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Abstract: Mapmatching of trajectory data has wide applications in path planning, traffic flow analy‑
sis, and intelligent driving. The process of mapmatching involves matching GPS trajectory points to
roads in a roadwaynetwork, thereby converting a trajectory sequence into a segment sequence. How‑
ever, GPS trajectories are frequently incorrectly matched during the map‑matching process, leading
to matching errors. Considering that few studies have focused on the causes of map‑matching er‑
rors, as well as the distribution of these errors, the study aims to investigate the spatiotemporal
characteristics and the contributing factors that cause map‑matching errors. The study employs the
Hidden Markov Model (HMM) algorithm to match the trajectories and identifies the four types of
map‑matching errors by examining the relationship between the matched trajectories and the driv‑
ing routes. The map‑matching errors consist of Off‑Road Error (ORE), Wrong‑match on Road Er‑
ror (WRE), Off‑Junction Error (OJE), and Wrong‑match in Junction Error (WJE). The kernel density
method andmultinomial logistic model are further exploited to analyze the spatiotemporal patterns
of themap‑matching errors. The results indicate that the occurrence ofmap‑matching errors substan‑
tially varies in time and space, with variation significantly influenced by intersection features and
road characteristics. The findings provide a better understanding of the contributing factors associ‑
ated with map‑matching errors and serve to improve the accuracy of map matching for commercial
vehicles.

Keywords: map matching; incorrect match trajectories; temporal and spatial distribution; multino‑
mial logistic model; kernel density model

1. Introduction
Vehicle trajectory data have been widely utilized in traffic flow detection, route selec‑

tion, and traffic violation enforcement, which are vital to transportation management in
urban areas [1,2]. The analysis of vehicle trajectories is important for transport industries,
such as taxi driving. Trajectory data can assist taxi companies in detecting their drivers’
behaviors and understanding their operation patterns, which can be further used to en‑
hance driving safety and transport efficiency [3–5]. For instance, it is possible to evaluate
the route planning of taxi drivers with trajectories and optimize their operational routines.
Meanwhile, the trajectories can be used to identify traffic incidents encountered by taxi
drivers and warn taxi managers if necessary [6,7]. For example, Kan et al. [8] analyzed
the conditions of urban traffic congestion using taxi GPS trajectory data and proposed a
method for congestion assessment. This approach could help transportation authorities to
formulate more effective policies and strategies. In addition to congestion detection, the
use of taxi trajectories can reveal the speed characteristics of roadway segments with dif‑
ferent control types (e.g., one‑way control and road closure) [9–11]. Hereby, the quality
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of GPS trajectories should be ensured to successfully implement the above‑stated applica‑
tions.

Although the vehicle trajectories are readily available, the abnormality can be com‑
monly found in most datasets. The trajectory points recorded by the GPS receivers may be
positioned away from the actual locations because of the impacts of road environments [12],
satellite positioning errors [13], instability of GPS signal transmission [14], and algorithm
differences [15]. These deviations lead to inaccurate detection of actual driving lanes and
directions and the disappearance of the trajectories from the roadways [16]. To address
these issues, studies typically adopt the map‑matching algorithm to correct the coordi‑
nates of the recorded GPS points and match them to the corresponding roads along the
driver’s routes.

Different methods and algorithms are used in map matching for the GPS trajectories,
which exhibit notable differences in terms of model structure, data inputs, and logical
rules [17]. Currently, traditional map‑matching algorithms encompass geometric map‑
matching, topologicalmap‑matching, probabilistic statisticalmap‑matching, and advanced
map‑matching algorithms [18,19]. Furthermore, various new technologies have recently
been introduced to the field of map matching, including low‑frequency trajectory data
match [20,21]; high‑frequency trajectory data match [22]; methods that consider memo‑
rizedmultiplematching candidates [21]; theAMMalgorithm for onlinemapmatching [23];
deep learning‑based models [24,25], including Recurrent Neural Networks (RNNs) [25] or
Convolutional Neural Networks (CNNs) [25]; the Python Toolbox (PyTrack) [26]; and the
Valhalla solution based on an open‑source routing engine [27]. These methods have been
successfully used to match the GPS points from various trajectories. However, they often
have specific requirements for the trajectory data (e.g., data volume, data frequency, and
error distribution) or the scenarios (e.g., online or offline matching). Some methods aim
to enhance the matching accuracy by incorporating additional data features or adjusting
algorithm parameters. Nonetheless, these approaches often suffer from high memory us‑
age and large time costs during themap‑matching process, making it challenging tomatch
large GPS data on complex road networks.

TheHMM‑basedmap‑matchingmethod effectively addressesmany of the drawbacks
associated with the aforementioned approaches [28]. Due to the simplicity andMarkovian
property of the HMM algorithm, it offers significant improvements in terms of computa‑
tional efficiency, storage efficiency, and broad applicability. It is particularly well‑suited to
handling errors on complex road networks from large‑scale datasets [27,28]. This superior‑
ity makes it a valuable tool in the practical applications of trajectory matching. However,
these map‑matching algorithms may yield incorrect matches because of their complicated
trajectories. For instance, past studies have found that curved driving [15], high‑speed
movement [29], and road network topology [30] can contribute to wrong matches. These
map‑matching errors could mislead the identification and prediction of vehicle status and
behaviors, consequently impairing the ability of systems to monitor the trajectories of run‑
ning vehicles. Hence, the map‑matching errors ought to be specifically identified and ad‑
dressed.

