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Abstract: Animal movements are realizations of complex spatiotemporal processes. Central to
these processes are the varied environmental contexts in which animals move, which fundamentally
impact the movement trajectories of individuals at fine spatial and temporal scales. An emerging
perspective in time geography is the direct examination of the influence that varying contexts may
have on observed movements. An approach that considers environmental context can yield actionable
information for wildlife management, planning, and conservation; for instance, identifying areas of
probable occupancy by an animal may improve the efficiency of fieldwork. This research develops
the first known practical application of a new cost-distance-based, probabilistic voxel space–time
prism (CDBPSTP) in efforts to more realistically characterize the unobserved habitat occupancies of
animals occurring between known positions provided by location-aware technologies. The CDBPSTP
method is applied to trajectory data collected for a group of red deer (Cervus elaphus) tracked near
Banff National Park, Alberta, Canada. As a demonstration of the added value from examining how
context influences movement, CDBPSTP habitat occupancy results are compared to the earlier PSTP
method in context with empirical and theoretical understandings of red deer habitat preference and
space-use behaviors. This comparison reveals that with CDBPSTP, variation present in the mover’s
environment is explicitly considered as an influence on the mover’s probable path and occupancies
between observations of its location. With the increasing availability of high-resolution geolocational
and associated environmental data, this study highlights the potential for CDBPSTP to be leveraged
as a broadly applicable tool in animal movement analysis.

Keywords: animal movement; habitat utilization; cost distance

1. Introduction

The degree of realism by which we may characterize animal space use is foundation-
ally important to the work of conservationists, biologists, and spatial ecologists interested
in understanding patterns and causality in animal movement [1–3]. Early work delineated
the space of an animal’s daily activity in a deterministic manner based on known animal
locations [4–6]. Since then, the general practice of estimating animal habitat utilization
distributions from geolocation data has developed significantly [7–9]. Growth in the liter-
ature includes developments in quantifying the time an animal spends in certain areas
and how often it returns, and the introduction of three-dimensional movement in kernel
utilization distribution analysis [7,8]. With the relatively recent onset of widely available,
performant location-aware technologies, the availability and volume of tracking datasets,
that is, ordered sets of instantaneous geolocations also termed trajectories, have objectively
exploded [10–16].

This increased availability of movement trajectory data has spurred a wave of new
methodologies aimed at extracting meaning for a range of scientific disciplines including
spatial ecology and those adjacent. A great deal of these methods are rooted in the early ideas
of Time Geography, a theoretical framework first introduced by Hägerstrand (1970) [17].
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From the time-geographic perspective, known parameters about the movement of an
actor (position, timing, and velocity) can be used to constrain the possible unobserved
set of locations the actor may have occupied between known geolocations [18,19]. As a
constraints-based perspective on movement, the theoretical tools of time geography include
instantaneous geolocations labeled with a timestamp, called space–time anchors; straight-line
distances between anchors, called the space–time path; and the bounding set of locations
accessible to the moving actor or object, called the space–time prism [19–21]. Fundamental
to the time geography framework, these objects are shown in Figure 1, with space–time
anchors labeled ti and tj. The classical space–time prism is constructed by evaluating a
binary accessibility condition (identifying locations as either accessible or not accessible to
the mover) for all locations in the space and time elapsed between ti and tj, as a function of
the mover’s maximum estimated velocity and the distance each evaluated location deviates
from the space–time path.
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The space–time prism itself has undergone continuing, active development in the lit-
erature, with improvements and derivative methods focused on elevating the classical
space–time prism from a simple, binary bounding volume for movement possibility to-
ward probabilistic realizations [9,21,23,24]. Further developments include the interactivity
among prism volumes [25], prisms that account for uncertainty in anchor locations [26,27],
and consideration of kinematics in acceleration and deceleration on the mover [28,29].
Advances in space–time prism construction also introduce the notion of a four-dimensional
space–time prism [30] and examine the influence of static spatial context on prism vol-
umes [31,32]. Further still, prism research extends into the examination of the influence that
dynamic or temporally modulated factors in the spatial context have on movement [1] and
the bounding of prism volumes based on the simulated action of behaviorally informed
agent-based models [3]. Advancements in these methods have been demonstrated in appli-
cation to issues of conservation and wildlife management, enabling better spatiotemporal
understandings of animal home range [12], long-distance animal movements [33], and
population-level examination of animal habitat use [2]. In particular, research on animal
interactions includes animal movement considering the interaction between environmental
context and local choice [34], animal-to-animal interactions [25], and animal-to-roadway
interactions [1,20,35]. Clearly, incorporating spatiotemporal dynamics into the study of
animal movement has proven productive.

Following this pattern of increasing the degree of realism in modeling space–time
prisms, the present research seeks to achieve three main goals. First, the authors introduce
the method and provide the first known practical application of a new cost-distance-based,
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probabilistic voxel space–time prism (CDBPSTP). An extension to the probabilistic voxel-
based space–time prism (PSTP) [23], CDBPSTP aims for a more realistic characterization
of the unobserved habitat occupancies of animals occurring between known locations
provided by location-aware technologies. Second, the authors demonstrate the results from
CDBPSTP against equivalent results generated by PSTP. Third, the authors discuss the
probable impacts and known limitations the method may have following its release as a
data analysis tool in forthcoming literature. The results of CDBPSTP are used to explain
the method’s advantages and distinctions from similar approaches including PSTP and
the field-based method presented in Long (2018) [31]. The present research addresses
these objectives by analyzing trajectory data collected for red deer (Cervus elaphus) [36]
and modeling the resistance presented to red deer movers in context as a cost surface.
The cost surface is derived from a classical habitat selection measure [37,38] and a priori
knowledge of red deer habitat preferences. This cost surface is evaluated from variables
capturing environmental factors such as terrain and landcover type, along with known
animal geolocations as a measure of observed habitat use.

2. Background
2.1. Voxels and Space–Time Prisms

The canonical space–time prism is a well-tested conceptual foundation for a range
of studies interested in analyzing movement uncertainty between space–time anchors.
In its original formulation, the space–time prism returns only a binary bounding of this
uncertainty in terms of space and time [2,19]. For early formulations of the space–time
prism, locations between space–time anchors are evaluated to establish whether they
were accessible or inaccessible to the mover during the time and space elapsed between
the observed space–time anchor locations. Determining the accessibility of each anchor
location can be constructed as a piecewise function; the inputs are the mover’s expected
maximum velocity, the Euclidean distance from the space–time path to the evaluated
location, and time-budgeting parameters derived from the analyzed space–time anchor
pair’s spatiotemporal locations (Equation (1)). While formulations for evaluating the
space–time prism in continuous space and time exist [21], in practice a discretization of
time and space is necessary for simplification and for meeting practical computational
concerns [2,23]. One widely employed, atomic-level discretization for this purpose is
the voxel, a regularly shaped volume of space (X/Y-axes) and time (Z-axis) for which
calculations are evaluated from the perspective of its 3D centroid, and then generalized
for the entire volume [22,23,39]. Often, voxel data are modeled in GIScience as regular
multidimensional arrays, otherwise known as tensors, stored in a raster data structure or
equivalent [22].

