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Abstract: The emergence of deep learning-based classification methods has led to considerable ad-
vancements and remarkable performance in image recognition. This study introduces the Multiscale
Feature Convolutional Neural Network (MSFCNN) for the extraction of complex urban land cover
data, with a specific emphasis on buildings and roads. MSFCNN is employed to extract multiscale
features from three distinct image types—Unmanned Aerial Vehicle (UAV) images, high-resolution
satellite images (HR), and low-resolution satellite images (LR)—all collected within the Fengshan
District of Kaohsiung, Taiwan. The model in this study demonstrated remarkable accuracy in clas-
sifying two key land cover categories. Its success in extracting multiscale features from different
image resolutions. In the case of UAV images, MSFCNN achieved an accuracy rate of 91.67%, with
a Producer’s Accuracy (PA) of 93.33% and a User’s Accuracy (UA) of 90.0%. Similarly, the model
exhibited strong performance with HR images, yielding accuracy, PA, and UA values of 92.5%,
93.33%, and 91.67%, respectively. These results closely align with those obtained for LR imagery,
which achieved respective accuracy rates of 93.33%, 95.0%, and 91.67%. Overall, the MSFCNN excels
in the classification of both UAV and satellite images, showcasing its versatility and robustness across
various data sources. The model is well suited for the task of updating cartographic data related to
urban buildings and roads.

Keywords: multiscale feature extraction; convolutional neural network; unmanned aerial vehicle
image; satellite image

1. Introduction

Remote sensing involves the use of cameras and sensors installed on aerospace-borne
platforms for directly observing large areas of the Earth’s surface to enable the timely
and cost-effective mapping of land cover patterns. The urban information that can be
extracted from remote-sensing images can contribute to urban planning, transportation
network updates, land cover mapping, and other applications. Furthermore, urban land
use maps have considerable value to those wishing to monitor, plan, and design urban
environments [1]. Buildings and roads are the most common artificial structures in urban
areas, and the automated extraction of data on surface structures is crucial for urban land
use mapping. Urban land use maps are currently updated through aerial photograph
interpretation and field surveys, which are labor-intensive and time-consuming tasks.
Advancements in remote-sensing technology have enabled the acquisition of a large number
of high-spatial-resolution (HSR) remote-sensing images, including images covering urban
areas. These images are obtained using sensors installed on satellites or unmanned aerial
vehicles (UAVs). Satellites and UAVs can be employed to acquire an abundance of data,
such as photographs, three-dimensional (3D) point clouds, and videos, which can be
analyzed using algorithms and software [2]. The classification of aerial and satellite imagery
plays a crucial role in numerous applications, such as land cover and land use mapping,
change detection, and emergency response and management [3].
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Satellites and aircraft (e.g., manned aerial vehicles and UAVs) offer different advan-
tages to those wishing to acquire ground imagery through remote sensing. Satellites can
obtain extensive ground imagery, and their performance is less affected by weather condi-
tions. Very-high-resolution (VHR) satellite imagery, which can now be obtained because of
advancements in remote-sensing technology, has been used for the classification of land
features in many studies. For example, Gibril et al. [4] employed WorldView-2 imagery to
map asbestos cement roofs in urban areas. Huang et al. [5] used WorldView imagery to
classify land in Hong Kong and Shenzhen, China, into 11 land use categories. Borana and
Yadav [6] employed high-resolution (HR) satellite data for land-use suitability mapping
and land-use land cover (LULC) analysis in the urban area. Aircraft and UAVs are capa-
ble of maneuvering over and rapidly collecting ground imagery on small areas, thereby
enabling the acquisition of highly detailed imagery at very fine spatial resolution (VFSR)
in complex urban areas. VFSR aerial imagery has been used for classifying land cover
and land use in urban areas. For example, Zhang et al. [7] analyzed 10 major land cover
categories by using VFSR aerial imagery of the cities of Southampton and Manchester in the
United Kingdom. Researchers have employed UAV-obtained HSR imagery of urban areas
in various applications, such as the automated detection of damaged stone pavements [8]
and urban vegetation mapping [9].

Because of the complexity of land features in urban areas, researchers encounter chal-
lenges when extracting urban land cover information from HSR imagery. Zhao et al. [10]
reported that extracting land use information from HSR remote-sensing imagery is benefi-
cial. Single land parcels with a specific purpose (e.g., residential, commercial, or industrial)
often encompass multiple land cover types with different spatial, spectral, and geometric
characteristics. For example, a residential area might contain trees, buildings, and water
bodies, which complicates the automated mapping of land use. In addition, urban areas of
similar land use types, such as residential areas, often have unique physical attributes or
employ unique land cover materials (e.g., roofs made from different tile types), whereas
areas with different land use types might have similar or overlapping reflectance spec-
tra and textures (e.g., asphalt roads and parking lots) [11]. Furthermore, the urban land
features that can be obtained from VFSR imagery are highly complex and diverse, often
containing combinations of artificial urban and semi-natural surfaces in close proximity [12].
Majd et al. [13] reported variation in object proportions within VHR imagery, which further
complicates scene classification. Therefore, land use classification is challenging because of
the complexity and diversity of spatial and structural patterns in urban areas [14].

Remote-sensing technology is a powerful tool for collecting ground surface informa-
tion and has become the primary means of generating large-scale land cover datasets [15].
Various research methods have been employed to extract information on artificial structures
in urban areas from diverse types of remote-sensing data. Buildings and road information
can be extracted from satellite imagery [16], aerial imagery [17], UAV imagery [18], lidar
data [19], synthetic aperture radar imagery [20], and hyperspectral imagery [21]. These
remote-sensing data possess high spatial and temporal resolution. However, the primary
challenge associated with the utilization of remote-sensing data is their accurate and ef-
fective classification [22]. Advancements in remote-sensing technology have facilitated
the acquisition of data with high spatial and spectral resolutions. Machine learning has
emerged as the most frequently used technique for classifying remote-sensing images.
The selection of the most appropriate classification algorithm is a common topic in re-
search involving images with different spatial and spectral resolutions captured from
various platforms.

Traditional machine learning methods employed for remote-sensing data classification
include maximum likelihood estimation [23] and cluster analysis [24,25]. More advanced
techniques such as support vector machines [26], random forests [27,28], artificial neural
networks (ANNs) [29], and convolutional neural networks (CNNs) [30] are also being
increasingly utilized. The initial algorithms for land cover classification were ANNs, which
primarily perform supervised or unsupervised classification by statistically analyzing
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image data [31]. ANNs have found widespread application in land use and land cover
classification [32]. However, noise in data can reduce the accuracy of image classification
using ANNs, and their training can be time consuming [33]. CNNs were developed as
supervised learning neural networks to overcome the limitations of ANNs. Due to their
deep architecture, CNNs offer advantages over traditional ANNs in image recognition and
classification tasks.