Currently, although some research has focused on the issue of map‑matching errors,
there is relatively limited research into the mechanism of map‑matching errors, as well as
analysis of the spatiotemporal distribution and road characteristics of these errors. For
example, Dey et al. [17] proposed a method to automatically identify and detect map‑
matching errors in the absence of ground truth. Chao et al. [31] found that the density
of roads and road segments with curves significantly impacted the quality of map match‑
ing. Furthermore, Luo et al. [32] found that intersections and large indoor areas often
resulted in significant indoor positioning errors. Different measurements have been de‑
veloped to detect and deal with these map‑matching errors. The application of detection
approaches is highly dependent on the availability of data sources and the purposes of
matching. The most common method is the rule‑based approach that detects a wrong
match by examining the relationship between trajectories and roadway networks. For ex‑
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ample, the method could detect errors that occur when trajectories are out of the roads
or a part of the trajectories vanishes from the roads (i.e., deviation) [33]. Another type
of method is developed through machine learning, among which supervised learning is
commonly used to detect wrong‑matching trajectories using training data, such as the use
of Support Vector Machines (SVM) [34] and Random Forests (RF) [35]. Comparatively,
the Fusion‑based method, which generally consists of several modules used to improve
judgment accuracy, has also been constructed to detect map‑matching errors [36]. Despite
the various approaches, the wrongly matched trajectories cannot be fully detected and
effectively corrected. One of the critical reasons for this issue is that the mechanism of
map‑matching errors is not thoroughly uncovered.

As such, investigating how map‑matching errors occur could improve the quality of
map matching when matching the trajectories to the locations at which errors are prone to
appear. To this end, the spatiotemporal analysis could be conducted to reveal the mech‑
anism of the map‑matching errors and explore their characteristics. For instance, Santi
et al. [37] conducted a spatial–temporal analysis to identify the patterns of taxi travel based
on New York City taxi trajectories. Livio et al. [38] combined traffic accidents and GPS tra‑
jectory data to identify accident black spots in space and time scales. Likewise, spatiotem‑
poral analysis could be used to identify the distribution ofmap‑matching errors and reveal
the location or scenarios that are associated with the occurrence of the errors.

In summary, this study attempts to enrich the knowledge of where, when, and why
various types of map‑matching error occur by means of spatial–temporal and factor analy‑
sis. The studymatches the trajectories based on the HMMalgorithm and accordingly iden‑
tifies different types of map‑matching errors, as well as investigating the spatial–temporal
distributions and contributing factors of the map‑matching errors. The main contribution
of the study is thatwe identify themap‑matching errors generated via theHMMalgorithm,
analyze the spatiotemporal distribution patterns of these errors, and explore the relation‑
ship between map‑matching errors and road environment factors. The conclusions could
assist the analysts in understanding the occurrence ofmap‑matching errorswhen applying
the HMM and improving the accuracy of the HMM algorithm.

The rest of the study is organized as follows. The next section describes the study
area, GPS trajectory data, and road features. Section 3 provides a detailed introduction of
the map‑matching method. Section 4 presents the study’s results and discussions. Finally,
Section 5 summarizes the study’s conclusions.

2. Data Description and Pre‑Processing
Taxi GPS trajectory datawere obtained fromChengduMunicipal TrafficManagement

Bureau in China. Taxi GPS trajectories were collected in the period 1–14 September 2020
inside the First Ring Road area (Figure 1). The taxi data include three parts: taxi GPS
trajectory data, a GIS map of the road network, and the dataset of road features. The taxi
GPS trajectories contain approximately 1.4 billion GPS data points in the collection period.
To control the GPS data size, 14 million trajectories generated by 500 randomly selected
taxis were matched by the HMM algorithm and provided map‑matching errors. There
were 11 variables in the raw trajectory data recorded using the vehicular GPS recorder,
including license plate number, plate color, alarm status, vehicle status, latitude, longitude,
direction, speed, satellite time, creation time, and creator (Table 1).

The road feature dataset was manually fetched from Baidu Street View, Version 2020.
In addition to road features, time and environmental factors were considered in the study.
Table 2 describes all of the key factors of the errors. In addition, features of the roads
that were immediately adjacent to the roads/intersections on which a map‑matching error
occurs in the driver’s routine were considered to be factors. The roads adjacent to the error
location were named as the previous road and the latter road, respectively (Figure 2).
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Table 1. Sample of the raw trajectories.

