths • Uses diverse, multilingual sources. Prioritizes local and sub-national media because traditional
sources can create biases, favoring safer regions and sensational events, while neglecting smaller or
prolonged conflicts [87].

Limitations • Data not intended for day-to-day safety monitoring, lacking specific event times and street-level
details. City/village-level data are provided, occasionally disaggregated to neighborhoods in large
cities [88].

Uncertainty • Information sources may exhibit bias, such as when an involved actor is the sole reporter in a given
area [87]. Each event includes a “GEO_PRECISION” column, denoting location uncertainty with a
numeric code [89].

Validation • ACLED does not independently verify events but collaborates with local partners, which are carefully
evaluated [35,89].

5. Discussion
5.1. The Evaluation Framework

The increasing availability of geospatial data is enabling risk modelers to rely increas-
ingly on openly available datasets created by specialized research groups [90–92]. This
trend reflects the typical progression of a new field, where individuals must initially handle
all aspects of the research; however, as the field evolves, it becomes segmented into more
specialized areas with their own experts. In our capacity as practitioners of indicator-based
risk assessments, our role evolved from undertaking the entire data modeling process to
focusing on effectively conceptualizing and selecting the most adequate data for a given
use case. In essence, we became “data pharmacists” who engage with stakeholders to
identify relevant problems, conduct research on available data, determine the most ade-
quate options based on the data’s strengths and limitations, and navigate the challenges
(including error propagation and unwanted “drug interaction”) associated with their use.
However, to be able to provide such an estimation, we needed a standardized set of data
characteristics that we could refer to. The data evaluation framework is a first step in the
direction of systematically assessing and comparing various aspects of geospatial data, and
aligns with approaches in related domains [93]. Differentiating between “quality by design”
and “quality of conformance” provides a means of discussing and expressing two distinct
dimensions of adequacy or quality. Future research may aim to quantitatively measure
evaluation criteria alongside their qualitative descriptions. Nevertheless, this task remains
challenging due to limited options for validating quality of conformance criteria in the
presence of known and unknown uncertainties.

Evaluating the adequacy of a dataset for a particular use case remains a time-intensive
task that demands research skills, and a profound understanding of modeling and valida-
tion procedures. These requirements can exceed the capabilities of individual risk modelers,
particularly when dealing with multi-source data with various associated uncertainties,
which is why dedicated research groups are required. However, particularly with the rise
of machine learning and AI applications, the importance of understanding the input data
and potential biases cannot be stressed enough. This prompts a critical question for the
future: Who bears the responsibility for providing the information necessary for evaluating
data adequacy—the data producer or the user? The producer should transparently provide
all necessary/possible information for the user to estimate data adequacy, but the user is
obligated to gather and judge this information. Hence, future efforts should aim to establish
a standardized set of contextual information provided by the data producer that is easily
accessible in one place by the user.

5.2. Use Case

The data we gathered proved to be somewhat useful in developing the envisioned
early warning malaria tool, albeit with certain limitations.

Having the MAP malaria incidence data with a yearly temporal resolution was valu-
able for identifying general trends. However, monthly disaggregated numbers indicating



ISPRS Int. J. Geo-Inf. 2024, 13, 33 20 of 25

the general malaria pattern throughout the year would be necessary to plan medical
interventions ahead of the peak transmission period.

Interpreting precipitation forecasts posed challenges for us as non-climatologists. This
is unfortunate, as these forecasts hold significant value across various applications and have
piqued the interest of MSF staff. However, efforts for more educational resources for non-
experts are currently being developed [94,95]. While the applied methodology effectively
preserved spatial detail and offered insights into the ROI’s precipitation patterns—an aspect
that, to our best knowledge, was previously unavailable—the approach to defining the
rainy season and calculating the risk score was somewhat generic. As a potential next step,
collaborating with specialists could refine this indicator.

