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Abstract: With rapid urbanization, urban functional zones have become important for rational
government and resource allocation. Points of interest (POIs), as informative and open-access data,
have been widely used in studies of urban functions. However, most existing studies have failed to
address unevenly or sparsely distributed POIs. In addition, the spatial adjacency of analysis units
has been ignored. Therefore, we propose a new method for identifying urban functional zones based
on POI density and marginalized graph autoencoder (MGAE). First, kernel density analysis was
utilized to obtain the POI density and spread the effects of POIs to the surroundings, which enhanced
the data from unevenly or sparsely distributed POIs considering the barrier effects of main roads
and rivers. Second, MGAE performed feature extraction in view of the spatial adjacency to integrate
features from the POIs of the surrounding units. Finally, the k-means algorithm was used to cluster
units into zones, and semantic recognition was applied to identify the function category of each zone.
A case study of Changzhou indicates that this method achieved an overall accuracy of 90.33% with
a kappa coefficient of 0.88, which constitutes considerable improvement over that of conventional
methods and can improve the performance of urban function identification.

Keywords: urban functional zone; POI; kernel density analysis; graph autoencoder; k-means; Changzhou

1. Introduction

Urban areas are important spaces for humans to live in and produce [1]. With acceler-
ating urbanization, sites of social activities gradually converge to form functional zones
with distinct characteristics, such as residential, industrial, and commercial areas. Urban
functional zones reflect the complex spatial structures and social functions [2]. These zones
are important for understanding the spatial distributions of urban economic and social
activities [3]. Determining the changes in urban functional zones and land use [4] is not
only beneficial for urban decision making and policy formulation [5], but is also crucial
for the economy, society, and ecology of urban areas. Urban functional zones are widely
utilized in many studies of the spatial distribution of urban carbon emissions [6–9], the
quality of urban development [10–14], and the urban heat island effect [15–19], among
others. Thus, understanding the distribution of urban functional zones is essential for
optimizing urban spatial structures and future city planning [20].

Urban functional zones are commonly identified using multisource geographic data,
such as remote sensing data [21–27], points of interest (POIs) [28–30], vehicle trajectory
data [31–35], and mobile phone data [36–41]. Urban remote sensing data are mainly
used to extract features in terms of their natural attributes (e.g., spectral, shape, and
textural features) [42]. However, the formation of urban functions depends on the spatial
agglomeration of living and production activities. Information obtained from urban remote
sensing data alone cannot effectively reflect social information. In the last decade, the
emergence of geospatial big data has led to novel methods for urban function research.
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Cai et al. [41] used GPS trajectory and check-in data to construct a travel pattern graph,
to which the Node2vec method was applied to discern the features of urban areas for
identifying the functional zones. Zhou et al. [34] used taxi trajectory data and proposed an
hour-day-spectrum (HDS) approach to generate distribution waveforms of taxi pick-up
and drop-off points to identify different social functions. Song et al. [39] used aggregated
mobile phone data containing work and residence attributes to automatically identify
urban functional zones based on a self-organizing map neural network model.

POIs, as a type of geospatial big data, describe the main locations and information
of urban human activity, record the detailed geographic location and functional labels
of urban places, and have advantages of easy access and processing. POIs are mainly
obtained via the external interfaces of commercial map providers, such as Baidu and Amap.
POIs are increasingly used to identify urban functions and monitor urban dynamics. In
particular, applying POIs for urban functional identification requires the extraction of the
social features of the analysis units. Two types of methods are commonly used:

1. Statistics-based methods: These methods count the number of POIs located within
each unit to calculate indicators. The units are often divided by road network data
or grids and are large in size in order to ensure that they contain sufficient POIs for
subsequent analysis. The indicators include the frequency density, category factor, and
term frequency-inverse document frequency (TF-IDF) to quantify the socioeconomic
characteristics. Chen et al. [30] calculated the POI density of each urban functional
zone using the POI quadrat density method to identify single functional, mixed
functional, and no-data areas within urban areas. Xie et al. [1] used the category factors
of POIs as feature vectors and fused remote sensing and trajectory data to identify
urban functional zones. Chen et al. [27] calculated the TF-IDF index and frequency
density of POIs within units to quantify the social features of urban functional zones.
However, POIs are unevenly distributed in urban areas, whereas some emerging
urban districts contain sparse or no POIs. Therefore, statistical methods are insufficient
for obtaining regional social attributes and judging zone types.