CNN-based deep learning methods are increasingly being used in applications related
to land cover and land use, thereby enabling various types of land information to be
updated. Deep learning is a crucial branch of machine learning in which multilayer neural
networks are used to construct models from features. Considerable advancements in
deep learning have been made in fields such as facial recognition, autonomous driving,
and natural language processing. CNNs can efficiently retrieve complex patterns and
informative features from satellite imagery, and they outperform support vector machines
and random forests in such retrieval [34]. Moreover, CNNs outperform traditional ANNs
in image recognition and classification tasks. The computational complexity involved in
implementing CNNs is lower than that involved in implementing other types of networks,
and CNNs require fewer weight values. In addition, CNNs can directly process images as
inputs, thereby enabling automatic feature extraction without the requirement of manual
engineering. Because of their high computational efficiency and accuracy, CNNs can
perform multiclass image recognition, object detection, and land cover classification.

In recent years, deep learning methods utilizing CNNs have seen increasing use in
land cover classification. For instance, Giang et al. [35] employed the U-Net framework to
develop a land cover prediction model, utilizing multispectral UAV imagery for training.
Zhang et al. [36] proposed a classification method based on the enhanced DeepLabv3+
network and optimized the classification results for land cover using a fully connected
conditional random field (CRF). Behera et al. [37] introduced a multiscale CNN framework
for semantic segmentation in urban land cover and conducted experiments using two image
datasets: (1) the NITRDrone dataset and (2) the urban drone dataset (UDD).

Extracting semantic features from complex scenes, especially scenes of urban areas,
is challenging because of the heterogeneity, considerable intraclass variations, and small
interclass variations of such scenes [18]. Additionally, the extraction of spectral features
from images is influenced by the radiometric characteristics of the images, where lighting
conditions play a crucial role. Consequently, a given object can exhibit various features
under different shadows or lighting conditions, and different types of objects might have
similar spectral characteristics under visible light. CNNs can account for radiometric
variation between neighboring pixels and have high flexibility for capturing relevant
shapes in images rather than relying solely on objects’ color (or radiometric) features.
Furthermore, because satellite imagery often lacks high spectral resolution, differentiating
between object classes solely based on spectral information is challenging. Therefore, the
class to which pixels belong can be inferred based on the context and shapes of surrounding
objects. CNNs can automatically learn hierarchical contextual features from input images,
and their architecture is well suited to extracting information from VHR imagery [38]. The
effectiveness of CNNs for classifying VHR imagery and extracting specific objects has been
well established [39].

Road networks are widely used in various applications and thus are essential sources
of information [40]. In low-resolution and medium-resolution satellite imagery, roads
appear as thin and long structures. In high-resolution and VHR satellite imagery, roads
often appear as long homogeneous regions with certain widths [41]. This variation in the
same object across images with different resolutions means that effective classification
methods are required. Traditional machine learning methods based on pixel- or object-
level analysis are unsuitable for classifying land cover in images with various resolutions.
Moreover, radiation noise originating from vehicles, ground markings, and shadows causes
high spectral variability within a class [42]. Variations in the color and texture of buildings,
particularly large buildings, in high-resolution imagery, might lead to incomplete or partial
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extraction results [43]. Extracting data on roads and buildings in urban areas is challenging
because of similarities in the spectral reflectance and texture properties of these two types
of structures [44].

Numerous studies have investigated the extraction of building or road data from remote-
sensing imagery using various convolutional neural network (CNN) architectures. For in-
stance, Zhang et al. [45] employed a fully convolutional network to extract building data.
Majd et al. [13] proposed an object-based deep CNN framework for extracting information
about different types of buildings. They tested their approach on aerial imagery of the
Vaihingen area in Germany and satellite imagery (WorldView-2) of the Tunisia region.
Manandhar et al. [46] developed a general model for road classification by integrating a
CNN with volunteered geographic information (VGI). They tested their model on satellite
imagery from Abu Dhabi, United Arab Emirates, and aerial imagery from Massachusetts,
United States. Similarly, Chen et al. [47] used CNN and VGI models to identify buildings in
Malawi and roads in Guinea. Younis et al. [48] employed a neural network called SegNet,
which has an encoder–decoder architecture, for the segmentation of buildings and roads
in images.

In CNNs, various convolutional kernel (i.e., filter) sizes can be used to extract mul-
tiscale features. By using multiscale features in image classification, CNNs can capture
information on various details in an image, such as the shape and edges of small objects,
the parts and overall shape of medium-sized objects, and the background of large objects.
Combining features from various scales can enhance the performance and robustness of
models. In a multiscale feature extraction block, channel-wise weights are applied to every
channel of the multiscale feature; this process results in the emphasis on features that
are beneficial for classification and the suppression of irrelevant features [49]. Therefore,
Sun et al. [50] proposed multiscale convolutional neural networks, which achieve accurate
building extraction at various scales by leveraging multiscale deep features, employing an
SVM-based decision fusion strategy, and optimizing results with superpixels, resulting in
reduced noise and enhanced structural integrity in building extraction.

This paper introduces a deep learning model that integrates multiscale feature extrac-
tion techniques to improve feature identification for classification purposes. Specifically,
we developed a CNN that incorporates multiscale feature extraction to efficiently identify
buildings and roads in images. The focus of this research is on the application of the
Multiscale Feature CNN (MSFCNN) method, which plays a pivotal role in image classifica-
tion across various resolutions. Therefore, the MSFCNN method is applied with refined
hyperparameter tuning to classify images obtained at different resolutions. The primary
objective of this study is to address the classification challenges arising from variations in
the representations of identical objects across diverse resolutions. The model is intricately
designed to adeptly extract data related to buildings and roads from images featuring vary-
ing resolutions, such as UAV images, high-resolution satellite imagery, and low-resolution
satellite imagery. Its application across diverse image resolutions underscores its utility in
extracting pertinent information for the refinement and updating of urban land use maps.
This strategic approach ensures the provision of reliable information crucial for updating
urban land use maps.

2. Research Method

A CNN is a deep learning network that learns hierarchical representations from train-
ing data. The weights of CNNs can be adjusted and shared on the basis of training data,
their performance can be generalized and optimized, their parameters can be simplified,
and they can automatically reduce the number of parameters with high feature discrimina-
tion and extraction capabilities [51]. This section describes the main architecture, operation,
and functionalities of CNNs.
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2.1. CNNs

A CNN is composed of one or multiple convolutional layers, pooling layers, and
fully connected layers, which—through feature learning—collectively generate detection
results for images or objects. A CNN incorporates convolutional and pooling layers, which
differentiates it from a traditional ANN. CNNs have machine vision abilities for perceiving
fine details in images and do not solely rely on calculations based on extracted data, as is
the case with other types of neural networks. During the CNN training process, features
sensitive to specific classes are automatically detected. This process occurs through local
connections and weight sharing, which reduces the number of trainable parameters in the
neural network and enhances the learning efficiency. These characteristics enable CNNs to
learn image features automatically, and they contribute to the widespread use of CNNs in
applications such as image recognition, classification, detection, and segmentation. The
typical structure, functions, and hyperparameters of a conventional CNN are described in
the following text.