Field Name Data Type Description Example

plate_number string License plate number 川ADT9088

plate_color bigint Plate color indicates whether the taxi
is an electric vehicle 0

alarm bigint Alarm status indicates occasions on
which the vehicle loses connection 0

state bigint Vehicle status indicates whether the
vehicle is occupied by passengers 0

lat double Latitude 30.66301
lng double Longitude 104.0812
direction bigint Direction 214
speed double Instant speed 300
position
time bigint Satellite time 1600457268000

crton bigint Creation time 1600457271250
crt_by string Time creator 10012

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 5 of 22 
 

 

 

  

(a) (b) 

Figure 2. Road relationships: (a) when the current road section is segmented; (b) when the current 
road section is an intersection. 

Table 2. Definitions and values of independent variables. 

Type Variables Descriptions Mean Standard De-
viation 

Time 

Time-weekend If the error occurs at the weekend, define it as 
“1”; otherwise, define it as “0”. 

0.26 0.439 

Time-peak hours 
 If the error occurs in peak hours, define it as 

“1”; otherwise, define it as “0”. 0.28 0.448 

Time-night If the error occurs at night, define it as “1”; 
otherwise, define it as “0”. 

0.37 0.483 

Intersection 
type 

Int-flyover If the error occurs near the flyover, define it as 
“1”; otherwise, define it as “0”. 

0.00 0.046 

Int-crossroad 
If the error occurs near the crossroad, define it 

as “1”; otherwise, define it as “0”. 0.25 0.432 

Int-X-junction  
If the error occurs near the X-junction, define it 

as “1”; otherwise, define it as “0”. 0.02 0.141 

Int-T-junction If the error occurs near the T-junction, define it 
as “1”; otherwise, define it as “0”. 

0.37 0.482 

Whether it is a large intersec-
tion 

 If the error occurs near a large intersection, 
define it as “1”; otherwise, define it as “0”. 0.12 0.323 

Whether it is a medium-sized 
intersection 

If the error occurs near a medium-sized inter-
section, define it as “1”; otherwise, define it as 

“0”. 
0.20 0.397 

Whether it is a small intersec-
tion 

If the error occurs near a small intersection, 
define it as “1”; otherwise, define it as “0”. 

0.25 0.435 

Previous road’s 
characteristics 

PreRoad-speed limit  

If the previous road speed limit is <30 km/h, 
define it as “1”; If the previous road speed 

limit is 30–50 km/h, define it as “2”; if the pre-
vious road speed limit is >50 km/h, define as 

“3”. 

0.55 0.497 

PreRoad-bicycle divider 
If the error occurs on the previous road with 

the bicycle divider, define it as “1”; otherwise, 
define it as “0”. 

0.45 0.497 

PreRoad-median divider If the error occurs on the previous road with 0.09 0.287 

Figure 2. Road relationships: (a) when the current road section is segmented; (b) when the current
road section is an intersection.



ISPRS Int. J. Geo‑Inf. 2023, 12, 330 5 of 19

Table 2. Definitions and values of independent variables.

Type Variables Descriptions Mean Standard
Deviation

Time

Time‑weekend If the error occurs at the weekend, define it as “1”;
otherwise, define it as “0”. 0.26 0.439

Time‑peak hours If the error occurs in peak hours, define it as “1”;
otherwise, define it as “0”. 0.28 0.448

Time‑night If the error occurs at night, define it as “1”;
otherwise, define it as “0”. 0.37 0.483

Intersection type

Int‑flyover If the error occurs near the flyover, define it as “1”;
otherwise, define it as “0”. 0.00 0.046

Int‑crossroad If the error occurs near the crossroad, define it as “1”;
otherwise, define it as “0”. 0.25 0.432

Int‑X‑junction If the error occurs near the X‑junction, define it as
“1”; otherwise, define it as “0”. 0.02 0.141

Int‑T‑junction If the error occurs near the T‑junction, define it as
“1”; otherwise, define it as “0”. 0.37 0.482

Whether it is a large
intersection

If the error occurs near a large intersection, define it
as “1”; otherwise, define it as “0”. 0.12 0.323

Whether it is a
medium‑sized
intersection

If the error occurs near a medium‑sized intersection,
define it as “1”; otherwise, define it as “0”. 0.20 0.397

Whether it is a small
intersection

If the error occurs near a small intersection, define it
as “1”; otherwise, define it as “0”. 0.25 0.435

Previous road’s
characteristics

PreRoad‑speed limit

If the previous road speed limit is <30 km/h, define it
as “1”; If the previous road speed limit is 30–50
km/h, define it as “2”; if the previous road speed

limit is >50 km/h, define as “3”.

0.55 0.497

PreRoad‑bicycle divider
If the error occurs on the previous road with the

bicycle divider, define it as “1”; otherwise, define it
as “0”.

0.45 0.497

PreRoad‑median divider
If the error occurs on the previous road with the

median divider, define it as “1”; otherwise, define it
as “0”.

0.09 0.287

PreRoad‑roadside
parking

If the error occurs on the previous road with
roadside parking, define it as “1”; otherwise, define

it as “0”.
1.96 0.202

PreRoad‑one way
If the error occurs on the previous road that is one
way, define it as “1”; if the error occurs on the
previous road that is two way, define it as “2”.