2. Spatial-context-based methods: These methods combine the spatial contextual re-
lationships of POIs and use machine learning methods to mine potential semantic
features for functional identification. Commonly used models include Word2Vec [43]
and Doc2Vec. Zhang et al. [44] proposed the GeoSemantic2vec algorithm for extract-
ing urban functional zones from POI semantic and location information. Sun et al. [45]
proposed the Block2vec model that uses the skip-gram framework to map the spatial
correlations between POIs as well as mapping the study units into high-dimensional
vectors to identify urban functions. Zhai et al. [28] combined POIs and a simplified
Place2vec model to construct a POI-based spatial contextual relationship to detect
urban functional zones at a neighborhood scale. However, in addition to the spatial
adjacency between POIs, such a relationship also exists between the study units within
urban areas, which is neglected in the feature extraction process.

Thus, existing methods using POIs to identify urban functional zones have two short-
comings. First, they fail to address unevenly or sparsely distributed POIs, rendering
it impossible to make reasonable inferences about emerging urban areas in the urban
functional identification process. Previous studies have often identified these zones as un-
defined zones, which cannot be used to guide urban spatial structure optimization. Second,
previous functional identification studies have ignored the spatial adjacency between the
analysis units. As the units are not isolated from each other, there are correlations between
neighboring units (e.g., commercial and residential units are often adjacent, whereas indus-
trial and residential units are well separated) [46]. Ignoring these spatial adjacency results
in deficiency in the spatial context.

To address these problems, we developed an urban functional identification model
based on POI density and marginalized graph autoencoder (MGAE). The study had dual
objectives: (1) to mitigate the problem of unevenly or sparsely distributed POIs, the model
obtains the POIs density using kernel density analysis that considers barriers (e.g., main
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roads and rivers) and spreads the effects of POIs to the surrounding areas, and (2) to
integrate the spatial context of POIs and units to generate the representation vectors, the
model introduces MGAE, a machine learning model that can apply graph autoencoder
to learn feature representation, for feature learning. The spatial adjacencies of unit and
POI features were integrated using MGAE to improve the accuracy of urban function
identification. Our study is finally able to identify the type of urban functions in the study
area. It can better characterize the distribution of urban areas and provide references for
urban planning.

2. Study Area and Dataset
2.1. Study Area

The downtown region of Changzhou was selected as the study area (Figure 1), which
is surrounded by three expressways (i.e., Jiangyi, Huwu, and Hulong). Changzhou is
located in southern Jiangsu Province in eastern China, and is a hub city in the Yangtze
River Delta region. The city has a high level of urban development, an urbanization rate
of over 70%, and diverse urban functions; thus, it is highly suitable for urban function
identification. The study area covers 391.78 km2 and has a population of over 10 million.
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Figure 1. (a) Location of the Jiangsu Province and Changzhou City in China. (b) Location of the
study area in Changzhou City. (c) The study area.

2.2. Data Sources and Preprocessing

The data used in this study include POIs and land use data for Changzhou. The
interface provided by Baidu maps (https://lbsyun.baidu.com/, accessed on 17 May 2022)
was utilized to obtain the POIs in 2021. The land use data were obtained from the Natural
Resources and Planning Bureau of Changzhou.

https://lbsyun.baidu.com/
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2.2.1. POIs

A total of 6,137,875 POIs in Changzhou were acquired using the application program-
ming interface (API), and coordinate transformation was performed. Each POI contained
attributes including name, latitude, longitude, and label. However, the raw POIs included
duplicated pickups and some types exhibited low relevance to urban function. Therefore, a
partial dataset was extracted to obtain 185,018 POIs, which were reclassified into 14 cate-
gories (Table 1), including finance, car service, culture and media, food, governmental and
public organizations, hotel, public facility, residence, science and education, shopping mall,
sports and recreation, tourism attraction, and transportation facility. The fields of each POI
included the name, latitude, longitude, and reclassified label.

Table 1. POI reclassification standards and numbers.