STPxa =

{
1,
0,

if ‖xa − xi‖ ≤ (ta − ti)sij ∧
∥∥xj − xa

∥∥ ≤ (
tj − ta

)
sij

otherwise
(1)

where ‖xx − xx‖ is the Euclidean distance from current voxel centroid location xa to either space–
time anchor location xi or xj, ta is the voxel Z-axis midpoint associated with xa, and (ta − ti)sij,(
ta − tj

)
sij give the maximum distances the object could have successfully traversed between the

anchors, given the time elapsed and remaining between xi and xj, respectively, considering the
object’s expected maximum speed, sij.

While early space–time prisms have served in a range of applied studies, the pre-
vailing understanding holds that interior volumes of space–time prisms are not homoge-
neous, as movement opportunity is not equally distributed over space and time for the
mover [1,11,21,23]. As an early improvement on the binary bounding action of the classical
space–time prism, Downs et al. (2014) [23] introduced the voxel-based probabilistic space–
time prism, where a mover’s chance of having occupied any given voxel location over the
time and space elapsed between space–time anchors is assigned as a function of that voxel’s
deviation from the space–time path (Equation (2)). This relationship of distance–decay
in the probability that a mover will deviate from the shortest path between anchors is
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reminiscent of theoretical findings on the principle of least effort, applicable in both animal
and human mover contexts [40]. Applying the PSTP method, the action of Equation (1)
first isolates the set of accessible voxels. Next, Equation (2) assigns occupancy probabilities
for voxels, leveraging an inverse-distance weighting function for all voxels present in a
particular space–time disk, which is the set of accessible voxels sharing a common z-axis
midpoint location, or representing the same unit of duration. Voxel duration (alternatively,
voxel Z-axis height) is a user-specified parameter in PSTP; the resulting prism volume will
include the number of space–time disks necessary to cover the time elapsed between the
space–time anchors analyzed. The sum of probabilities in any given PSTP space–time disk
will equal 1.0.

P(STPxa) =

1
‖xs−xa‖

∑xa∈k
1

‖xs−xa‖
(2)

where ‖xx − xx‖ is the Euclidean distance between the current voxel centroid location xa and the
intersection location xs of its host space–time disk k, and the space–time path.

Probabilities may be aggregated among disks from a given voxel space–time prism or
among disks representing equivalent durations in time between two or more space–time
prisms. Prior studies have applied the probabilistic OR operation, in this context referred
to as the Comprehensive Probability Surface (CPS) method, dealing with events assumed to be
realized from independent spatial processes [23,35]. When aggregating, CPS demands that
input space–time disks have the same temporal resolution. For inputs differing in temporal
resolution, aggregation to the lowest common multiple among the inputs is necessary.
Equation (3) provides the CPS operation on two space–time disks, A and B.

P(A) ∪ P(B) = P(A) + P(B)− P(A)P(B) (3)

2.2. A Cost-Distance-Based, Probabilistic Voxel Space–Time Prism

Prior work has yielded probabilistic realizations of prism interior volumes following
the theoretical principle of least effort [3,40]. A least effort path may reflect the mover’s behav-
ioral or biological preferences, but actual movement is not likely to be linear and does not
traverse a perfectly homogeneous surface in terms of movement resistance or conductivity
posed by the environment [3,31]. As an exploration in extending the ideas of PSTP toward
more realistic constructions of the interior volume of space–time prisms, we introduce the
concept of a Cost-Distance-Based, Probabilistic Voxel Space–time Prism (CDBPSTP), along with
the ideas of cost distance in the traversal of the environment and a requisite extension to the
Time Geography theory, notably a least-cost space–time path.

First, a least-cost space–time path is determined by optimizing for the path of least
cumulative cost along a cost surface, which contains values representing the cost of travers-
ing or the willingness of the mover to traverse various environments [41]. For relevant
calculations in constructing PSTPs that involve deviation from the space–time path, con-
struction of the CDBPSTP performs these measures in terms of deviation from a least-cost
space–time path (Equation (4)). Further, the step bounding accessible voxels in a CDBPSTP
also relies on measures based on cost distances (Equation (5)). Together, these extensions
yield a prism volume informed in both shape and interior structure by the dynamics of
cost distance.

A Cost Surface in this context is a type of map capturing a realistic measure of the resis-
tance or conductance the environment poses to movement for a particular type or species
of mover. Cost surfaces may be derived by a range of applicable methods; essentially, the
cost surface must capture and represent the relative difficulty or assistance any number of
environmental characteristics may pose to the mover of interest. For the present research,
we employ the first-known application of habitat selection methodology in space–time
prism construction by using habitat selection analysis to inform the multivariate cost sur-
face for the red deer (Cervus elaphus). This approach is detailed in the methods.
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CDBPSTPxa =

{
1,
0,

if 〈xa − xi〉 ≤ (ta − ti)sij ∧
〈

xj − xa
〉
≤

(
tj − ta

)
sij

otherwise
(4)

where 〈xx − xx〉 is the cost distance from current voxel centroid location xa to either space–time an-
chor location xi or xj, ta is the voxel Z-axis midpoint associated with xa, and (ta − ti)sij,

(
ta − tj

)
sij

give the maximum distances the object could have successfully traversed between the anchors, given
the time elapsed and remaining between xi and xj, respectively, considering the object’s expected
maximum speed, sij.

P(CDBPSTPxa) =

1
〈xs−xa〉

∑xa∈k
1

〈xs−xa〉
(5)

where 〈xx − xx〉 is the cost distance of traversal between the current voxel centroid location xa and
the intersection location xs of its host space–time disk k, and the least cost space–time path.

2.3. The Ya Ha Tinda Red Deer Herd

Red deer (Cervus elaphus) are foraging ungulates exhibiting residential and migratory
populations in the wild [42]. The red deer (alternatively known by the common name
“elk”) population examined for the present study has been researched extensively in the lit-
erature [42–44]. While red deer have been studied in multiple montane ecosystems [45–49],
this research focuses on the herd located in and around Banff National Park (BNP), Alberta,
Canada, found along the eastern faces of the front and main ranges of the Canadian Rocky
Mountains [42,43]. The Ya Ha Tinda (YHT) herd can be found in the YHT Ranch area
located east of BNP, where the residential portion of the herd remains year-round [42,43].
Migration timings for migratory deer were calculated from 1977 to 1980 and from 2002 to
2004 by calculating the midpoint date between two consecutive location points that were
each located in a different migratory range [43]. During the spring migration (May or June),
migratory individuals move west from the YHT Ranch into BNP and spend the summer
season there, before moving back to the YHT grasslands during the autumn migration
(late September to November), where they remain through the winter [43]. Compared to
the earlier years of the study, roughly 25% of the proportion of the herd that historically
migrated in the 1970s continued to do so in 2002 and 2003 [43]. The number of individu-
als remaining on the YHT range through the summer increased over 10 times from 1977
to 2002–2004, an unexpectedly large increase even when factoring in the simultaneous
population growth [43].