0.60724981355 4.633130389169

PreRoad‑commercial
density

The 20‑meter buffer radius POI point commercial
density of the previous road. 1.06788664028 2.503877913297

PreRoad‑public service
density

The 20‑meter buffer radius POI point public service
density of the previous road. 3.93085171376 4.339859341936

PreRoad‑resident density The 20‑meter buffer radius POI point resident
density of the previous road. 0.26 0.439

Latter road’s
characteristics

LatRoad‑speed limit

If the latter road speed limit is <30 km/h, define as
“1”; if the latter road speed limit is 30–50 km/h,
define as “2”; if the latter road speed limit is >50

km/h, define it as “3”

0.28 0.448

LatRoad‑bicycle divider If the error occurs on the latter road with the bicycle
divider, define it as “1”; otherwise, define it as “0”. 0.37 0.483

LatRoad‑median divider If the error occurs on the latter road with the median
divider, define it as “1”; otherwise, define it as “0”. 0.00 0.046

LatRoad‑roadside
parking

If the error occurs on the latter road with roadside
parking, define it as “1”; otherwise, define it as “0”. 0.25 0.432

LatRoad‑one way
If the error occurs on the latter road that is one way,
define it as “1”; if the error occurs on the latter road

that is two way, define it as “2”.
0.02 0.141

LatRoad‑commercial
density

The 20‑meter buffer radius POI point commercial
density of the latter road. 0.37 0.482

LatRoad‑public service
density

The 20‑meter buffer radius POI point public service
density of the latter road. 0.12 0.323

LatRoad‑resident density The 20‑meter buffer radius POI point resident
density of the latter road. 0.20 0.397

Prior to map‑matching error detection, there were two pre‑processing steps. The
first step involved GPS data and road network data pre‑processing. In the GPS data pre‑
processing step, we conducted a cleaning procedure on the raw data, including remov‑
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ing the missing and duplicate data (e.g., duplicated records of GPS points with the same
latitude–longitude and timestamp), as well as filtering out abnormal drift points (e.g., dis‑
continuous jumps in the longitude and latitude data along the trajectory), and the sec‑
ond step was to adjust the coordinate system and restrict the study area by converting
the GPS data latitude and longitude coordinates from World Geodetic System 1984 to
Xian_1980_3_Degree_GK_CM_105E projected coordinate system for subsequent map‑
matching operations. At the same time, we selected the research area within the First Ring
Road of Chengdu city from the downloaded road networkmap for the map‑matching pro‑
cess based on the HMM algorithm. This process was conducted by removing all of the
roads and intersections beyond this area in the digital map.

Data processing and analysis were sequentially three‑fold: raw data collection, data
pre‑processing, and map matching (Table 3). The data output from the previous process
served as the input for the subsequent process.

Table 3. Data types at various stages.

Stages of Calculations Field Name Data Type Description Example

Raw Data Stage

Plate number string License plate number 川ADT9088
lat double Latitude 30.67455
lng double Longitude 104.08496
Position time bigint Satellite time 1600457268000
Shape string Road segment type Line
0BJECTID number The ID of the road 1980
Name string Road name Section 3 South of First Ring Road
Shape Leng string Road length 0.00751

Data Pre‑Processing Stage

plate_number string License plate number 川ADT9088
lat double Latitude 30.6746432
lng double Longitude 104.0850109
position time bigint Satellite time 20200919 03:27:48
Shape string Road segment type Line
0BJECTID number The ID of the road 1980
Name string Road name Section 3 South of First Ring Road
Shape Leng string Road length 0.00751

Map Matching Completed
Stage

plate_number string License plate number 川ADT9088
lat string Latitude 3395261.8989394824
lng string Longitude 35412317.51912209
Position time string Satellite time 20200919 03:27:48
Shape string Road segment type Line
0BJECTID number The ID of the road 1980
Name string Road name Section 3 South of First Ring Road
Shape Leng string Road length 0.00751

This study primarily utilized an Inspur servermodelNF5280M6, whichwas equipped
with an Intel(R) Xeon(R) CPU E5‑@ 2.10 GHz processor, 32 GB of RAM, and a 4‑terrabite
hard disk capacity. The platform runs on Windows Server 2019, and we used software
such as ArcGIS, Python, and SPSS. ArcGIS was used for Kernel Density modeling analy‑
sis; Python was used for data pre‑processing and map matching, incorporating modules
like Pandas, ArcpyUtil, and HmmUtil; and SPSS software was used for analyzing the spa‑
tiotemporal factors that contributed tomap‑matching errors using themultinomial logistic
regression model.