Reclassified Label Description Number Proportion

Finance ATMs; banks; pawn shops; credit unions 1871 1.01%

Car service Car detailing; car sales; car accessories; car inspection
centers 5092 2.75%

Corporate and factory Plants and mines, parks; agriculture, forestry, and
horticulture; office buildings, companies 25,058 13.54%

Culture and media Exhibition galleries; cultural palaces; radio and television 590 0.32%

Food Chinese restaurants; snack fast food restaurants; cake and
dessert shops; foreign restaurants; bars 22,313 12.06%

Governmental and public
organizations Government agencies 5032 2.72%

Hotel Star hotels; express hotels; hostels; guesthouses 1549 0.84%
Public facility Medical; living services 21,692 11.72%

Residence Interior buildings; dormitories; residential areas 40,906 22.11%

Science and education Training institutions; primary schools; kindergartens;
secondary schools; universities 4875 2.63%

Shopping mall Department stores; shopping centers; home appliances;
digital; stores; shopping areas 41,452 22.40%

Sports and recreation Sports fitness; entertainment 5026 2.72%
Tourism attraction Tourist attractions; water systems; natural features 1465 0.79%

Transportation facility Entrances/exits; subway stations; bus stops; bus lines;
subway lines; transportation facilities 8097 4.38%

2.2.2. Land Use Data

In our study, land use data were used to divide the study area, which constituted
vector data produced by the Natural Resource Administration of the Chinese government
that is updated annually and comprises patches. Land use data were produced based
on remote sensing image interpretations and field verification. These data can reflect the
use of land at the time of investigation. The land use data had six categories, including
farmland, woodland, grassland, water, residential land, and unused land. The patches in
land use data were selected as the analysis units, and were assigned a function, such as
“commercial”, following the evaluation of each patch. After removing roads and water,
36,710 units were used in the experiment.

3. Methodology

In this study, urban function was regarded as a comprehensive result impacted by
POIs within the surrounding area, as well as the local structural information of the study
area. Therefore, a method based on POI density and MGAE was proposed to identify urban
functional zones. The general procedure of this method is illustrated in Figure 2. POIs
were first preprocessed, including data de-duplication and reclassification, after which
the effects of the POIs were spread to the surrounding area via kernel density analysis.
Spatial adjacency between units was converted into a graph to represent local spatial
structural features. The MGAE was used to integrate the spatial structure and content of
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units. Specifically, it could combine content between central and neighboring units in the
graph and generate representation vectors.
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Finally, the representation vectors were clustered using the k-means algorithm to di-
vide the entire area into zones with relatively homogeneous urban functions, and semantic
recognition was performed to determine the urban functional zone categories. Kernel
density analysis, feature extraction, and clustering were performed using Python 3.0 as the
programming language.

3.1. Kernel Density of POIs Considering Barrier Effects

Owing to the application of electronic map and location-based services (LBS), the num-
ber of POIs in urban areas has increased substantially; however, uneven POI distribution
still exists. To address these problems, the kernel density analysis method was applied to fit
the spatial distributions of POIs and spread their effects from a point to their surrounding
areas. Then, the densities of different types of POIs were used to generate the features of
each unit for subsequent identification [47].

Because the main roads and rivers within a city will hinder the flow of people and
economic activity on both sides, the spread of POIs should stop when encountering a road
or river. In this study, expressways, primary roads, railroads, and rivers were set as barriers
in the kernel density calculations. The roads and water of the study area were based on
data from Map World in the National Platform of Common Geospatial Information Services
(https://www.tianditu.gov.cn/, accessed on 13 April 2023). When a barrier was present
between POIs and the grid to be calculated, these POIs were considered as belonging
to other grids and were not incorporated in the accumulated kernel density calculation
(Figure 3). The kernel function used in this study was the quartic kernel; the kernel density
of grid P(x, y) in space was calculated as follows:

P(x, y) =
1

nπR2

n

∑
i=1

3
π

(
1−
(

Di(x, y)
R

)2
)2

(1)

where R is the bandwidth, n is the total number of POIs within the bandwidth range R and
that have no barriers between the points and grid, and Di(x, y) is the distance between the

https://www.tianditu.gov.cn/
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grid center P(x, y) and the i-th POI within the bandwidth range R and without barriers
between the point and grid (Di(x, y) < R).
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The choice of the bandwidth plays an important role in the results [48,49]. An ex-
cessively large bandwidth will produce results that are more biased toward showing
global-scale spatial variations, while local details are lost. In contrast, a very small band-
width is more suitable for expressing local spatial variations, but misses the overall spatial
variations. After considering road and water barriers and spatial effects in the study area,
the final bandwidth used in this study was taken as 100 m.