2.1.1. Convolutional Layer

Convolution is achieved by sliding a specified-size window, which is also known as
a filter or kernel, over an input image. This sliding process occurs sequentially from left
to right and from top to bottom, with the filter typically having the same stride in the
height and width directions. The region covered by the filter is referred to as the receptive
field. In the convolutional layer, a dot product (i.e., matrix multiplication) is obtained by
multiplying the values of the filter matrix by the pixel values of the image. The resulting
products are then summed, and, finally, a bias value is added to this sum, as presented in
Equation (1). A large sum of dot products indicates that a certain shape in the input image
closely matches the shape of the filter. As the filter slides over all positions of the image,
a matrix of values, which is known as the feature map, is generated (Figure 1). Multiple
feature maps can be present in a convolutional layer, thereby enabling the model to learn
different feature functions.
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y = ∑ (xij × fij) + b (1)

A nonlinear activation function is commonly applied after each convolutional layer.
This step is crucial for introducing nonlinear features into the model because the convolu-
tional layer primarily performs linear computations, such as element-wise multiplication
and summation. ReLU is often employed as a nonlinear activation function because it
avoids the problem of vanishing gradients and ensures high training speed without com-
promising accuracy. The ReLU function, which is represented in Equation (2), takes the
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input x of the ReLU activation layer and produces the output y. The gradient of ReLU is
either 0 or 1.

ReLU = max(0, x)
dy
dx =

{
1, x ≥ 0
0, x< 0

(2)

2.1.2. Multiscale Feature Extraction

Objects in images vary in size and shape, and features extracted at a single scale might
not effectively capture all relevant information on objects shown in images. Multiscale
feature extraction involves using multiple convolutional kernels or pooling layers with
different scales to capture the features of objects at various scales. This technique enables
a classifier to identify objects more accurately, especially when images show objects of
various sizes.

Multiscale feature extraction is an effective technique for enhancing the accuracy
and robustness of classifiers and provides excellent performance for the recognition of
objects of varying sizes within images. CNNs use the receptive field to perceive features
at different scales. If the receptive field is too small, the network can only capture local
features; if the receptive field is too large, excessive noise might be captured. By leveraging
convolutional operations, CNNs can adjust the receptive field’s size and extract multiscale
information. Consequently, these networks help to prevent information loss and effectively
capture features at various scales. Obtaining multiscale features from an input image
requires convolution with kernels of various sizes. The input feature map is convolved
using these multiple kernels; for each output, the network learns the feature map of a single
convolutional operator. The calculation of the feature map is expressed in Equation (3), in
which F denotes the output feature map, n denotes the number of channels in the output
feature map, K denotes the convolutional kernel, and kl and kw denote the height and width
of the convolutional kernel, respectively.

Fl′ ,w′ ,n = ∑
kl,kw,m

Kkl,kw,m,n · Xl′+kl−1,w′+kw−1,m (3)

Multiscale feature extraction is a technique employed in image processing and com-
puter vision that aims to capture and represent information at different spatial scales
within an image. The fundamental principle behind multiscale feature extraction is to
analyze an image at multiple resolutions or scales, extracting relevant features at each level.
This process enables the model to perceive and understand both fine details and coarse
structures within the image, contributing to a more comprehensive representation. The
process involves decomposing the image into multiple scales, extracting relevant features
independently at each scale, and then combining these features to create a comprehensive
representation. In the first step, the image undergoes pyramid decomposition, generating
different scales. Subsequently, features are extracted at each scale, capturing fine details
and coarse structures. The extracted features from various scales are then concatenated
or fused to form a unified set of features. In the context of deep learning, these features
contribute to learning hierarchical representations within the neural network, enhancing
the model’s ability to generalize and recognize patterns at different levels of granularity.

2.1.3. Pooling Layer

The pooling layer, which is also referred to as the subsampling layer, plays a crucial
role in downsampling the spatial dimensions of the feature map through the application of
a predefined function (e.g., maximum or average pooling) over local regions. This process
effectively reduces the size of the input image and preserves its red–green–blue (RGB)
depth. The main objectives of the pooling layer are to retain essential features from the
feature map, reduce computational complexity, and prevent overfitting.

Three main methods are used in pooling layers: average pooling, maximum pooling,
and stochastic pooling. The choice of pooling method depends on the requirements of
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the specific task. Average pooling is an effective technique for reducing variance and
preserving background information in images, thereby mitigating errors caused in the
feature extraction process by the size of the neighborhood in the image. Maximum pooling
is effective when errors occur in the estimation of the convolutional layer’s parameters;
this process reduces the effect of such errors and highlights features such as textures.
The function of stochastic pooling is intermediate between those of average pooling and
maximum pooling. Stochastic pooling involves assigning probabilities to the magnitudes
of elements and implementing sampling on the basis of these probabilities. Figure 2 depicts
a 2 × 2 filter with a stride of 1, where the average value of the receptive field is employed
in the downsampling operation.
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2.1.4. Fully Connected Layer

The primary function of the fully connected layer is to learn the associations between
features and their corresponding classes by assigning specific weights. In this layer, the
dot product between these weights and the preceding layer is calculated, which enables
accurate probabilities to be obtained for different classifications. In a convolutional layer,
each feature map represents a specific feature of the input signal, and as the number of
layers increases, the features become more abstract. A fully connected layer is used to
integrate these convolutional features and produce the final output. A probability or label
is then predicted using an activation function, such as the softmax function or sigmoid
function, on the output. Thus, the model can make predictions and classify the input on
the basis of the features obtained from all convolutional layers.

Through backpropagation, the network adjusts its weights on the basis of the error
or loss calculated during forward propagation; the predictions made by the model thus
improve over time. This process is essential for training a neural network through gradient
descent optimization. The loss function involves the calculation of the error between the
predicted and true values; that is, it quantifies the discrepancy between the predicted
output and the ground truth. By employing a loss function, the neural network adjusts the
weights and biases of its neurons to minimize the error (loss). A loss function commonly
used in deep learning is cross entropy, which is expressed in Equation (4), in which Yi

′

denotes the encoded true label vector for class i (0 or 1), whereas Yi denotes the output
probability label vector for class i.

Cross Entropy = −∑ Yi
′ · log(Yi) (4)

The weights (denoted W) are updated by randomly assigning an initial set of weights
Wi. Through backpropagation, the network identifies the weights that contribute the most
to the loss and determines the adjustment method that can be used to minimize the loss.
Gradient descent is then employed to calculate the slope (dL/dW) of the loss function with
respect to the weights. Subsequently, the weights are updated using Equation (5), in which
η denotes the learning rate, which is the rate at which the weights are updated through
gradient descent.