The experimental results indicated that the CPU time consumption in the data pre‑
processing stage was approximately 0.02112 s per iteration, memory usage was around
6.21 GB, and disk utilization was 1%. Similarly, in the map‑matching error detection and
analysis stage, the CPU time consumption was roughly 0.02592 s per iteration, memory
usage was about 3.07 GB, and disk utilization stayed constant at 1%.
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3. Methodology
In this study, we employed the HMM and Viterbi algorithm to match the GPS tra‑

jectories collected from taxis. Then, we defined four types of common map‑matching er‑
rors. Based on the error dataset, we applied the Kernel Density Estimation model to reveal
the spatial–temporal patterns of the map‑matching errors. Finally, we adopted a multi‑
nomial logistic model to analyze significant factors that contributed to different types of
map‑matching errors.

3.1. Hidden Markov Model
The study adopted the HMM algorithm to match the GPS trajectories to their corre‑

sponding roads using the Chengdu GIS roadway network map. Since the actual position
of the GPS point was unknown, HMMdecomposed the probability of the real match into a
combination of observation probability and transition probability [39]. The former feature
represents the probability of the observed variables being on each road, while the latter fea‑
ture represents the probability of GPS trajectory points transitioning from one road state
to another in the road network. Hidden states represented the true locations of GPS points
on the roads, while observation states represented the observed location of the GPS data.
The HMMalgorithmmodel assumed that the trajectory was generated from a series of hid‑
den states. In the set of observed variables X = x1, x2, . . . , xj, . . . , xn, where xi represents
the location information of ith GPS trajectory point, i.e., longitude and latitude

(
loni, latj

)
,

and in the set of hidden variables Y = {y1, y2, . . . , yi, . . . , yn}, where yi ∈ y stands for the
true location of ith GPS trajectory point on a road segment, and n is the index of trajectory
point. For the input GPS trajectory points and candidate road segments, we calculated the
observation probability of the candidate road segments based on the HMM. Then, for each
candidate road segment, we computed its path probability. This probability represented
the maximum value obtained via multiplying the path probability of all possible previous
states, the transition probability from the previous state to the current state, and the ob‑
servation probability of the current state. This process selected the previous state with the
highest path probability as the current state, thus constructing the optimal hidden state se‑
quence, which corresponded to the best‑matched road segments (note that the pseudocode
of the HMM‑based Map‑matching algorithm is shown in Algorithm 1: HMM‑based Map
Matching).

Based on the transition probability and observation probability, the Viterbi algorithm
could compute the most likely sequence of the hidden states, i.e., the best‑matched loca‑
tions of the taxi trajectory. Viterbi algorithm achieved trajectory matching by finding the
most likely sequence of hidden states in the Hidden Markov Model. The basic logic of the
algorithm was to construct a state path map, where each state represented a hidden state,
and each edge on the graph represented the probability of transferring from one state to
another and calculated the maximum probability of the initial state relative to that of an‑
other state. Finally, the state with the highest probabilitywas selected as the finalmatching
result, that is, the optimal matching path, which was viewed as the true path (Figure 3).
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Algorithm 1: HMM‑based Map Matching

Input: GPS trajectory points P = (pn | n = 1, . . . , N); candidate road segment R =
(rn | n = 1, . . . , N)
Output:Matched road segments Y = (yn | n = 1, . . . , N)
1: Initialize Viterbi path viterbi[], path probability v[], and state sequence y[]
2: For each point p in P
3:    Calculate observation probabilities o[] for R based on the HMM
4:    For each state s in R
5:       Calculate v[s] = max{s’}(v[s’] * transition(s’, s) * o[s])
6:       viterbi[s] = argmax{s’}(v[s’] * transition(s’, s))
7:    y.append(viterbi[argmax_s(v[s])])
8: For i = N − 1 down to 1
9:    yi−1 = viterbi[yi ]
10: return y

3.2. Matching Error Trajectory Recognition Method
In this research, we identify four types of map‑matching errors (Figure 4), which are

the most commonly observed errors generated via the HMM algorithm. The errors are as
follows:
(i) Off‑Road Error (ORE) refers to a trajectory point or two/three adjacent points (e.g., P5

in Figure 4a) that fall outside of a buffer of a 15‑meter radius, while its adjacent GPS
points are captured;

(ii) Wrong‑match on Road Error (WRE) indicates that a trajectory point or two/three ad‑
jacent points (P5 in Figure 4b) are incorrectly matched to a nearby road segment, in‑
stead of the road that contains its upstream and downstream trajectory points;

(iii) Off‑Junction Error (OJE) means a trajectory point or two/three adjacent points (P5 in
Figure 4c) that ought to be locatedwithin an intersection, but the point is not captured
within the 15‑meter radius buffer;

(iv) Wrong‑match in Junction Error (WJE) represents a trajectory point or two/three adja‑
cent points (P5 in Figure 4d), which are supposed to be locatedwithin an intersection,
but it is incorrectly matched to a nearby road segment.
Each trajectory of a taxi is evaluated based on the geometric relationship and the cor‑

responding road identifier between adjacent points to extract these four categories of map‑
matching errors. All of the extracted errors are combined and included in the error dataset
for further analysis.