3.2. Extracting Features Using MGAE

Each unit is not isolated in an urban area, but is interconnected with and influenced
by the surrounding units. Therefore, the urban function depends not only on the social
attributes of a single unit, but also on the influences of the surrounding units. In this study,
the units and their adjacent areas were converted into graphs to reflect the spatial structural
features, and the MGAE was applied to perform unsupervised feature extraction of the
local structure and generate the representation vectors [50].

A graph construction procedure is illustrated in Figure 4. The graph consists of
nodes and edges; binary adjacency matrix A is often used to describe graph structure.
The graph is generally defined as G = (V, E, A). The node set V = {ν0,ν1, . . . ,νn−1}
represents patches in the land use data, and each node νi contains a d-dimensional feature
vector {x1, x2, . . . ,xd} that represents the density values of various types of POIs in patches.
E = {e0, e1, . . . ,em−1} is the edge set. Each ei denotes an edge connecting two nodes. If a
common edge exists between two patches, the two corresponding nodes are connected by
one edge.

The MGAE model is a graph-based learning method with the advantage of not requir-
ing labeled data for training. The MGAE model has the advantage of good performance
and a fast training speed. It can also use the convolutional operation on the graph to extract
structural features (Figure 4). The MGAE model replaces f(X) in the autoencoder loss func-

tion (Equation (2)) with the convolution formula D̃
− 1

2 ÃD̃
− 1

2 X̃W in the graph convolutional
network, and adds a regularization term to construct the loss function as follows:

L =

∥∥∥∥X− D̃
− 1

2 ÃD̃
− 1

2 X̃W
∥∥∥∥2
+λ‖W‖2

F (2)
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Ã = A + I (3)

where A denotes the adjacency matrix of the graph data, D̃ denotes the degree matrix of Ã,
W ∈ Rd×d is the parameter matrix, ‖W‖2

F is the regularization term, λ is a trade-off, X is
the original vector matrix, and X̃ is the vector matrix after random corruption.
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3.3. Urban Function Clustering

Based on the vectors representation generated by the MGAE, further cluster analysis
was conducted to divide the entire area into zones with relatively homogeneous urban
functions. Cluster analysis is an unsupervised classification process that groups similar
patches into the same cluster, that is, patches of similar urban function are identified in one
cluster. In urban function studies, various clustering algorithms have been widely used,
including the k-means algorithm and the OPTICS clustering algorithm. In this study, the
k-means algorithm was used for cluster analysis.

The clustering results were evaluated using external and internal test methods. The
external test method was used to compare the clustering results with the correct classifica-
tion results of the dataset to determine the merits of the clustering method. The internal
test method relied only on the dataset to evaluate the accuracy of the clustering results. As
no correct labels existed for the dataset, the internal test method was used as the criterion
for setting the training parameters of the model. We used two clustering internal test
methods to select the optimal value of cluster number M: the sum of the squared error
(SSE), as calculated using Equation (4), and the silhouette coefficient (SIL), as calculated
using Equation (5) [51]:

SSE =
m

∑
i=1

∑
xi∈Ωi

|xi − xi|2 (4)

where m is the number of functional zones, Ωi denotes all units classified into the i-th
functional zone, xi denotes the representation vector of the unit, and xi denotes the mean
value of all units in the i-th functional zone.

SIL =
1
n

n

∑
j=1

a− b
max(a, b)

(5)

where n is the number of units, a denotes the average distance of the j-th unit from the units
of interzones, and b denotes the average distance of the j-th unit from the other units in
intrazones.
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3.4. Urban Functional Semantic Recognition

Although the geometry of the urban functional zones was extracted after clustering,
the functional types of the zones remained unclear. Therefore, the semantic identification
of each zone type was needed to determine the urban function of each zone. Thus, two
common metrics for partitioning were used: frequency density (FD) and category factor
(CF) [52,53]. The metrics were calculated using the following equations:

FDki =
Vki

∑j∈Ωi
Sj

(6)

where Vki denotes the number of the k-th POI type in the i-th functional zone, Ωi denotes
the set of all units assigned to the i-th functional zone, and Sj denotes the area of the j-th
unit. A higher FDki indicates that the k-th type of POI is more densely distributed in the
i-th functional zone.