3. Methods
3.1. Red Deer Trajectories and Study Area Context

Collar-based tracking data for red deer used in this research were acquired and later
released in the public domain by Hebblewhite, Merrill, and McDermid (2008) [42]. This
large set of trajectory data generated by their work was obtained through Movebank.org,
an online platform cataloging animal tracking data [36]. Hebblewhite et al. (2008) collected
these trajectories using GPS and VHF telemetry from 2002 to 2004 in support of research
examining the relationship between foraging preferences, environmental factors, and
migratory behaviors among red deer in the Canadian Rocky Mountains. The study involved
119 deer, all of whom were female, with 59% of the study group being migratory [42].
The deer were located from the ground or via telemetry aircraft and corresponding GPS
data averaged 144 locations per elk (VHF averaged 2.6 locations per elk) every 16-day
interval [42].

Defining the bounds of the study area for this research confines interest to areas where
the collection interval for data is most consistent, resulting in filtering data to winter-
only movement patterns centered on the extent of the YHT Ranch (Figure 2). Study area
delineation represents an important methodological step in the approach employed for
this research, as the extent of the environmental context underlying selected trajectories
establishes the distribution of environmental habitat types available to studied deer.
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For cost surface construction, simultaneous analysis of both migratory and residential
segments of the tracked population would unfairly represent the distribution of environ-
mental conditions and habitat. Migratory deer typically spend a large amount of time (up
to approximately 7 months) within the winter range and shorter time intervals (approx-
imately 2 to 6 days) traversing longer distances during migration periods, and they will
have access to different habitat types than residential deer. Even for the migratory deer,
habitat types traversed during migration would not be accessible from the winter range.
Therefore, the present research has filtered the available trajectories for only those that
occur primarily at YHT Ranch. Six deer were shown to be logged relatively consistently
for this winter-only period from November to May from 2002 to 2004 with an extent of
traversal largely intersecting the YHT Ranch boundary. The deer in this subset represent
members of the migratory population performing their routine winter visitation of the
YHT Ranch area [42]. Here, limitations related to the degree to which the deer’s usage
and availability of environmental characteristics are represented are relaxed by selecting
migratory deer found in a common environmental context (the YHT Ranch area) and
timeframe (the winter season, during which movements are observed to be more localized
compared to longer-distance migratory movement). Descriptive statistics for the six deer
trajectories selected and associated winter timeframes are shown in Table 1.

Table 1. Summary of movement trajectory data for six deer. Two date ranges are necessary due to the
split in winter months from the beginning to the end of the year.

Deer
ID

Number of
Points

Average Time
Interval (s)

Average
Distance

(m)

Average
Velocity

(m/s)

Date Range 1
(mm/dd/yyyy)

Number of
Days, Date

Range 1
Date Range 2 (mm/dd/yyyy)

Number of
Days, Date

Range 2

GR193 358 18,422.51 872.32 0.05 04/05/2002–05/22/2002 47 11/01/2002–11/23/2002 22

YL25 3635 5594.51 250.57 0.05 03/03/2003–05/31/2003 89 11/01/2003–03/26/2004 146

YL29 2522 5522.59 263.90 0.06 03/03/2003–05/29/2003 87 11/01/2003–01/14/2004 74

YL5 1595 7249.62 307.28 0.06 02/14/2003–05/29/2003 104 11/09/2003–12/11/2003 32

YL73 2310 2816.08 220.85 0.08 02/20/2004–05/03/2004 73 10/23/2004–11/02/2004 10

YL78 1024 7354.75 465.68 0.06 02/19/2004–05/16/2004 87 N/A N/A

Practical study area delineation follows from the selection of trajectories with the
application of the Characteristic Hull Polygon (CHP) approach [50] to the complete set
of selected geolocations. The CHP represents a deterministic home range delineation
method shown to reduce or avoid areal overestimation issues inherent to the often em-
ployed minimum convex polygon (MCP) [51] and kernel-density-based methods. Once
the CHP boundary was obtained for the trajectories of interest, a buffer having a width
of 3178.046473 m was added to accommodate unobserved deer movements beyond the
tracked points. First, we identified the mean time elapsed between any two consecutive
points across the study dataset. Then, the buffer was set to the longest distance recorded
between two consecutive points, where the time elapsed between those points did not
exceed the mean time elapsed for the study dataset. Selecting the longest distance between
two points based on the mean time elapsed reduces variation caused by varying timespans
between location fixes. The buffered CHP boundary represents the final footprint enclosing
the available environmental context used for this study (Figure 2).

3.2. Cost Surface Development Process

Having obtained a boundary that is thought to be reasonably inclusive of unobserved
movements, we proceed to evaluate the relative abundances of particular types or factors
of the environmental context that underlie deer locations as a proxy for animals’ habitat
selections. While environmental context may refer to numerous factors such as predators,
competitors, or disease, this study focuses on landcover, elevation, slope, and roadways
as representations of the environment in the study area. The ultimate result of this exam-
ination is a cost surface reflecting a single variable that represents the degree to which
environmental factors are selected or avoided by the YHT population of deer.
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Figure 2. Study area with input geolocation data and inputs to the cost surface, with data sources
cited in the caption: (A) Bounds of the study area are shown by a blue outline polygon with red deer
geolocations in the study dataset represented by points, accompanied by an inset map of western
Canada with the study region marked with a red box [36]; (B) The cost surface developed for the
study area; (C) Slope in degrees within the study area [52]; (D) Elevation in feet within the study
area [52]; (E) Landcover within the study area [53]; and (F) Roads within the study area overlaid on
landcover at semi-transparency [54].

Raster datasets depicting landcover type [53,55] and elevation and slope [52] for the
study area were collected and clipped to the study area extent as indicators for environmen-
tal characteristics (Figure 2, contains information licensed under the Open Government
Licence–Canada). The datasets for elevation and slope were classified into eight equal
interval ranges. A relatively simple measure of habitat preference in terms of use versus
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availability, Manly’s selection ratio was applied to obtain a measure of habitat selection or
avoidance, given the GPS relocations among the six deer selected as an indication of used
habitat types and the proportions of environmental characteristics available within the
study area [38] at a p value of 0.05. Operationalized as the function wi in the adehabitatHS
R package [37,38], the wi function for Type I design analysis is capable of assessing both
habitat availability and usage for a population [56].