The specific process of matching error detection is as follows:
1. Select the GPS trajectories of a vehicle from the matched Taxi GPS points database

based on the plate number and the timestamps.
2. Examine the matched road ID of each five or seven adjacent GPS points and check

the sequence of the road ID.
3. For the errors on road segments, if the first two/three points and the last two/three

points share the same road ID, while no road ID is matched to the middle point, i.e.,
out of the 15‑meter buffer zone, it is classified as an “OffRoad Error” (ORE). However,
if the middle point is matched to a road segment, the road ID of which is different to
that of the former two/three and latter two/three points, it is classified as a “Wrong
Road Error” (WRE).

4. For the errors occurring on intersections, if the former two/three points have the same
road ID, and the latter two/three points share another road ID, while no road ID is
matched to themiddle point, it is classified as an “Off Junction Error” (OJE). However,
if the middle point is matched to a road segment, the road ID of which is different to
that of the former two/three and latter two/three points, it is classified as a “Wrong
Junction Error” (WJE).

5. Select the trajectories of another vehicle and repeat steps 1 to 4.
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In addition to these four categories, there are other forms of map‑matching errors,
such as ambiguous lane selection errors, isolated lane selection errors, and route disconti‑
nuity errors. However, solutions to these types of map‑matching errors are relatively well
established [17,40]. Therefore, based on the scope and objectives of our research, we chose
to include these four types of errors in the study.

3.3. Spatial–Temporal Characteristics for Trajectory Errors
Kernel Density Estimation (KDE) is a non‑parametric statistical method used to esti‑

mate the probability density of a variable [41]. In our study, KDE is used to investigate the
spatiotemporal patterns of map‑matching errors by calculating the spatial density of the
errors in a specific spatial–temporal cross‑section. The study utilized ArcGIS 10.8 software
to conduct Kernel density analysis of map‑matching errors. To facilitate the analysis, we
transformed the map‑matching error dataset from Excel format to a table dataset using the
conversion tool in ArcGIS. Then, we converted the table dataset into a layer feature class
(LFC) by employing the coordinate notation conversion function in ArcGIS 10.8.

Specifically, each road segment at a specific time of day (e.g., morning, daytime, peak
hours, and evening) or during the weekend/weekdays was treated as a spatiotemporal
analytical unit in the KDE analysis. The KDE is formulated as follows:

fhat(x) =

(
1

nh

)
× Σn

{i=1}K
(

x − xi
h

)
(1)

where n is the number of variables of interest, h is the bandwidth of the kernel function, K
is the kernel function (e.g., Gaussian or Laplacian), xi is the ith road segment in the data,
x is the value to be estimated, and f hat(x) provides a smooth estimate of the underlying
distribution of the variable x.
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3.4. Exploration of the Spatial–Temporal Factors
Another primary goal of the study is to explore the contributing factors that affect the

occurrence of different kinds of map‑matching errors using amultinomial logit model. Let
Uki be the utility function [42], so that

Uki = βkXki +εki (2)

where βk is a vector of estimable parameters, and εki is the unobserved part that affects the
utility and is assumed to follow a Gumbel I extreme value distribution. k = 1,…, K (K = 4 in
our case) represents the categories of the map‑matching errors (i.e., ORE, WRE, OJE, and
WJE), and Xki represents the contributing factors of the map‑matching error i in the error
category k.

Let Pi(k) be the probability of the map‑matching error i being recognized as category
k, such that

Pi (k) =
exp(βkXki)

∑∀k exp(βkXki)
(3)

4. Results
4.1. Outputs of Map Matching

All of the selected taxi trajectories are matched to their nearest road lanes using the
HMM map‑matching algorithm. Figure 5a,b show the sample outputs of the match on
a single segment and a road network, respectively. The red dots represent the raw GPS
points from a trajectory, and the green dots represent the matched points. It is observed
that the HMM algorithm performs well in matching trajectories on a single segment. All
of the trajectory points can be properly matched to the corresponding road lane if the vehi‑
cle is moving in a fixed direction. However, map matching on a large‑scale road network
becomes much more complicated. As shown in Figure 5b, a majority of trajectory points
can be correctly matched to the corresponding road lane, but a few points are overtly mis‑
matched when the vehicle is driving on the road segment or passing through the intersec‑
tion, leading to the occurrence of WREs and WJEs, respectively. In addition, the number
of matched trajectory points does not equal the number of original trajectory points, which
manifests the existence of OREs or OJEs.
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Figure 6 illustrates the trajectories before and after map matching, which shows that
most of the original trajectories are correctly matched to their corresponding roadways.
The success rate of matching reaches 89% for the whole study area, demonstrating a rel‑
atively effective matching performance. For the remaining 11% of trajectories with map‑
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matching errors, we calculate the proportion of the four types of map‑matching errors. In
Table 4, the total number of OREs, WREs, OJEs, and WJEs in the study area is 175,512,
among which there are 113,349 WREs, accounting for 64.6% map‑matching errors, fol‑
lowed by OREs (14.1%), OJE (10.8%), and WJE (10.6%). The process of identifying these
errors took a total of 4550 s (approximately 75 min).
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Table 4. Statistics of four trajectory error types.