The healthcare facilities dataset exhibits limitations due to potential outdatedness and
incompleteness, especially in troubled areas with significant MSF activity. The accessibility
surface shares the limitations with the healthcare facilities data, and has its own limitations
in areas where, for example, the OSM completeness levels in the past were low. Still,
we consider these resources valuable for the assessment to show the general pattern of
healthcare accessibility in the ROI.

The estimation of individuals seeking healthcare in the same facility, based on World-
Pop data, falls short in reflecting the population in rapidly established internally displaced
persons or refugee camps—a relevant aspect in our context.

While the ACLED data were adequate to highlight conflict hotspots, we had initially
planned another indicator that informs about locations that people seek refuge in. The
International Organization for Migration Displacement Tracking Matrix (IOM DTM) offered
recent and detailed refugee and internally displaced persons (IDP) statistics for the three
provinces in DRC (IOM 2022; 2023a; 2023b). However, for Burundi, Rwanda, and Uganda,
no comparable data were available, leading us to discard the indicator for the time being.

Overall, the openly available geospatial data demonstrated high quality. Substantial
effort has been invested in modeling over the past years, and ongoing initiatives continue
to drive this process further.

We successfully obtained freely available geospatial data for the majority of our desired
indicators, meeting our spatial and temporal resolution. For applications in public-health
contexts, the availability of data is becoming less of a bottleneck, while the ability to
evaluate their adequacy is becoming increasingly important.

Since we cannot definitively determine the adequacy of the data due to uncertainties,
it is challenging to decide whether they should inform operational planning on the MSF
side. While several datasets offer fine resolutions, questions remain about the accuracy of
estimations at the cell level. While we are uncertain about their applicability to operational
planning, we would recommend that MSF and other organizations remain aware of these
datasets and their future development for awareness-raising and advocacy purposes. Our
data assessment was acknowledged by MSF; individual datasets were integrated into their
database, and the evaluation framework has been applied in a simplified form. Currently,
we have intentionally avoided presenting the individual indicators as an integrated risk
surface. Creating such a surface would necessitate a descriptive text to interpret the
resulting spatial patterns. We believe this could falsely imply certainty and detract from
the primary message of our research.

Looking ahead, there is optimism that in the future, we may achieve a more robust and
certain assessment for planning sub-national and targeted interventions. As data sources
and methodologies continue to evolve, our aspirations for accurate and effective planning
will likely become more attainable. The interest sparked among the MSF staff underscores
the practical significance by addressing genuine needs within the humanitarian community.
The data adequacy evaluation framework provides a set of criteria that risk modelers
should consider before deciding to use a dataset.
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6. Conclusions

In the realm of public health and humanitarian aid, relying on open geospatial data for
spatial risk assessments often raises concerns about data quality and adequacy. To address
this challenge, we introduced a systematic data evaluation framework that emphasizes
“quality by design” and “quality of conformance”. As risk modelers, we took on the role of
“data pharmacists” who collaborate with stakeholders to diagnose information deficiencies,
seeking to find the right “cure”. We explored various datasets, determining their adequacy.
This selection process carefully balances the potential risks posed by data limitations with
the “healing” qualities found in the data’s strengths. Through an applied use case with
MSF, we evaluated a range of data sources for indicator data, applying our framework to
assess their suitability for operational intervention planning. While data availability and
contextual information are generally provided, determining their adequacy definitively
for humanitarian intervention planning remains challenging. This is due to potential data
inaccuracies, incompleteness or outdatedness that are difficult to quantify, particularly in
modeled data with complex input covariates. From the user’s/risk modeler’s perspective,
the framework may aid in planning a systematic approach to data adequacy evaluation.
From the data provider’s perspective, it shows a real-world application in which their data
are being considered for use. In line with the “do no harm” principle, it is crucial not to
misrepresent certainty in our assessments, especially in human-centered risk assessments.
Our foremost concern is the well-being of MSF beneficiaries, and misrepresenting certainty
could be a disservice.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijgi13020033/s1, Supplementary information is provided
in Annex I, which contains the Data Evaluation Framework applied to all datasets evaluated for
this project.
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