CFki = (Vki/Vi)/(Vk/V) (7)

Vk =
M

∑
i=0

Vki (8)

Vi =
T

∑
k=0

Vki (9)

V =
T

∑
k=0

M

∑
i=0

Vki (10)

where, Vi denotes the total number of the various POIs in the i-th functional zone, and
Vk and V denote the numbers of the k-th type of POI and the total value of the POIs,
respectively. CFki denotes the level of aggregation of the k-th POI type in the i-th functional
zone and CFki compares the value of the k-th type of POIs in the i-th functional zone with
the average value of all zones. A larger CFki indicates that the k-th type of POIs is more
concentrated in the i-th functional zone. In particular, if the CFki value is greater than 1, it
suggests that the average of the k-th POI type in the i-th functional zone is greater than the
average of all k-th POI type in all zones. This means that the level of aggregation of the
k-th POI type in the i-th functional zone is relatively high in all zones.

4. Results and Analysis
4.1. Determination of Model Parameter

To test the clustering performance and determine the optimal number of clusters (M),
we varied the number of clusters from 3 to 19 and repeated the analysis 10 times with each
set of parameters to ensure the accuracy of the results. Figure 5 shows that the SSE and SIL
gradually decreased as the number of clusters increased. The slope of the SSE curve varied
widely when K ranged from 5 to 7, indicating that the optimal number of clusters should
be within that range based on the elbow rule. When M = 5, the SIL curve reached a local
maximum. Therefore, we selected M = 5 as the number of clusters for the experiment and
subsequent analysis.
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4.2. Accuracy Evaluation and Performance Comparison

A confusion matrix was used to evaluate the accuracy of the urban functional zone
identification. Sixty patches in each of the five types of urban functional zones were selected
randomly. Then, high-resolution remote sensing images and Map World data were utilized
to artificially judge the urban functions. The evaluation results are listed in Table 2. The
overall accuracy (OA) of the urban functional zone obtained using the method proposed
herein reached 90.33%, and the kappa coefficient was 0.88.

Table 2. Confusion matrix results of urban functional zones.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Total

Cluster 1 58 1 0 1 0 60
Cluster 2 0 53 0 1 6 60
Cluster 3 0 2 58 0 0 60
Cluster 4 0 6 0 51 3 60
Cluster 5 8 1 0 0 51 60

Total 66 63 58 53 60 300

To evaluate the urban function recognition performance, the proposed model was
compared with commonly used models, including the Latent Dirichlet Allocation (LDA),
TF-IDF, and marginalized Stacked Denoising Autoencoder (mSDA) [54]. mSDA is an
unsupervised learning method for attribute data mining that uses linear denoisers as the
basis for learning feature representation, simplifying the parameter estimation method,
and reducing the training time. In total, 300 manually identified units were selected for
each comparison (Table 3). Because TF-IDF considers only the distribution frequency of the
POIs and ignores their semantic information, this method often has poor identification per-
formance. Although LDA and mSDA extract semantic information of POIs, they ignore the
spatial relationships between units in feature extraction; thus, they have lower accuracies
than the proposed method. These experiments show that incorporating spatial relation-
ships into attribute feature extraction can mine the features of districts more effectively,
which in turn allows better performance in extracting urban functional zones.
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Table 3. Overall accuracies and kappa coefficients of the functional area classification models.

Index Model OA Kappa

1 LDA 62.68% 0.52
2 TF-IDF 57.35% 0.54
3 mSDA 34.58% 0.26
4 Proposed model 90.33% 0.88

4.3. Urban Functional Zone Results

In Changzhou, five functional zones were identified using the proposed method
(Figure 6 and Table 4). The regional clustering results are as follows:
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Figure 6. Urban functional identification results with k-means clustering.