W = Wi − η
dL
dW

(5)
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2.1.5. Data Augmentation and Dropout

Overfitting occurs when a model becomes too closely fit to the training samples,
which results in poor performance on the validation and test sets. Overfitting is a common
long-standing challenge encountered when machine learning algorithms are used. To
mitigate this problem, researchers have proposed techniques such as data augmentation
and dropout. These techniques are beneficial for CNNs, which often require a large
quantity of training data to achieve optimal performance. Data augmentation involves
introducing minor variations to the training set, thereby altering the arrays of the training
data, and preserving labels. The augmentation process generates additional training images
through the application of various types of transformation or modification methods, such
as rotation, scaling, flipping, and noise addition. Expanding the training dataset in this
manner enhances a model’s generalizability and reduces the risk of overfitting.

Dropout is a common technique used to address the problem of overfitting during
the training of deep learning models. Dropout involves randomly deactivating a subset
of parameters during model training, specifically by disabling certain feature detectors or
neurons with a certain probability. This approach ensures that the neural network does not
excessively rely on specific training samples. The main function of dropout is to disconnect
a certain percentage of hidden units or neurons randomly, thereby reducing the model’s
reliance on specific local features. The dropout technique provides feature representations
that are more generalizable than those obtained without dropout, thereby enabling the
creation of a more robust model that is less susceptible to overfitting.

In this study, the MSFCNN operates through three steps, as illustrated in Figure 3. The
first step involves image input and data augmentation, starting from the input layer, where
images with varying resolutions from satellites or drones are input into the network. Data
augmentation techniques are applied to increase the quantity of images. The second step is
image feature extraction, utilizing multiple convolutional kernels with different sizes to
capture features at various scales. Pooling reduces spatial dimensions, and features are
downsampled from different scales. Hyperparameter tuning is performed in this process,
recording the performance of each hyperparameter combination and its related training
performance to achieve the optimal model configuration for generalization capability. The
key focus in multiscale feature extraction is the integration of convolutional layers with
various kernel sizes to enhance the model’s ability to recognize features of different sizes in
the input data. The third step involves transforming the output into a one-dimensional array
(flattened layer), followed by fully connected layers to learn high-level representations. The
loss function measures the difference between predicted values and actual values, guiding
the updating of weights and biases during training. The final output layer utilizes the
softmax activation function for classification, producing the ultimate prediction results.
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2.2. Study Area and Image Data

Situated in southern Taiwan, Kaohsiung exhibits a distinctive array of geographical
characteristics. Notably, it stands as Taiwan’s largest port city, ranking among the world’s
busiest ports. While an urban metropolis, Kaohsiung is also replete with an abundance of
verdant parks and open spaces. Moreover, it encompasses several industrial zones and
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manufacturing facilities, constituting a substantial portion of its economic landscape. These
geographical attributes collectively contribute to Kaohsiung’s multifaceted and dynamic
character, harmoniously blending urban development with cultural richness.

In this study, Fengshan District in Kaohsiung, Taiwan, was selected as the research area
(Figure 4a). UAV image data were collected using the DJI Phantom-3 UAV equipped with
the FC300C camera (focal length of 4 mm). This UAV was flown at an altitude of 60 m. The
collected images included RGB channels, and the image resolution was 4000 × 3000 pixels
(Figure 4b). Data from the Environmental Systems Research Institute World Imagery Map,
which offers satellite (Figure 4c) with a resolution of 1 m or higher from various locations
worldwide, were also employed. Within the ArcGIS user community, multiple imagery
options are available, such as ultra-high-resolution imaging at a scale of 1:280 (down to
0.03 m). The high-resolution World Imagery utilized in this study is sourced from the
WorldView-3 satellite. WorldView-3 operates as a sun-synchronous satellite orbiting at an
altitude of 617 km, completing one full orbit around the Earth every 97 min. It provides a
comprehensive range of eight spectral bands, including red, green, blue, NIR1, coastal blue,
red-edge, yellow, and NIR2, thus offering a diverse multispectral dataset. The multispectral
imagery boasts a spatial resolution of 1.2 m, while the panchromatic imagery reaches an
impressive spatial resolution of up to 0.3 m.

ISPRS Int. J. Geo-Inf. 2024, 13, 5 9 of 23 
 

 

2.2. Study Area and Image Data 

Situated in southern Taiwan, Kaohsiung exhibits a distinctive array of geographical 

characteristics. Notably, it stands as Taiwan’s largest port city, ranking among the world’s 

busiest ports. While an urban metropolis, Kaohsiung is also replete with an abundance of 

verdant parks and open spaces. Moreover, it encompasses several industrial zones and 

manufacturing facilities, constituting a substantial portion of its economic landscape. 

These geographical attributes collectively contribute to Kaohsiung’s multifaceted and dy-

namic character, harmoniously blending urban development with cultural richness.  

In this study, Fengshan District in Kaohsiung, Taiwan, was selected as the research 

area (Figure 4a). UAV image data were collected using the DJI Phantom-3 UAV equipped 

with the FC300C camera (focal length of 4 mm). This UAV was flown at an altitude of 60 

m. The collected images included RGB channels, and the image resolution was 4000 × 3000 

pixels (Figure 4b). Data from the Environmental Systems Research Institute World Im-

agery Map, which offers satellite (Figure 4c) with a resolution of 1 m or higher from vari-

ous locations worldwide, were also employed. Within the ArcGIS user community, mul-

tiple imagery options are available, such as ultra-high-resolution imaging at a scale of 

1:280 (down to 0.03 m). The high-resolution World Imagery utilized in this study is 

sourced from the WorldView-3 satellite. WorldView-3 operates as a sun-synchronous sat-

ellite orbiting at an altitude of 617 km, completing one full orbit around the Earth every 

97 min. It provides a comprehensive range of eight spectral bands, including red, green, 

blue, NIR1, coastal blue, red-edge, yellow, and NIR2, thus offering a diverse multispectral 

dataset. The multispectral imagery boasts a spatial resolution of 1.2 m, while the panchro-

matic imagery reaches an impressive spatial resolution of up to 0.3 m. 

 

 

(a)  

 

(b) 

 

(c) 

 

(d) 

Figure 4. The UAV and satellite images of the study area: (a) study area; (b) UAV images; (c) high-

resolution satellite images; (d) low-resolution satellite images. 
Figure 4. The UAV and satellite images of the study area: (a) study area; (b) UAV images; (c) high-
resolution satellite images; (d) low-resolution satellite images.

Sentinel-2 is a group of Earth observation satellites developed and operated by the
European Space Agency (ESA) for the European Union’s Copernicus program. These
satellites are designed for the purpose of monitoring environmental conditions and changes
in land cover on the Earth’s surface. Sentinel-2’s low-resolution imagery, typically at
10 m per pixel, provides a broader view of the Earth’s surface with less fine-grained
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detail (Figure 4d). This imagery is valuable for monitoring large-scale environmental
changes, land cover classification, and regional assessments. It is particularly useful when
a wider perspective is needed, and fine details are less critical. The three types of remote-
sensing images used in this study had considerably different resolutions and characteristics;
therefore, they were ideal for testing the generalizability of the proposed model in extracting
data on buildings and roads in urban areas. The effectiveness of the constructed CNN
model was validated using these imagery data with various resolutions.