Manly’s selection ratio returns higher values for positively selected habitats and lower
values for avoided habitat types. Due to this convention, results cannot be directly used
to construct a cost raster, which represents increasing cost with increasing magnitude.
To translate the resulting Manly selectivity measures to a more conventional resistance
surface, rasters for slope, landcover, and elevation were reclassified to their constituent
values’ respective Manly selectivity measures, rounded to the nearest integer. In situations
where the Manly selectivity measure was near one, corresponding to either very weak
selectivity or very weak avoidance, values defaulted to 1.0 to avoid divide-by-zero errors
in later analysis. Following the methodology presented in Shafer et al. (2012) [57], all three
Manly selectivity measure rasters were transformed into binary rasters depicting habitat
selection (a value of 0) or avoidance (a value of 1). One additional binary variable capturing
the effect of a 250 m buffer around roadways occurring in the study area was prepared
separately from a dataset depicting roads [54], with areas inside the 250 m buffer set as
areas of avoidance, consistent with observed red deer preferences in regard to roads [47,58].
Finally, all binary use/avoidance rasters were added together plus a value of 1 to prevent
values of 0 from influencing later cost distance calculations to yield a single cost surface
(Figure 2).

3.3. Applying CDBPSTP and PSTP to Red Deer Trajectories

The CDBPSTP approach as described in this research has been operationalized in an
extension to the PySTPrism toolbox, which is unreleased at the time of this writing [22].
This CDBPSTP implementation was used to generate prism results for the present study.
PySTPrism provides a set of voxel-based space–time approaches as an ArcGIS Pro toolbox,
compatible with the ArcGIS Pro desktop application from Esri Inc. For each voxel-based
prism function found in the toolbox, the interface for the function expects users to supply:
(1) an input trajectory dataset as point vector data, (2) the desired X/Y spatial resolution
for voxels in the map units of the input data’s coordinate system, (3) the desired Z-axis
resolution for voxels in seconds, (4) an optional “Expand Edges” multiple that intentionally
expands the processing extent ensuring no results are “cut off” from visualization, and (5) a
value for the velocity multiplier parameter. Generating CDBPSTP also requires a cost surface
as an input. The velocity multiplier is a value used to scale the observed velocity of the mover
between two consecutive space–time anchors; this parameter is meant to account for the
assumed straight-line movements captured in trajectories. Since straight-line, top-speed
movements are rare for terrestrial animals’ routine traversal in a varied environmental
context, the velocity multiplier offers a means to adjust the reachable distances expressed
as terms in Equations (4) and (5), such that prism results do not simply converge to the
least-cost space–time path, resulting in a prism having zero volume [1,2,22,23].

Selection of an appropriate velocity multiplier value is important, as prism bounds
and associated assignment of probabilities are all sensitive to the movement capabilities
of the object under study. To realistically estimate a velocity multiplier relating to the
actual top speed of red deer tracked for this study, the observed maximum velocity of the
trajectory was divided by all observed straight-line velocities for each of the six selected
deer trajectories, respectively, producing velocity multipliers specific to sequential pairs
of space–time anchors. For each deer, the average of all anchor-pair velocity multipliers
yielded a single velocity multiplier tailored toward the individual capabilities of each deer
trajectory supplied for CDBPSTP analysis.

The six deer trajectories selected for this analysis contain 11,444 geolocations or fixes in
total, reflecting an exhaustive traversal of the YHT ranch area. For the demonstrative goals
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of this research, representative space–time anchor pairs were extracted from this set, where
each selected pair captured a particular movement scenario through the varied context
of the study area. To make these selections, 18 anchor pairs representing three distance
categories, long (approximately 1100–2000 m), medium (300–800 m), and short (less than
200 m) were isolated (Table 2). The selected anchor pairs were assigned a label associating
them with high (predominantly values of 4 and 5), medium (predominantly values of 2, 3,
and 4), or low resistance (predominantly values of 1 and 2). Resistance here refers to the
values of cells in the cost surface that lie between the two anchors.

Table 2. Selected space–time anchor pairs illustrating various traversal scenarios in the study area.

Distance Resistance Code Deer ID Point
Location ID

Distance
(m)

Elapsed
Time (s)

Velocity
(m/s)

Resistance
Values

Long High LH_GR193 GR193 694, 695 1864.417 14,400 0.129 1, 2, 3, 4, 5

Long High LH_YL78 YL78 5, 6 1620.254 7260 0.223 2, 3, 4, 5

Long Medium LM_YL25 YL25 5711, 5712 1955.098 14,400 0.136 1, 2, 3, 4

Long Medium LM_YL29 YL29 303, 304 1327.663 7200 0.184 1, 2, 3, 4

Long Low LL_YL29 YL29 308, 309 1186.757 7260 0.163 1, 2

Long Low LL_YL5 YL5 518, 519 1395.244 7200 0.194 1, 2

Medium High MH_YL78 YL78 6, 7 589.972 7260 0.081 2, 3, 4, 5

Medium High MH_YL5 YL5 1, 2 426.724 7260 0.059 1, 2, 3, 4, 5

Medium Medium MM_YL25 YL25 4984, 4985 362.960 900 0.403 3, 4

Medium Medium MM_YL78 YL78 231, 232 417.577 7200 0.058 1, 2, 3, 4

Medium Low ML_YL29 YL29 812, 813 416.514 7200 0.058 1, 2

Medium Low ML_YL5 YL5 513, 514 757.322 7200 0.105 1, 2

Short High SH_YL73 YL73 9597, 9598 79.025 3660 0.022 3, 4, 5

Short High SH_YL5 YL5 307, 308 170.104 7200 0.024 3, 4, 5

Short Medium SM_YL73 YL73 22, 23 140.307 3540 0.040 2, 3

Short Medium SM_YL78 YL78 675, 676 178.104 7200 0.025 2, 3

Short Low SL_YL73 YL73 377, 378 179.105 900 0.199 1, 2

Short Low SL_YL29 YL29 888, 889 141.297 7200 0.020 1, 2

Once isolated, each of the 18 anchor pairs and the cost surface were supplied as an
input to the CDBPSTP function, with parameters including an output cell size of 30 m,
an Expand Edges factor of 1.0, and the velocity multiplier corresponding to the pertinent
Deer ID in Table 2. The Expand Edges factor was adjusted as needed. Once CDBPSTP
space–time disks were generated, the CPS technique was applied to the disks of each anchor
pair to generate occupancy probability surfaces for each pair. To facilitate discussion of
the occupancy surface results, zonal descriptive statistics were generated from occupancy
surfaces, summarizing the incidence and total probability of occupancy over landcover
types. This operation demonstrates an overall view of CDBPSTP’s suggestion of red deer
habitat occupancy given the inputs.