Industrial zone (Cluster 1). This zone was mainly located at the edges of the study area
and covered a large area. The overall FD value was low (Table 4), with a maximum value
of only 42.986, and the distribution of POIs was sparse compared with those in other zones.
The FD and CF values of the companies and industries were high. Thus, Cluster 1 is an
industrial zone with large numbers of companies and industries and sparsely distributed
infrastructure, and has the main production functions of the urban area.

Residential zone (Cluster 2). Cluster 2 had a high FD value (Table 4) of residences,
residential buildings were densely distributed in the zone, and commercial and the number
of community service POIs were also relatively high. Based on the CF value, all POIs in
this zone were more relatively distributed. Therefore, Cluster 2 is a residential zone with
densely distributed residential neighborhoods and rich functions.

Central business zone (Cluster 3). Cluster 3 was mainly distributed in the center of
the study area, where commercial buildings such as South Street and Wanda Plaza are
located. The POI frequency densities of businesses and life services were high in this zone
(Table 4). Therefore, Cluster 3 is a central business zone with a high density of facilities and
densely distributed business facilities, which take on the main commercial functions of the
urban area.

Entertainment zone (Cluster 4). In this zone, the proportions of the hotel, finance, and
entertainment POIs were higher than those in other districts. Some residential and living
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facilities were distributed in this zone, including People’s Park and Xintiandi Plaza. There-
fore, this zone is an entertainment zone that undertakes urban leisure and entertainment
functions.

Public services zone (Cluster 5). The tourism attraction and governmental organiza-
tions POIs within this zone were densely distributed and differed considerably from those
in other zones (Table 4). Government buildings such as Changzhou Olympic Sports Center,
train stations in Changzhou, and Changzhou library are located in this zone, as well as
many restaurants, convenience stores, hotels, and other service establishments. Therefore,
Cluster 5 is a public service zone that undertakes urban public service functions and meets
the daily needs of people in the city.

Table 4. Overall POI frequency densities and category factor.

Frequency Density

C1 C2 C3 C4 C5

Science and education 1.953 40.677 439.445 79.841 19.102
Corporate and factory 42.986 125.100 639.795 306.240 92.937

Food 5.615 206.407 2101.777 410.648 70.115
Hotel 0.249 14.094 120.966 35.756 4.673

Finance 0.219 18.934 118.130 53.171 3.252
Tourism attraction 1.554 7.767 38.747 10.348 8.696

Public facility 7.822 187.733 2076.261 374.303 74.047
Governmental and

public organizations 2.880 43.085 60.483 66.548 24.395

Sports and recreation 1.330 50.711 357.227 96.667 14.791
Car service 3.328 30.691 27.406 111.475 25.363

Shopping mall 13.945 359.059 4127.951 776.116 132.032
Transportation facility 2.362 47.689 238.151 105.754 21.385

Residence 17.253 399.193 639.795 538.780 200.408
Culture and media 0.199 4.840 31.186 10.937 2.586

Category Factor

C1 C2 C3 C4 C5

Science and education 0.715 0.986 1.485 0.998 1.025
Corporate and factory 3.092 0.596 0.425 0.752 0.980

Food 0.456 1.109 1.575 1.139 0.834
Hotel 0.290 1.085 1.298 1.420 0.796

Finance 0.212 1.210 1.052 1.753 0.460
Tourism attraction 1.976 0.654 0.455 0.449 1.620

Public facility 0.651 1.035 1.596 1.065 0.904
Governmental and

public organizations 1.037 1.027 0.201 0.819 1.288

Sports and recreation 0.474 1.197 1.176 1.177 0.773
Car service 1.168 0.713 0.089 1.336 1.305

Shopping mall 0.607 1.034 1.657 1.153 0.842
Transportation

facilities 0.765 1.022 0.712 1.170 1.015

Residence 0.744 1.139 0.254 0.793 1.266
Culture and media 0.604 0.971 0.872 1.132 1.148

The urban function identification results of some typical zones were compared with
online maps and high-resolution remote sensing images for verification (Table 5). The
results indicate that the proposed method can effectively identify urban functions in central
Changzhou City with high recognition accuracy.
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Table 5. Comparisons of the identification results with remote sensing images and Map World.