This study primarily employs the Multiscale Feature CNN (MSFCNN) to extract mod-
els for buildings and roads and to train and test on two types of land cover images. To
enhance the model’s performance while training, the image dataset is divided into training,
validation, and testing sets. The training set is primarily used for model training, the vali-
dation set for parameter tuning, and the testing set for evaluating the model’s performance.
Datasets for building and road features are created by cropping UAV images and satellite
images. Each category, building, and road, comprises 200 samples. Subsequently, a total
of 1200 images from UAV images, high-resolution (HR), and low-resolution (LR) satellite
images are randomly split into 600 images for the training set, 240 for the validation set,
and 360 for the testing set, maintaining a proportion of 50%, 20%, and 30%, respectively
(Figure 5). By employing the designed MSFCNN architecture and utilizing an extensive
image dataset under varying image resolution conditions, this approach effectively extracts
various land cover features in the real world. This is particularly important for complex
and dynamic urban areas, specifically in identifying buildings and roads.
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2.3. Image Preprocessing and Model Construction Process

Image preprocessing is crucial to ensure that a CNN can effectively learn and extract
meaningful features from input images. These preprocessing steps include (a) image
cropping: this initial step involves cropping, focusing on specific regions of interest within
the images. (b) Image resizing: images are resized to a consistent dimension, ensuring
uniform width and height for all input images. (c) Label encoding: categories or classes
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for each image are encoded for training. This encoding enables the model to predict class
probabilities for each category (Figure 6).
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The construction process of the Multiscale Feature CNN (MSFCNN) model for extract-
ing building and road features involves the following key steps. (a) Model architecture:
The MSFCNN architecture is thoughtfully designed to accommodate multiscale feature
extraction. It is tailored to handle the diverse and complex characteristics of building and
road features in urban settings. (b) Resolution: Given the availability of images with vary-
ing resolutions, the MSFCNN framework is strategically configured to effectively process
both high-resolution (HR) and low-resolution (LR) images. This adaptation accounts for
the different scales at which features need to be detected. (c) Parameter fine-tuning: The
model is trained using the training dataset while simultaneously being validated with the
validation dataset. This iterative process allows for fine-tuning and optimization of the
model’s parameters to ensure optimal performance. (d) Model Evaluation: The final evalu-
ation is conducted using the testing dataset to measure the model’s ability to accurately
extract building and road features. Metrics such as accuracy, Producer’s Accuracy, and
user’s accuracy are employed to quantitatively assess the model’s performance.

3. Results and Analysis

The deep neural network used in this study was a CNN model with a moderate
number of filters in each layer. This design choice was motivated by the fact that the
classification task involved only two classes: buildings and roads. In contrast to multiclass
classification problems that require large-scale neural networks such as VGG16, the classifi-
cation problem of this study was a binary classification problem. Furthermore, the adopted
neural network model was relatively small and offered advantages in terms of training and
prediction time; therefore, this model was suitable for urban mapping and updating tasks.
Notably, the proposed MSFCNN exhibited excellent performance and generalizability for
UAV and satellite images.

3.1. CNN Architecture and Hyperparameters

A CNN is a supervised learning deep neural network, and its architecture plays a
crucial role in determining its computational efficiency and classification accuracy. The
number of layers, the number and size of filters in each layer, and other structural aspects
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considerably affect model performance. Understanding the roles and principles of the
network layers and parameters is crucial for constructing deep neural network architectures
that satisfy practical requirements. The MSFCNN structure used in this study comprised
one input layer, three convolutional layers, three pooling layers, and one fully connected
layer (including a flattening layer, a hidden layer, and an output layer), as illustrated in
Figure 7. In this study, Python served as the primary tool for conducting the research. The
Python programming language was employed during both the training and testing phases
of the CNN model. In addition, the Keras library, a high-level API that leverages deep
learning libraries like TensorFlow, was utilized for the feature extraction process. The study
involved the utilization of Python for implementing the CNN-multiscale feature extraction
model. Additionally, the authors devised a Python script to facilitate the conversion of two
resolution scenarios into input images suitable for the CNN model, as well as to translate
the model’s output into representations of buildings and roads.
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The MSFCNN conducted depth-wise separable convolution operations on input
feature maps. In these operations, sets of convolution operators with different sizes were
used to extract feature information at various scales. This approach enabled the modeling
of contextual information, captured global dependencies, and reduced computational costs.
First, the input layer comprised samples with a resolution of 150 × 150 × 3 pixels, where
the dimensions represent the image height, image width, and channel (RGB), respectively.
Second, the convolutional layers had a stride of 1 and a padding of 1. The stride refers to the
step size at which the filter slides over the spatial input. A larger stride results in a smaller
output, which potentially causes the loss of some input features, but lower computational
costs. The Conv1 layer used 64 filters with a size of 3 × 3. Conv2 and Conv3 contained
128 and 256 filters, respectively (i.e., the number of filters was doubled from one layer to
the next). In the multiscale convolution, filters with sizes of 3 × 3, 5 × 5, and 7 × 7 were
used, with 128 filters for each size. The ReLU activation function was applied to the
outputs generated from all the convolutional layers and the inputs generated from the fully
connected layers. Third, regarding the pooling layer, a pooling size of 2 × 2 was applied,
and maximum pooling was employed for all calculations. To mitigate overfitting, a dropout
rate of 0.5 was employed; thus, 50% of the neurons in the neural network were randomly
disabled during each training iteration. Fourth, the fully connected layer comprised a
flattening layer\, two hidden layers with neuron sizes of 1000 and 2000, respectively, and
two output layers, which provided the classification results (i.e., building or road). Finally,
after the convolution, pooling, and multiscale feature extraction processes, the softmax
function was applied to implement the binary classification of the building or road in each
input image. Table 1 provides a summary of the hyperparameter settings for each layer of
the constructed CNN.
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Table 1. MSFCNN architecture and hyperparameters.

Item Input Layer Convolutional Layer Pooling Layer Fully Connected Layer

1

400 images: 150 × 150 × 3,
rescale = 1/255,

rotation range = 40,
width shift range = 0.2,
height shift range = 0.2,

shear range = 0.2,
zoom range = 0.2,

horizontal flip = true

Conv 1: 64 filters = 3 × 3, stride = 1,
padding = 1, activation = ReLU

Pool 1: Max pooling = 2 × 2,
dropout = 0.5

Input: activation = ReLU
Hidden 1: 1000 neuron
Hidden 2: 2000 neuron

Output: activation = softmax

2

Multiscale Conv: 128, filters = 3 × 3,
stride = 1, padding = 1,

filters = 5 × 5, stride = 1,
padding = 2, filters = 7 × 7,

stride = 1, padding = 3,
activation = ReLU

3 Conv 2: 128 filters = 3 × 3, stride = 1,
padding = 1, activation = ReLU

Pool 2: Max pooling = 2 × 2,
dropout = 0.5

4 Conv 3: 256 filters = 3 × 3, stride = 1,
padding = 1, activation = ReLU

Pool 3: Max pooling = 2 × 2,
dropout = 0.5

The MSFCNN model developed in this study employs filters with sizes of 3 × 3,
5 × 5, and 7 × 7 for multiscale feature extraction. This strategic use of varying filter sizes
enables the aforementioned model to capture feature information at multiple scales, thereby
facilitating the modeling of contextual information and global dependencies, in addition
to substantially reducing computational costs. An innovative aspect of the developed
MSFCNN model is that it performs depth-wise separable convolution operations. These
operations involve employing sets of convolution operators with different sizes to capture
features effectively across various scales. This innovative approach contextualizes informa-
tion and exhibits robust performance for images with different resolutions. The MSFCNN
model is particularly advantageous for urban mapping tasks involving images captured
from UAV and satellite platforms; its adaptability to different scales renders it a versatile
and efficient tool for extracting meaningful features in urban environments.