To provide a comparison between CDBPSTP and PSTP, this study also generated
PSTP occupancy probability surfaces for each anchor pair using the same parameters
used to generate CDBPSTPs (sans the input of a cost surface). CPS was applied to these
PSTP results in an identical manner. The occupancy probability surfaces for the anchor
pairs not detailed directly are provided in the Supplementary Materials for this article.
For in-depth detail, one anchor pair was chosen to demonstrate the mechanic difference
between PSTP and CDBPSTP, and an additional anchor pair was chosen to demonstrate
the practical knowledge that can be derived through CDBPSTP, using landcover as an
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example. First, the anchor pair labeled Code MH_YL5 represents a medium distance and
overall high resistance values and shows the quantitative difference in how CDBPSTP
navigates a path across the cost surface, compared to PSTP, which does not consider the
cost surface at all. Second, the anchor pair labeled Code ML_29 in Table 2, representing a
medium distance and overall lower resistance values, quantifies CDBPSTP’s advantage of
revealing information about the environmental factors likely to be chosen by the deer in its
movement. The methodology is summarized in Figure 3.
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4. Results

Results pertinent to the expressed targets of this study include the results of Manly’s
selection ratio, which represents the analysis product on which the cost surface is based,
along with mapping and summary statistics for occupancies returned by CDBPSTP and
PSTP prism approaches.
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4.1. Results of the wi Function

Pseudo-significance for this measure is expressed in terms of a p-value, interpretable
as the magnitude of the chance that returned Manly selectivity values are the result of
random chance in habitat selections. For this research, selectivity measures were considered
significant if p-values were shown below 0.05, translating roughly to a 95% confidence the
results are significant. Manly selectivity measures close to zero indicate avoidance beyond
what would be expected at random, given the availability of habitat types and animal
selection, while values greater than one demonstrate preference with increasing intensity.

For landcover types occupied, particular results of interest include needleleaf forests
and grasslands. Needleleaf forests were highly available in the study area but were weakly
selected by deer. Conversely, grasslands were much less abundant but were found to be
much more strongly selected by individuals. Considered from the perspective of available
animal relocations, roughly 75% of the deer’s locations occurred on grassland, which
made up just under 20% of the available study area’s landcover distribution. The Manly
selectivity measure represents this interaction as an easily interpreted single-value statistic,
found to be significant (by randomization). Urban and built-up and shrubland were also
found to show strong selection. Manly selectivity results for landcover classes are shown
in Table 3.

Table 3. Results of the wi function for red deer usage of various landcover classes.

Landcover Class Proportion Used Proportion Available Manly Selectivity Measure p-Value

Urban and built-up 0.011 0.002 4.423 <0.05

Grassland 0.746 0.195 3.836 <0.05

Shrubland 0.155 0.054 2.882 <0.05

Broadleaf forest 0.002 0.002 0.838 0.363

Mixed forest 0.003 0.005 0.586 <0.05

Water 0.004 0.011 0.390 <0.05

Wetland 0.004 0.010 0.379 <0.05

Needleleaf forest 0.075 0.597 0.125 <0.05

Lichen/moss 0.000 0.000 0.000 <0.05

Barren land 0.000 0.124 0.000 <0.05

In Table 3, we note an outlying although significant propensity for deer to utilize
urban and built-up areas. While it may seem counterintuitive for a soft barrier to result
in stronger selection, this is consistent with known red deer behaviors where roadways
present a “soft barrier” to traversal [1,35,45,49,59]. Although roads are a soft barrier, the
red deer in the study area do traverse the road that runs through the central portion of
the YHT Ranch (Figure 2). The behavioral mechanisms underlying this selection may be
complex, but considered at a basic level, deer hesitancy to cross a road until traffic has
cleared could increase time spent in the vicinity of the road. That additional time could
amount to one factor increasing their use of urban and built-up areas. Another possible
factor is that the concentration of urban and built-up areas aligns with the road, which
runs primarily through grassland. The deer’s strong selection for grassland may cause an
increase in time spent in and around the road due to the close vicinity, as the deer moves
throughout the preferred grassland.

Manly selectivity measures applied to slopes indicate a general avoidance of areas with
slopes exceeding seven degrees in the study area, for the individuals observed (Table 4). It is
unknown whether this result is influenced by any particular characteristics common to the
tracked individuals or their context; for example, all deer were female, and all geolocations
were captured during the winter migration period. Still, this result is consistent with
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notions of the principle of least effort, where less strenuous routes across the landscape would
be preferred [40].

Table 4. Results of the wi function for red deer usage of various classifications of slope.

Bin # Slope (Degrees) Proportion Used Proportion Available Manly Selectivity Measure p-Value

Bin 1 −1 to 7 0.803 0.355 2.261 <0.05

Bin 2 7 to 15 0.134 0.295 0.453 <0.05

Bin 3 15 to 23 0.061 0.161 0.376 <0.05

Bin 4 23 to 31 0.003 0.118 0.025 <0.05

Bin 5 31 to 39 0.000 0.050 0.000 <0.05

Bin 6 39 to 47 0.000 0.013 0.000 <0.05

Bin 7 47 to 55 0.000 0.006 0.000 <0.05

Bin 8 55 to 63 0.000 0.002 0.000 <0.05

Manly selectivity measures for occupied versus available elevation were also calcu-
lated. Table 5 summarizes the corresponding Manly selectivity measures for this variable.
For elevation, usages are most pronounced between roughly 1500 and 1600 m. This result
may be consistent with the occurrence of particular forage or grasses eaten by red deer, espe-
cially since higher elevations are related to shorter growing seasons of forage biomass [42].
Higher elevations may be more likely to be associated with other environmental factors
such as snow, which requires more energy to navigate for ungulates [60]. In fact, the
movement patterns of migratory red deer showed that they moved in lower altitudes as
snow cover increased and were more impacted by snow than non-migratory red deer [61].
The selection for relatively lower elevations may also be coincident with the elevation of
YHT Ranch and surrounding areas as this location represents high-value habitat overall in
the study area. Additionally, the pattern in occupied elevations is generally collinear with
the pattern in occupied slope classes. This dynamic could be seen as an illustration of the
landscape present in the Banff National Park area itself, an alpine landscape with high local
relief in elevation. The complexity inherent to red deer movement behavior along varied
terrain and the configuration of their environment may be reflected in this result.

Table 5. Results of the wi function for red deer usage of various classifications of elevation.

Bin # Elevation (meters) Proportion Used Proportion Available Manly Selectivity Measure p-Value