Identification District Identification Results Map World Remote Sensing Images

South Street
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5. Discussion
5.1. Effect of Barriers on the Spread of POIs

To investigate the effect of traffic on the spread of POIs and on urban functional
zones, we conducted a comparative experiment without considering the traffic barrier
phenomenon. The results with and without road and river barriers are shown in Figure 7.
Without roads as barriers, the influence of some public service POIs near Changzhou
Railway Station increased the values of the surrounding transportation facilities and facto-
ries, thereby causing the community to be incorrectly identified as a public service zone
(Figure 8a). Figure 8b shows the Lanling home community. Without rivers as barriers, the
interaction between the factory POIs on the northern side of the river and the residential
POIs on the southern side caused the industries on the northern side to be incorrectly iden-
tified as residential zones, whereas the community on the southern side was identified as a
public service zone. Figure 8c shows the Pengxin community. The Love Square area located
in the northwest contained a large number of POIs related to entertainment and commerce.
Without roads as barriers, the excessive commercial POIs reduced the role of residential
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POIs in the community, leading to incorrect identification. These examples indicate that
the addition of barriers to kernel density analysis can effectively control the overspread of
POIs and prevent the POIs of different zones from interacting with each other.
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5.2. Stability of the Proposed Method against POI Dilution

To examine the stability of the proposed method, various types of POI points were
removed from the total dataset using a random selection method at 20%, 30%, 50%, 60%,
80%, and 90% in equal proportions. The experimental result labels of the deleted data were
statistically analyzed to determine their OA and kappa coefficients with the experimental
result labels of the source data and the manual judgment of the true labels (Table 6 and
Figure 9).

Table 6. Overall accuracy (OA) and kappa coefficient analysis after data dilution.

Percentage
Dilution

OA
(True Label)

Kappa
(True Label)

OA
(Experiment Label)

Kappa
(Experiment Label)

20% 79.33% 0.74 93.13% 0.79
30% 78.33% 0.73 92.62% 0.77
50% 72.00% 0.68 91.73% 0.75
60% 71.67% 0.65 91.23% 0.73
80% 69.00% 0.61 89.65% 0.69
90% 53.33% 0.41 80.26% 0.40
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The results indicate that when the data dilution was less than 60%, the urban functional
partitioning results did not differ considerably from the experimental results based on the
original undiluted POIs, the label matching remained at 90%, and the overall accuracy
with the manually identified labels remained above 70%. This indicates that the proposed
method is stable when considering POI dilution and does not require a large number of
POIs. However, when the amount of POI data fell below a certain threshold, the model
could not obtain sufficient information from the POIs to correctly identify urban functions.
In this scenario, it would be necessary to supplement the data sources to identify urban
functional areas more comprehensively and accurately.

6. Conclusions

In this study, a new method for the identification of urban functional zones based on
POI density and MGAE was proposed. The proposed method was applied in a case study
of Changzhou City and the results were compared with those obtained using the LDA,
TF-IDF, and mSDA methods for validation. The main conclusions are as follows:

1. Kernel density analysis is effective for enhancing sparsely and unevenly distributed
POIs to identify urban functional zones by obtaining the value of POI density and
spreading the influences of POIs from points of origin to their surroundings. Thus,
patches that do not contain POIs can also acquire the social features of the surrounding
POIs, thereby solving the problem of uneven POI distribution. Moreover, kernel
density analysis with barriers performed better in terms of representing the social
features of the study area.

2. Combining the spatial adjacency of the analysis units and social features can improve
the performance of urban functional zone identification. This method addresses the
problem of ignoring the functional correlations between units and more comprehen-
sively explores the potential social information of POIs within units. The experiments
demonstrate that our model performed better than the LDA, TF-IDF, and mSDA
models, and the recognition accuracy was approximately 20% better.

In future work, we will integrate multiple source data of cities into the model. For
example, social data such as vehicle trajectory data and mobile phone data reflect human
activities to some extent, which have effects on urban functional zone. Moreover, optimizing
the methods for quantifying the spillover effect of different social data on urban functional
zoning or other applications remains to be explored. In addition, different applications
of the results of urban functional zoning should be evaluated. A clear understanding the
different types of urban functional zones, the structural patterns among these, and the
evolution and current status of urban function will serve to provide guidance for urban
governance and planning.
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