3.2. Model Training, Validation, and Testing

A loss value is produced during each epoch of a training process. This value indicates
the error between the predicted classifications of a CNN model and the actual class labels.
Training continues until a predetermined number of epochs has been reached, after which
the weights in the network are updated using algorithms such as stochastic optimization
or batch gradient descent. For the training set, training is continued until the errors
are minimized or a stopping criterion is reached. Validation has two purposes. First,
it prevents model overfitting by ensuring that the model does not rely solely on the
training set data. Second, it aids in hyperparameter tuning. Hyperparameters are crucial
settings in CNNs and are manually adjusted and configured to optimize a model’s output.
Examples of hyperparameters are learning rate, number of epochs, number of hidden
layers, activation functions, and batch size. A test set, the data of which are not used
during training or validation, is used to validate the performance of a CNN model and
ensure its generalizability. A CNN model is evaluated using a test set once it has generated
satisfactory results for a training set and validation set. A well-designed and randomly
selected test set is crucial for accurately evaluating the performance of a CNN model on
diverse real-world image features.

The dataset used in this study comprised 400 images, with 200 images each of buildings
and roads obtained from UAV and satellite platforms. These images were cropped and
annotated. To achieve optimal feature extraction by using the constructed MSFCNN model,
this model was trained on batches of 32 images per iteration during stochastic gradient
descent. The weights were updated during the training process by using randomly selected
batches of images. One complete pass through the entire dataset was considered an epoch.
For each epoch, the MSFCNN was trained using 200 images from the training set, validated
using 80 images from the validation set, and tested using 120 images from the testing set.
The training process spanned 30 epochs, and the aim was to achieve accurate classification
or feature extraction for the training data.
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When the model was trained on the UAV image dataset for 30 epochs, it achieved an
accuracy of 92.11% (Figure 8a). Furthermore, the model achieved an accuracy of 91.98% on
the testing set. The CNN learning process has similarities with general supervised learning,
with both processes requiring a large quantity of labeled data for training. However, CNNs
have the unique ability to adjust weights iteratively through repeated training on the same
samples; this adjustment minimizes the discrepancy between the predicted and actual
labels and ultimately enables accurate classification. The learning loss on the training data
was 0.23 in epoch 10 and then improved to the optimal value of 0.21 in epoch 30 (Figure 8b).
Experiments were also performed on high-resolution satellite images (HR), with the number
of images and training epochs being the same as those used for the UAV image dataset.
The accuracy of the model trained on the satellite images gradually converged to 88.28% in
epoch 10 and finally reached 92.22% (Figure 9a). The CNN model achieved an accuracy
of 92.12% on the testing set. In epoch 30, the learning loss of the training model was
0.19 (Figure 9b). In the MSFCNN-trained model, the low-resolution satellite images (LR)
achieved an accuracy of 94.21% (Figure 10a). The model also demonstrated an accuracy of
92.76% on the testing set. By epoch 30, the training model had reached a learning loss of
0.22 (Figure 10b). It is noteworthy that the accuracy and loss of the MSFCNN model on
the training set exhibit minimal deviation from the results obtained with high-resolution
(HR) images.
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This study performed optimization training and testing for the constructed MSFCNN’s
structure and hyperparameters. The input layer can process images with a resolution of
150 × 150 × 3 pixels, and the Conv1, Conv2, and Conv3 layers use 64, 128, and 256 filters
with a size of 3 × 3, respectively. The incremental doubling of filters enhances the MSFCNN
model’s capacity to capture complex and abstract features. This model uses filters with
sizes of 3 × 3, 5 × 5, and 7 × 7 to capture feature information at various scales. The ReLU
activation function is executed after each convolutional operation on the inputs of the fully
connected layers. The nonlinearity introduced by this function increases the expressive
power of the model, thereby enabling the model to learn complex input-to-output mapping.
The fully connected layer includes two hidden layers: one containing 1000 neurons and the
other containing 2000 neurons. The learning rate and number of epochs are set to 0.01 and
30, respectively, to facilitate the task of feature learning through backpropagation and the
classification of urban land cover classes by using the softmax function. The depth-wise
separable convolution operations of the proposed model not only enhance its performance
but also optimize its computational efficiency, thereby rendering it suitable for real-world
applications involving resource constraints.

The developed MSFCNN model exhibited excellent performance in various aspects,
irrespective of whether UAV or satellite imagery was used (Table 2). This model accu-
rately extracted data on buildings and roads from different image sources. Notably, the
MSFCNN’s learning error and overfitting were at low levels, and the model achieved an
accuracy of approximately 92% on the test sets for UAV and satellite imagery. The CNN
model’s excellent extraction performance is attributable to its ability to incorporate the
image features of both buildings and roads. By leveraging a large quantity of training
data, the proposed MSFCNN model can effectively extract object features within a certain
range, thereby addressing the challenges encountered in object classification. Moreover,
the proposed CNN model can simultaneously extract buildings and roads from images
with different resolutions, which further underscores its versatility and effectiveness.

Producer’s Accuracy (PA) is a statistical measure commonly used in remote-sensing,
classification, and accuracy assessment of classification models, particularly in the context
of image analysis and geographic information systems (GIS). It evaluates the ability of
a classification model or algorithm to correctly identify and classify a specific class. PA
is typically defined and calculated: True Positives/(True Positives + False Negatives).
Here, True Positives (TP) represent the number of correctly classified buildings and roads.
These are the samples that the model correctly identified as belonging to the target class.
False Negatives (FN) represent the number of instances of the class of interest that were
incorrectly classified as a different class or category by the model. These are the samples
that the model failed to detect or missed.
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Table 2. Performance results of MSFCNN.