Error Matching
Trajectory Type Meaning Number of Cases Percentage

ORE Road Segment Off 24,702 14.1%
WRE Road Segment Error 113,349 64.6%
OJE Intersection Off 18,904 10.8%
WJE Intersection Error 18,557 10.6%

The total time complexity of theHMMmap‑matching algorithm is O(N×M2), and the
overall space complexity of the HMMmap‑matching algorithm is O(M×N). N represents
the number of observed points (trajectory points), and M represents the number of road
segments (states) in the road network.

4.2. Temporal and Spatial Distribution of Trajectory Errors
Based on the KDE analysis, Figure 7 illustrates the spatial–temporal distributions of

four map‑matching errors in different analytical units.
The distributions of OREs (Figure 7(a1–e1)) do not change evidently across times of

day and between weekends and weekdays. Specifically, OREs tend to cluster at intersec‑
tions located in central, eastern, southwestern, and southeastern regions of the road net‑
work, indicating that the density of OREs is not consistent in the study area. As for the
temporal characteristics, we can observe that daytime and weekdays are associated with
more intensive OREs at the above‑stated regions, while OREs observed in peak hours, at
night, and at the weekend are much sparser. It is also found that the distributions of OJEs
(Figure 7(a3–e3)) are almost identical in different time scales, which are clustered in the
central, northern, eastern, and southwestern areas of the road network. Similarly, the den‑
sities of OJEs in different time scales are analogous to those of OREs.
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The clusters of WREs (Figure 7(a2–e2)) are spatially sparser across the road network.
It is shown that WREs tend to cluster in the central, southeastern, and southwestern parts
of the road network. In the time scale, we identify that WREs in peak hours and weekends
are more intensive than those in daytime, at night, and on weekdays. In contrast to WREs,
the WJE clusters (Figure 7(a4–e4)) visibly vary across the road network in different time
scales. More specifically, WJEs are intensively clustered in the central and southwestern
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regions of the road network in the daytime, at peak hours, and on weekdays, while these
errors become sparser at night and on weekends. Meanwhile, we reveal that WJEs are
prone to cluster in intersections located in the southeastern part at night, onweekdays, and
on weekends, but the cluster is not observed in daytime and at peak hours. Furthermore,
the densities of WJEs in daytime, peak hours, and weekdays surpasses those at night and
on weekends.

4.3. Contributing Factors of Map‑Matching Errors
Variance inflation factor (VIF) is used to diagnose multicollinearity among all predic‑

tor variables prior to modeling [43]. All factors have a VIF of less than 5, indicating that
the model estimates are not explicitly influenced by multicollinearity. A multinomial lo‑
gistic model is then adopted to explore the contributing factors causing the map‑matching
errors with the reference category of ORE. Table 5 presents the estimated results. Relative
to ORE, there are 26, 23, and 21 factors significantly associated with WRE, OJE, and WJE,
respectively.

In terms of time factors, compared to daytime, the probabilities are 8.8% lower, 14.3%
lower, and 34.2% higher at night forWRE, OJE, andWJE, respectively. During peak hours,
the probability of WRE is 4.0% lower, and the probability of OJE is 5.8% lower. On week‑
ends, the probability ofWRE is 5.2% lower than onworkdays, while the probability of OJE
is 4.8% lower than on workdays.

For intersection types, the probability of WRE is significantly higher if the map‑
matching error occurs at a location close to a flyover (Odds Ratio = 225.2%), a crossroad
(Odds Ratio = 367.8%), an X‑junction (Odds Ratio = 108.7%), or a T‑junction (Odds Ratio
= 325.1%), as opposed to the errors located outside the vicinity of the intersections. The
conclusion is also applicable to WJE (except near the flyover) and OJE (except near the
X‑junction).

Relative to the previous road section, the probability of WRE is significantly higher if the
previous road has bicycle dividers (Odds Ratio = 10.1%), median dividers (Odds Ratio = 53.5%),
roadside parking (Odds Ratio = 27.9%), or is one‑way controlled (Odds Ratio = 27.8%). The
conclusion can be applicable to OJE (except if the previous road has bicycle dividers and
median dividers) and WJE (except if the previous road has bicycle dividers, median di‑
viders, and roadside parking). With regard to the speed limit of the previous road, speed
limits of <30 km/h and 30–50 km/h reduce the probability of WRE by 64.2% and 10.3%, re‑
spectively, compared to roads with a speed limit of ≥60 km/h, while increasing the prob‑
ability of OJE by 53.9% and 50.3%, respectively, and reducing the probability of WJE by
30.2% and 32.2%, respectively. Furthermore, an increase of 1 unit per km in resident den‑
sity raises the possibility of WRE by 4.6%, while a 1‑unit‑per‑km increase in public ser‑
vice density raises the possibility of WRE by 1.9%, while decreasing the possibility of OJE
by 3.3%.