Bin 1 1516 to 1676 0.885 0.256 3.454 <0.05

Bin 2 1676 to 1836 0.112 0.302 0.370 <0.05

Bin 3 1836 to 1996 0.003 0.184 0.018 <0.05

Bin 4 1996 to 2156 0.000 0.148 0.000 <0.05

Bin 5 2156 to 2316 0.000 0.071 0.000 <0.05

Bin 6 2316 to 2476 0.000 0.027 0.000 <0.05

Bin 7 2476 to 2636 0.000 0.011 0.000 <0.05

Bin 8 2636 to 2796 0.000 0.002 0.000 <0.05

4.2. Results of the CDBPSTP Approach

To demonstrate a comparison in methodology between CDBPSTP and PSTP, represen-
tative results for anchor pair MH_YL5 and anchor pair ML_YL29 (see Table 2) were chosen
for a detailed presentation. CDBPSTP and PSTP results for all anchor pairs in Table 2 are
provided in the Supplementary Materials. The space–time anchor pair MH_YL5 represents
movement for Deer YL5′s trajectory and was taken from the animal’s movement in the
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north-central portion of the study area (51.75291387◦ N, 115.58246225◦ W). Figure 4 shows
the PSTP occupancy probability surface in panel A, where higher occupancy probabilities
are located along a Euclidean space–time path between point 1 and point 2. Figure 4
shows the CDBPSTP occupancy probability surface in panel B, where higher occupancy
probabilities lie in a curved shape that places higher likelihoods in areas where the cost
surface has lower values. The underlying cost surface is also shown in panel C (Figure 4).
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Figure 4. (A) An occupancy probability surface for anchor pair MH_YL5 overlaid with transparency
on the cost surface, generated by the PSTP model, where darker colors signify higher probabilities
that the deer was located at that site as it traveled from point 1 to point 2; (B) an occupancy probability
surface for anchor pair MH_YL5 overlaid with transparency on the cost surface, generated by the
CDBPSTP model based on the cost surface displayed; (C) the cost surface underlying anchor pair
MH_YL5; (D) a bar chart depicting zonal statistics where the sum of occupancy probabilities is
grouped by cost surface value for both PSTP and CDBPSTP.

The difference in the occupancy probability surfaces generated for anchor pair MH_YL5
is quantified in panel D (Figure 4) and in Table 6. Higher sums of occupancy probability
suggest higher chances the deer would have occupied the corresponding cost surface value
during its journey between space–time anchors. The sum of CDBPSTP occupancy probabili-
ties grouped by cost surface value shows higher probabilities over lower cost surface values,
with the highest summed probability (3.988) over cost surface value 2, followed by 4 (2.006),
3 (1.992), and 1 (1.975) in similar probabilities. In contrast, PSTP shows higher probabilities
over higher cost surface values, with the highest summed probability (3.760) over cost
surface value 3. While the second-highest summed occupancy probability for PSTP and
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CDBPSTP are both in cost surface value 4, PSTP (2.948) notes a probability nearly 50%
higher than CDBPSTP (2.006). Additionally, the sums of occupancy probabilities for lower
cost surface values (1 and 2) under the CDBPSTP method (1.975 and 3.988, respectively)
are nearly twice as high as the sums of occupancy probabilities derived through PSTP
(1.061 and 2.102, respectively). In other words, across the generated occupancy probability
surface, the results of CDBPSTP suggest that the deer had a higher likelihood of being
located in sites characterized by lower cost surface values, while PSTP results suggest that
the deer was more likely to be located in areas characterized by higher cost surface values.

Table 6. The sum of occupancy probabilities for the probability surfaces for anchor pair MH_YL5,
summed according to the underlying cost surface value.

Cost Surface Value Sum of Occupancy Probabilities, CDBPSTP Sum of Occupancy Probabilities, PSTP

1 1.975 1.061

2 3.988 2.102

3 1.992 3.760

4 2.006 2.948

5 0.030 0.109

The second presented space–time anchor pair is from Deer YL29’s trajectory and was
taken during the animal’s movement in the central-northeast portion of the study area
(51.7467323◦ N, 115.5366602◦ W). The traversal shown navigates across an area peripheral
to a stand of needleleaf forest, with adjacent shrubland and grassland areas available (panel
A, Figure 5). Corresponding resistance values for this environmental context are visualized
for the anchor pair in panel B (Figure 5).

Results of the CDBPSTP generated for this anchor pair in context show that according
to the animal’s path of traversal reconstructed by CDBPSTP, available shrubland and
grassland areas were preferred to passage through needleleaf forest (Figure 5). The animal’s
path as suggested by CDBPSTP in Figure 5 denotes an avoidance of areas consistent with
a priori knowledge about red deer habitat preferences, ranked using a Manly selectivity
approach encoded as cost surface values. A PSTP was also constructed for the anchor pair
taken from YL29’s trajectory (Figure 5). Observing the visual comparison between the
CDBPSTP and the PSTP (Figure 5) results, the influence of reasonably modeled context on
the path of a mover can be significant. The modeled path for CDBPSTP curves noticeably
to the north, with higher occupancy probabilities located over lower resistance values in
the cost surface.

The dynamic of the influence that the environmental context exerts can be quantified
in terms of the summarized occupancy probabilities from each of the CDBPSTP and PSTP
results (Table 7). For the CDBPSTP results, the highest probability is associated with
shrubland (6.688), followed by grassland (2.243), and needleleaf forest (1.050). In contrast,
the PSTP results suggest that needleleaf forest carries the highest probability of occupancy
(7.971), followed by shrubland (1.336), and lastly by grassland (0.661). In other words, the
probabilistic movements modeled by CDBPSTP suggest that the deer was likely to occupy
sites characterized by shrubland, while the results of PSTP suggest a higher likelihood that
the deer would occupy needleleaf forest. The two results are in sharp contrast, especially
when considering the red deer’s strong selectivity for shrubland and weak selectivity for
needleleaf forest (Table 3).
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Figure 5. (A) The landcover underlying anchor pair ML_YL29; (B) the cost surface underlying
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Table 7. The sum of occupancy probabilities for the probability surfaces for anchor pair ML_YL29,
summed according to the underlying landcover type.

Landcover Type Sum of Occupancy Probabilities, CDBPSTP Sum of Occupancy Probabilities, PSTP

Needleleaf forest 1.050 7.971

Shrubland 6.688 1.336

Grassland 2.243 0.661

Wetland 0.002 0.003

Water 0.005 0.009
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5. Discussion

The CDBPSTP approach demonstrated in this study offers an alternative construction
of the space–time prism, where the resistances presented by the mover’s environment are
explicitly considered as an influence on the probable path and occupancies the mover may
have shown between observations of its location. CDBPSTP advances time geographic
research on space–time prisms by providing a pathway toward a reasonable incorporation
of context in probabilistic space–time prism modeling. This contribution represents an
approach applicable toward a better understanding of animal movement and space use,
of interest to conservationists, biologists, and planners. CDBPSTP is methodologically
separated from its predecessor PSTP by its explicit incorporation of context as a behaviorally
informed cost surface.

5.1. Methodological Distinctions of CDBPSTP

The difference between CDBPSTP’s consideration of a cost surface and PSTP’s lack
of consideration thereof is shown in Figure 4, where the results of both methods for
anchor pair MH_YL5 returned very different occupancy probability surfaces. The PSTP
occupancy probability surface shows that a straight-line path from point 1 to point 2 results
in higher occupancy probabilities for locations of higher cost surface value (Figure 4). The
visualization of PSTP demonstrates its reliance on a Euclidean realization of the space–
time path, with assigned occupancy probabilities having magnitudes that are a function
of distance–decay from that space–time path. With no consideration of environmental
context, the Euclidean-based space–time path is treated as the best-available path when
reconstructing a mover’s path between two instantaneous location captures. In contrast,
CDBPSTP’s occupancy probability surface exhibits a visible deviation from a Euclidean
space–time path as it bends east, away from the cluster of cells on the cost surface that
have a resistance value of five. The location of the darker, higher probability areas on the
map and the higher sums of occupancy probability in zones of lower cost surface values
demonstrate how CDBPSTP incorporates the input environmental context.