Image Type Accuracy of the
Training Set (%)

Accuracy of the
Validation Set (%)

Accuracy of the
Test Set (%)

Learning
Error Overfitting

UAV
images 92.11 86.27 91.67 0.21 0.13

Satellite
images (HR) 92.22 90.20 92.50 0.19 0.10

Satellite
images (LR) 94.21 95.31 93.33 0.04 0.01

User’s Accuracy (UA) assesses the probability that a specific class assigned by a
classification model to a dataset sample indeed belongs to that class. UA is typically
defined and calculated: True Positives/(True Positives + False Positives). UA is particularly
important in situations where false positives (misclassifying non-members of a class as
members) can have significant consequences. UA helps evaluate the precision or reliability
of the classification model when it assigns a particular class label. It answers the question,
“When the model predicts a certain class, how often is it correct?” A high UA value
suggests that when the model predicts a specific class, it is usually correct, which indicates
a reliable model.

Table 3 presents the confusion matrix for MSFCNN classification of UAV images, with
an accuracy of 91.67%. It indicates that out of 120 images of buildings and roads, 110 were
correctly classified. The PA stands at 93.33%, with 60 true instances of buildings, of which
56 were correctly classified as buildings, and 4 were misclassified as roads. The UA is
90.0%, signifying that out of the 60 actual buildings, 6 were erroneously classified as roads.
Similarly, Table 4 presents the confusion matrix for MSFCNN classification applied to high-
resolution satellite images (HR), yielding accuracy, PA, and UA values of 92.5%, 93.33%,
and 91.67%, respectively. These metrics align with the corresponding values obtained for
low-resolution satellite images (LR), which are 93.33%, 95.0%, and 91.67%, as shown in
Table 5.

Table 3. Performance of the MSFCNN using the test set in UAV images.

Ground Truth
Classification Results Producer’s Accuracy,

PA (%)Building Road

Building 56 4 93.33
Road 6 54 90.0

User’s Accuracy,
UA (%) 90.0 93.33 Accuracy = 91.67%

Table 4. Performance of the MSFCNN using the test set in high-resolution satellite images.

Ground Truth
Classification Results Producer’s Accuracy,

PA (%)Building Road

Building 56 4 93.33
Road 5 55 91.67

User’s Accuracy,
UA (%) 91.67 93.33 Accuracy = 92.50%

Table 5. Performance of the MSFCNN using the test set in low-resolution satellite images.

Ground Truth
Classification Results Producer’s Accuracy,

PA (%)Building Road

Building 57 3 95.0
Road 5 55 91.67

User’s Accuracy,
UA (%) 95.0 91.67 Accuracy = 93.33%
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The slightly higher accuracy of MSFCNN in extracting buildings and roads from low-
resolution imagery compared to high-resolution imagery can be attributed to several factors:

(a) Low-resolution imagery typically demands less precision in handling noise and fine
details, rendering MSFCNN more robust when operating at lower resolutions. High-
resolution images often contain more fine details and noise, which might introduce
additional interference into the model.

(b) In low-resolution images, large-scale features, such as the overall outlines of buildings
or roads, are generally easier to recognize. MSFCNN may excel in processing these
large-scale features, whereas high-resolution images could contain more small-scale
details requiring more intricate processing.

(c) High-resolution images may carry more noise or imperfect data, potentially affecting
model performance adversely. In contrast, low-resolution images usually exhibit
greater tolerance to these issues.

It is important to note that there was little difference in accuracy between satellite
imagery and UAV imagery in this study. Nevertheless, the model’s performance across
various resolutions may vary depending on the application, dataset, and model architecture.
Enhancing performance on high-resolution images might necessitate more data and a more
complex model architecture.

4. Discussions
4.1. Comparison of Other Neural Networks

To compare the performance of MSFCNN with other CNNs in land cover land use
(LCLU) classification, we conducted a review of six papers published between 2020 and
2023. Due to a lack of detailed information regarding the network architectures and
hyperparameters in the majority of these articles, our analysis was limited to descriptions
of different models’ LCLU categories, image data, and their respective performance metrics.
Consequently, we were unable to perform an in-depth comparison on the same dataset.
The models under consideration encompass the encoder–decoder framework (EDF) [52],
deep learning (DL) [53], Multilayer Perceptron Neural Network (MLPNN) [54], shared and
specific feature learning (S2FL) [55], pyramid feature extraction (PFE) [56], and multimodal
bilinear fusion network (MBFNet) [57]. Quantitative assessment was performed using three
widely used metrics in image classification and segmentation, namely accuracy, precision
(PA), and recall (UA).

Li et al. [52] proposed an EDF CNN that integrates spatial-aware circular modules and
a semantic distribution alignment loss function for LU classification. The model achieved
an accuracy of 84.2% on optical and synthetic aperture radar (SAR) imagery in Ezhou
and Panjin, China. Abdi [53] compared the performance of SVM, RF, Xgboost, and DL
for Sentinel-2 LU in south-central Sweden. The results showed that SVM led in accuracy
(75.8%), followed by Xgboost (75.1%), RF (73.9%), and DL (73.3%). Girma [54] employed
the MLPNN (Artificial Neural Network with Cellular Automata–Markov Chain) to model
LULC change in the Gidabo River Basin, Main Ethiopian Rift, from 1985 to 2050 using satel-
lite imagery. The MLPNN achieved an overall accuracy of 85.9~87.04%. Hong et al. [55]
proposed an S2FL model for processing multimodal remote-sensing data. Three benchmark
datasets—Houston2013, Berlin, Augsburg—were used for LC classification. Experimental
results show that the accuracy of the S2FL model in these datasets is 85.07%, 62.23%, and
83.36%, respectively. Li et al. [56] introduced a PFE for building extraction in high-resolution
remote-sensing images. The proposed method utilizes attention modules and a structural-
cue-guided feature alignment module to address challenges in single-scale depth features.
Applied to the WHU Building Dataset, the method achieves an F1 score of 95.3% and an
IoU score of 90.9%. Li [57] proposed MBFNet with Second-order Attention-based Channel
Selection for LC classification using optical and SAR images. Three coregistered optical
and SAR datasets—PoDelta (Italy), ChongMing (Yunnan, China), and WuHan (Hubei,
China)—were employed. Experimental results show that the accuracy of the MBFNet
model in these datasets is 93.61%, 82.61%, and 78.22%, respectively.
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Table 6 displays the classification results for the seven models on various images,
providing a comprehensive context for evaluating the performance of the MSFCNN model
and the other models. In terms of accuracy, the MSFCNN method consistently maintains
the highest values among all the models. Overall, the MSFCNN proposed in this study has
demonstrated superior performance across all metrics, affirming the effectiveness of this
approach. Surprisingly, the DL model outperforms other methods in the UA evaluation
metric, including MLPNN and MSFCNN, both using Sentinel-2 imagery, but the differences
between the latter two are not substantial. The developed MSFCNN model is suitable for
extracting buildings and roads in urban areas. This model outperformed other models in
LULC classification tasks, particularly in terms of accuracy, demonstrating its effectiveness
in suppressing false positives. Compared with that of the MLPNN model, which is similar
to the MSFCNN model, the average accuracy of the MSFCNN model was higher by 6.29%
(93.33% vs. 87.04%). The MSFCNN model consistently outperformed the other models
in LULC classification, confirming its robustness and the effectiveness of the proposed
approach. Although the developed model exhibited excellent UA results, these results
should be interpreted with caution because this model is a specialized tool for extracting
buildings and roads in urban areas for LULC classification.