Having shown the mechanical differences between PSTP and CDBPSTP, the practical
knowledge that can be derived through CDBPSTP is demonstrated in Figure 5, where both
methods were applied to anchor pair ML_YL29. The occupancy probabilities for PSTP
suggest that deer were more likely to occupy areas of needleleaf forest, while CDBPSTP’s
occupancy probabilities suggested a higher likelihood of the deer occupying shrubland
(Table 7). Considered in concert with the knowledge that red deer in the YHT Ranch area
appear to select for shrubland and grassland over needleleaf forest (Table 3), the value of
CDBPSTP as an alternative to PSTP is demonstrated. Visually, the shape of high probability
occupancy areas seen in Figure 5 is consistent with CDBPSTP’s methodological notion of a
least-cost space–time path, itself is an optimal path of traversal that minimizes travel cost as
a function of environmental context. This is an alternative mechanism to the straight-line,
Euclidean space–time paths considered in PSTP. Additionally, the distribution of occupancy
probabilities that diverge from the least-cost space–time path appears imprinted with the
underlying variation in the cost surface. That distribution is a visual indication of the
consideration of cost distance when CDBPSTP assigns occupancy probabilities. CDBPSTP
is thus shown to capture the influence of a varied environmental context on movement,
provided the characterization of this environmental context is rational and fair to the
characteristics and observed behaviors of the mover.

CDBPSTP is methodologically separated from similar time-geographic methodologies
for estimating animal movement in several ways. Brownian bridge movement models
(BBMM) are frequently used to develop animal movement trajectories, but movement
between known locations is based on conditional random walks without considering the
environmental context in the movement area [9,62]. While the subsequently developed
dynamic Brownian bridge movement model (dBBMM) allows for variation in Brownian
motion variance (a measure of the animal’s speed, mobility, and movement scale), environ-
mental habitat context is not an input to the model [9,63]. A context-sensitive correlated
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random walk approach was introduced in a study that does consider the environmental
context to generate trajectories, focusing on how local movement choices, pixel-by-pixel,
are affected by the environment [34]. CDBPSTP is distinct in the output of the method,
generating space–time disks that can be aggregated into a single occupancy probability
surface across the extent of the space–time prism rather than developing the probability of
visits to a site by generating multiple possible trajectory paths [34].

CDBPSTP is also distinct from the method employing heterogeneous spatial fields [31]
due to CDBPSTP’s focus on leveraging cost distance as a derivative of habitat selectivity,
and therefore observed animal behavior. Long’s (2018) study considered the environmental
context with time-geographic movement analysis of animal movement with the field-
based time geography method, which analyzes movement based on the agent’s possible
interaction with a cost or resistance surface representing conductance and time cost [31].
The field-based time geography method defines costs in units of time, not distance, and
assumes that the agent will move along the shortest-time path between anchor points [31].
In contrast, CDBPSTP’s cost distance relies on the mover’s observed locations to derive a
habitat-selection-based cost surface; this may also aid in accounting for habitat selection
by animals that change the speed of movement in response to different environments,
spending less time in areas of higher predation risk and more time in areas of lower
predation risk [64].

5.2. Impacts of Home Range Estimation on CDBPSTP

CDBPSTP results are heavily affected by home range delineation that directly impacts
the quantification of resistance that the mover may encounter in the cost surface. Manly’s
selection ratio uses the proportion of available habitat types and the proportion of used (or
occupied) habitat types to identify which (if any) habitat types are strongly selected [38,65].
For each contextual variable, Manly’s selection ratio compares the count of occupied
locations (used habitat types) versus the corresponding count of available locations. An
inaccurate estimation of home range would result in inaccurate estimates of available
habitat types and habitat selection, ultimately affecting the cost surface.

The first input to Manly’s selection ratio is the set of occupied locations, which consist
of the deer GPS location fixes. Under-representation of certain habitats would skew the
overall estimate of used habitat. Missing data points in GPS studies may lead to bias that
requires additional analysis to correct, particularly in scenarios where mountainous terrain
and forest canopy areas impede GPS collar data acquisition, although GPS collars were
shown to perform better over time [66].

The second input to Manly’s selection ratio is the set of available habitat types, de-
termined by the home range delineation. In this application, CHP was used instead of
MCP, which has been demonstrated to introduce biases resulting in inaccurate estimations
of the home range [50,63,67]. Additionally, MCP’s sensitivity to varying properties of the
data, such as data outliers, spatial resolution, and sample size, means that it cannot be
comparable among different studies [68,69]. Even though the buffered study area for this
research does include areas that would have been enclosed by an MCP, the buffer itself is
not building on potential overestimations that may have already existed in an MCP. By
starting with CHP, the buffer allows for the fact that elk are not necessarily confined to the
locations recorded. The buffer simply encloses environmental features that are considered
available to the studied individuals during the winter season, as the deer can reasonably be
expected to move beyond the recorded data points.

Kernel density estimation (KDE) has also been widely used to calculate home range
from spatial point data, and adaptations have improved selection for sensitive parameters
such as bandwidth, which is the radius of a circular area placed over each point to calculate
density defined by a kernel function [69–71]. KDE bandwidth selection significantly
influences the resulting home range, but selection methods are often not reported and the
method of setting a volume contour (which specifies the bounds of the home range) is
similarly impactful yet still requires development [63,69].
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The BBMM approach is also commonly used to estimate home range based on an
animal’s movement trajectory, rather than treating the geo-points of a trajectory as indepen-
dent locations [62,63]. BBMMs have been used in the literature to estimate the home range
for red deer, but this study chose to use the CHP method rather than using a trajectory-
based method to generate a home range estimate that would subsequently affect the results
of estimated movements under CDBPSTP [72]. Further research carrying out a full compar-
ison of how trajectory-based home ranges (like BBMM or dBBMM) versus polygon-based
home ranges (like CHP) affect CDBPSTP results would significantly contribute to the
understanding of home range estimation impacts on CDBPSTP construction.

5.3. Limitations

Limitations associated with the approach in its current demonstration center on sensi-
tivity to home range delineation as discussed, issues of scale and generalization, and future
validation. The present study conducted an involved analysis of the habitat selectivity of a
particular red deer population in a highly selected study area and used the results to inform
the cost surface. This cost surface is tightly coupled to both the study area and population.
Applying the resistance valuation scheme generated for this research to similar studies on
red deer in different locations could amount to Ecological Fallacy. Conducting a broader
selectivity analysis on a wider range of input data that represent a larger population region-
ally may enable a wider application of a generated cost surface. Creating a regional cost
surface would require an area of consistent environmental habitat and a study population
that exhibits consistent behaviors. The resistance valuation scheme of the resulting cost
surface for a larger region, such as a broader portion of BNP, could be applied to a wider
range of data within that region.