Table 6. Comparison results of different neural networks in land cover and land use.

Method LCLU Image Accuracy (%) PA (%) UA (%)

EDF [52] Seven LU Optical and SAR image 84.2 NA NA

DL [53] Eight LU Sentinel-2 73.3 36~95 63~98

MLPNN [54] Nine LCLU Landsat-5, Landsat-7,
and Sentinel-2 85.9~87.04 75.9~96.6 73.3~96.7

S2FL [55] Seven LC Hyperspectral, and
SAR image 62.23~85.07 NA NA

PFE [56] Building Aerial images NA 93.4~96.0 92.9~95.3

MBFNet [57] Five LC Optical and SAR images 78.22~93.61 74.4~92.5 75.5~86.4

MSFCNN Building
and road

UAV, WorldView-3,
and Sentinel-2 91.67~93.33 90.0~95.0 90.0~95.0

Since the performance levels of the models compared in this study were obtained on
different datasets, caution should be exercised in interpreting these performance results.
Despite the inherent challenges associated with cross-dataset comparisons, the results of
this study indicate the adaptability and effectiveness of the MSFCNN model across diverse
LULC scenarios involving different image resolutions, thus affirming its robustness and
applicability to urban LULC classification tasks.

4.2. The Constraints and Novelties

The constraints and challenges of using multiscale feature extraction through CNN
in this study are as follows: (a) The utilization of CNNs for multiscale feature extraction
demands substantial computational resources, especially when applied to large-scale and
high-resolution image datasets. High-performance hardware (GPU) is essential, which
can pose challenges for some research projects or applications. (b) Training MSFCNN
effectively requires a vast amount of labeled data that comprehensively covers various
scenarios and features. The acquisition and preparation of such annotated datasets can
be time consuming and labor intensive, making it a significant challenge, particularly for
specific domains or applications with limited data availability. (c) CNNs are susceptible
to overfitting, especially when the training dataset is insufficient or lacks diversity. Over-
fitting can lead to a reduction in model performance when applied to new and unseen
data. (d) Multiscale Data Processing: Handling data from multiple scales and resolutions
necessitates intricate preprocessing steps to ensure that the model effectively captures
features at different scales. (e) Optimizing the performance of MSFCNN models requires
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tuning numerous hyperparameters, including learning rates, layer configurations, and the
number of neurons. Finding the optimal parameter combinations can entail a significant
amount of experimentation and computational resources. Addressing these constraints and
challenges necessitates meticulous problem analysis, adept data preprocessing techniques,
model fine-tuning, and efficient utilization of computational resources.

This research introduces a deep learning model named multiscale feature convolu-
tional neural network (MSFCNN) for multiresolution urban land cover classification. The
key novelties of this model are:

(1) Multiscale convolutional architecture
The integration of various convolutional filter sizes (3 × 3, 5 × 5, 7 × 7) within a

single CNN model provides it with the unique capability to perceive both fine details and
global structures in the imagery. This facilitates the simultaneous capture of low-level
details as well as high-level semantic information, allowing the model to perceive objects
effectively across scales. While previous works have explored multiscale concepts, this
paper is novel in employing it for the specific use case of classifying essential urban land
cover types (buildings, roads) from multiresolution aerial/satellite images. The design
choices targeting this application demonstrate the viability of multiscale convolutional
neural networks for automated urban mapping tasks.

(2) Cross-resolution robustness
A rigorous evaluation protocol assessing the model’s accuracy across UAV images

as well as high-resolution and low-resolution satellite images establishes its consistency
irrespective of input image resolution. The model achieves consistent performance across
inputs with widely varying resolution levels. This versatility to perform well with both
high-detail and coarse-resolution imagery underscores the robustness of the proposed ap-
proach. Benchmarking against multiple image types is innovative and provides convincing
evidence of the model’s generalizability, addressing a key gap in the existing literature on
deep neural networks for remote-sensing applications.

(3) Domain-centric optimization:
The model parameters are deliberately tuned based on the traits of buildings and

roads in urban regions through rigorous hyperparameter optimization. This specialized op-
timization enhances model performance. The model architecture and hyperparameters are
purposely optimized for extracting buildings and roads through a series of tweaks—filter
sizes, the number of feature maps, and training strategies. This specific domain enables
superior performance on the target application compared to general-purpose networks.
Very few studies have investigated optimized deep CNNs for this niche yet important
application of automating the mapping of key urban land cover categories. The proposed
innovations thus address an unmet need.

In summary, the integration of multiscale convolution to perceive both fine and coarse
features, paired with customization for classifying essential urban land cover categories,
enables the proposed MSFCNN model to deliver state-of-the-art results across diverse
image resolutions. This demonstrates its viability as an automated tool for updating urban
land use maps.

5. Conclusions

The complexity of images of urban areas makes it challenging to classify these images
into different classes by using traditional classification methods and limits the ability of
these methods to extract features from images of buildings and roads. In addition, these
methods often fail to achieve consistent and satisfactory classification results when they
are applied to images with various resolutions. To address these challenges, this paper
proposed a multiscale feature convolutional neural network (MSFCNN) for extracting
data on buildings and roads from images with three resolutions. MSFCNN, which has
multiple filters in its convolutional layers, effectively overcomes the challenge of feature
extraction by determining the optimal representations of images. The MSFCNN model
constructed in this study is tailored to the size and geometric shape of objects. Highly
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accurate outputs were achieved for the classification of objects in urban areas through the
thoughtful design of the CNN architecture, hyperparameter tuning, rigorous training, and
comprehensive testing.

This study leveraged the MSFCNN to achieve remarkable results in the extraction of
buildings and roads. MSFCNN demonstrated a high degree of accuracy in classifying two
primary land cover categories, regardless of image resolution. In the case of UAV images, it
achieved an impressive accuracy rate of 91.67%. Similarly, when applied to high-resolution
satellite images (HR) and low-resolution satellite images (LR), they achieved respective
accuracy rates of 92.5% and 93.33%, respectively.

Despite the significant successes of the MSFCNN model, it is crucial to acknowledge its
limitations. The effectiveness of MSFCNN can be further evaluated with additional datasets
and diverse urban environments to ensure its generalizability. Additionally, the model’s
performance may vary when confronted with specific challenges, such as varying weather
conditions, inconsistent lighting, or the presence of occlusions. For future research, it is
recommended to explore the adaptation of MSFCNN to address the challenges associated
with varying environmental conditions. The research will focus on developing image
processing and analysis systems with enhanced computational capabilities with respect to
spectral characteristics and texture analysis. Moreover, the inclusion of additional sensor
data, such as LiDAR or thermal imaging, could enhance the model’s performance and
further broaden its applications in urban land cover classification. Lastly, conducting
comparative studies with other state-of-the-art models may provide valuable insights into
the strengths and weaknesses of MSFCNN in different contexts.
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