A practical aspect affecting applicability is the time needed to generate occupancy
probability surfaces. For each CDBPSTP generated for the geolocation anchor pairs in this
study (see Table 2), total processing time varied between 10 and 15 min, with the processing
time naturally increasing as the distance between anchor pairs and spatial resolution of
voxels is increased. Expanding the scale of application, for example, analyzing a large
population or long-range movements, requires additional computational time. Automating
the functions in the PySTPrism toolbox will reduce the amount of active processing time
and enable greater applicability to varied datasets.

With respect to validation, the present study has not sought to establish any measure of
internal stability in the results. Ensuring that the CDBPSTP approach behaves predictably
(considering relatively consistent inputs) is a step supporting its adoption for future studies.
Considering the computational time required, this study’s smaller dataset is suitable to
meet the scope of demonstrating this new method; further work can use a larger trajectory
dataset to implement validation techniques. There are at least two possible routes for
validation. First, a full comparison of CDBPSTP and PSTP can test data with varying
temporal intervals, environments, and distances between points to assess whether either
method is more suitable for certain types of data. Both methods can be applied to temporally
non-contiguous points, such as the first and the fifth points in a trajectory. The movement
probabilities in the resulting occupancy probability surfaces may be compared to the
trajectory’s intermediate points of known locations (in this example, the second through
fourth points). Comparing the results of both methods can determine which, if either,
better reconstructed the agent’s movements. Such a comparison would have practical
benefits because the PSTP method does not require the construction of a cost surface
and is, therefore, more straightforward and faster to implement. If PSTP is shown to
suitably reconstruct movement for certain types of trajectories, it may be particularly
useful for studies hindered by a lack of environmental data. A formal evaluation of the
CDBPSTP method’s performance can also help define the extent of CDBPSTP’s ability in
understanding animal movement, highlight key areas of the method that would benefit
from further development, and provide a foundation on which to build environment-
incorporating time-geographic approaches. Another validation approach in future research



ISPRS Int. J. Geo-Inf. 2023, 12, 339 19 of 22

could apply the cost surface and CDBPSTP methodology to data collected during other
timeframes for the same population and compare the results via some two-dimensional
measure in the separation of distributions, perhaps Bhattacharyya distance. In any case,
both these “prior” and “future” datasets should be collected under similar conditions.

Further advancement in determining the velocity multiplier parameter represents a
growth area not just for CDBPSTP research, but for probabilistic space–time prism applica-
tions in general. CDBPSTP is shown to be highly sensitive to the selection and application
of the velocity multiplier, as this value corresponds to an estimate of the mover’s top speed,
therefore setting the extent and interior structure of the resulting prism volume. For the
present study, an averaged maximum observed velocity to individual anchor-pair velocity
ratio was calculated for each individual animal. For a mover traversing a real-world context,
the actual top speed is both unknown at any given time and may be serially influenced
by both the last location traversed and the next location ahead of the mover. This trans-
lates to infinitely many possible realizations of top speed between any two space–time
anchors in context. Also, the behavioral dynamics governing whether the mover intended
to reach a top speed between anchors cannot be known. CDBPSTP, like other space–time
prism methods, always sets outer bounds based on a maximum velocity we assume the
mover can achieve. It is possible that future research could include video or secondary
observation of the mover contemporaneous with the collection of space–time anchors/GPS
fixes such that some of this dynamic might be described and incorporated into velocity
multiplier calculations.

The results of this study have shown that CDBPSTP explicitly considers variation
present in a moving agent’s environment and shows the influence that environmental
context may have on the probable movements between known locations. This work also
shows CDBPSTP is compatible with habitat selection analysis, and the methodology is
applicable to species other than red deer because it bases the estimated probability of
movement on the population’s specific observed preferences. As a result, different species’
habitat preferences can be represented and considered in the estimation of movements.
A multitude of practical benefits stems from the incorporation of environmental context.
A more realistic estimate of animal movements can help narrow down the possible areas
where animals are likely to be located, which can decrease the time and resources spent
on fieldwork in conservational or related efforts to locate specific animals. Understanding
how different species move through different topographies and landcover types can help
wildlife management by informing the consequences of changing natural features. For
example, if a species shows high occupancy probabilities in forested regions, deforestation
may carry a higher likelihood of concentrating the population’s movements in a smaller
area, which can affect subsequent habitat usage and movement behaviors. CDBPSTP’s
incorporation of environmental context is an important move toward a more informed
understanding of animal movements, beneficial both for conservation efforts now and for
future responses to changes in the environment.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/ijgi12080339/s1. All anchor pairs listed in Table 2 were evaluated through
both PSTP and CDBPSTP and were found to be consistent with the results reported for the two anchor
pairs detailed in the article. The Supplementary Materials contain occupancy probability surfaces for
all the other anchor pairs that were not included in the main article, showing both CDBPSTP and
PSTP results. Each anchor pair’s occupancy probability surfaces are shown side by side, with PSTP
results on the left and CDBPSTP results on the right. Direction of movement can be noted through
the point labels, where movement is from the lower number to the higher number. Additional details
on the deer from which the points were taken can be found in Table 2 by locating the deer ID (top
left corner of each panel) and the point labels. The Supplementary Materials also include tables
denoting the sum of occupancy probabilities for occupancy probability surfaces for each anchor
pair not shown in the main text, summed according to the underlying cost surface value. Figure S1:
Occupancy probability surfaces for anchor pairs considered to have a long-distance range between
points, overlaid with transparency on the cost surface. Panels on the left were generated by the PSTP

https://www.mdpi.com/article/10.3390/ijgi12080339/s1
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model, and panels on the right were generated by the CDBPSTP model. Each panel is labeled by
Deer ID and each point is labeled by Point Location ID. Darker colors signify higher probabilities
that the deer was located at that site as it traveled between points. Figure S2: Occupancy probability
surfaces for anchor pairs considered to have a medium-distance range between points, overlaid with
transparency on the cost surface. Panels on the left were generated by the PSTP model, and panels on
the right were generated by the CDBPSTP model. Each panel is labeled by Deer ID and each point is
labeled by Point Location ID. Darker colors signify higher probabilities that the deer was located at
that site as it traveled between points. Figure S3: Occupancy probability surfaces for anchor pairs
considered to have a short-distance range between points, overlaid with transparency on the cost
surface. Panels on the left were generated by the PSTP model, and panels on the right were generated
by the CDBPSTP model. Each panel is labeled by Deer ID and each point is labeled by Point Location
ID. Darker colors signify higher probabilities that the deer was located at that site as it traveled
between points. Table S1: The sum of occupancy probabilities for the occupancy probability surfaces
for anchor pairs considered to have a long-distance range between points, summed according to
the underlying cost surface value. Table S2: The sum of occupancy probabilities for the occupancy
probability surfaces for anchor pairs considered to have a medium-distance range between points,
summed according to the underlying cost surface value. Table S3: The sum of occupancy probabilities
for the occupancy probability surfaces for anchor pairs considered to have a short-distance range
between points, summed according to the underlying cost surface value.
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