Factors related to the latter road show that the probability of WRE is significantly
higher if the road has bicycle dividers (Odds Ratio = 63.6%), median dividers (Odds Ratio
= 15.6%), and roadside parking (Odds Ratio = 12.5%). Similar findings are observed for
OJE andWJE. However, roadside parking decreases the possibility of OJE andWJE. As for
speed limit, roads with a speed limit of <30 km/h are associated with significantly reduced
probabilities of WRE (65.1%) and OJE (23.1%), but a higher probability of WJE (134.2%),
compared to the speed limit of ≥60 km/h. The speed limit of 30–50 km/h is also linked to
a 15.5% reduction in the probability of WRE and a 19.1% reduction in the probability of
OJE. Moreover, an increase of 1 unit per km in resident density and public service density
is positively associated with higher probabilities of WRE, OJE, and WJE.
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Table 5. Parameter estimates for the multinomial logit model.

Variables
WRE OJE WJE

Mean S.D. Sig. OR Mean S.D. Sig. OR Mean S.D. Sig. OR

Intercept −0.078 0.027 0.004 −0.852 0.035 <0.001 −0.873 0.036 <0.001
Time‑weekend −0.054 0.018 0.002 0.948 −0.049 0.023 0.030 0.952 0.042 0.022 0.063 1.042
Time‑peak hours −0.041 0.020 0.035 0.960 −0.060 0.025 0.015 0.942 −0.027 0.026 0.284 0.973
Time‑night −0.092 0.018 <0.001 0.912 −0.154 0.023 <0.001 0.857 0.294 0.023 <0.001 1.342
Time‑daytime (set as base) ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑
Int‑close to a flyover 1.179 0.193 <0.001 3.252 0.703 0.245 0.004 2.021 −2.516 1.017 0.013 0.081
Int road‑close to a crossroad 1.543 0.025 <0.001 4.678 0.780 0.030 <0.001 2.181 0.826 0.030 <0.001 2.285
Int‑close to an X‑junction 0.736 0.063 <0.001 2.087 0.117 0.080 0.146 1.124 0.336 0.082 <0.001 1.399
Int‑close to a T‑junction 1.447 0.019 <0.001 4.251 0.055 0.024 0.024 1.057 0.287 0.024 <0.001 1.333
Int‑close to a large intersection −0.044 0.028 0.117 0.957 0.445 0.036 <0.001 1.560 0.434 0.036 <0.001 1.543
Int‑close to a medium‑sized intersection 0.932 0.027 <0.001 2.540 0.613 0.035 <0.001 1.846 0.425 0.036 <0.001 1.529
Int‑close to a small intersection 0.985 0.021 <0.001 2.678 0.353 0.027 <0.001 1.423 0.242 0.027 <0.001 1.274
Int‑beyond the intersection range (set as base) ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑
PreRoad‑speed limit <30 km/h −1.027 0.032 <0.001 0.358 0.431 0.038 <0.001 1.539 −0.360 0.037 <0.001 0.698
PreRoad‑speed limit 40–50 km/h −0.108 0.035 0.002 0.897 0.408 0.046 <0.001 1.503 −0.388 0.047 <0.001 0.678
PreRoad‑speed limit ≥60 km/h (set as base) ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑
PreRoad‑bicycle divider 0.096 0.029 0.001 1.101 −0.545 0.037 <0.001 0.580 −0.001 0.036 0.983 0.999
PreRoad‑median divider 0.429 0.032 <0.001 1.535 0.073 0.041 0.079 1.076 −0.437 0.040 <0.001 0.646
PreRoad‑roadside parking 0.246 0.032 <0.001 1.279 0.179 0.035 <0.001 1.196 −0.020 0.035 0.573 0.980
PreRoad‑one way 0.245 0.041 <0.001 1.278 0.430 0.043 <0.001 1.538 0.211 0.046 <0.001 1.235
PreRoad‑commercial density −0.027 0.002 <0.001 0.973 −0.008 0.002 <0.001 0.992 0.004 0.001 0.005 1.004
PreRoad‑public service density 0.019 0.004 <0.001 1.019 −0.033 0.005 <0.001 0.967 −0.015 0.005 0.002 0.985
PreRoad‑resident density 0.045 0.002 <0.001 1.046 −0.002 0.003 0.466 0.998 −0.011 0.003 <0.001 0.989
LatRoad‑speed limit <30 km/h −1.051 0.032 <0.001 0.349 −0.263 0.038 <0.001 0.769 0.851 0.038 <0.001 2.342
LatRoad‑speed limit 40–50 km/h −0.168 0.035 <0.001 0.845 −0.212 0.045 <0.001 0.809 0.066 0.049 0.174 1.068
LatRoad‑speed limit ≥60 km/h (set as base) ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑
LatRoad‑bicycle divider 0.492 0.029 <0.001 1.636 0.283 0.036 <0.001 1.328 −0.351 0.037 <0.001 0.704
LatRoad‑median divider 0.145 0.032 <0.001 1.156 0.390 0.040 <0.001 1.477 0.530 0.042 <0.001 1.699
LatRoad‑roadside parking 0.118 0.032 <0.001 1.125 −0.110 0.037 0.003 0.896 −0.153 0.034 <0.001 0.858
LatRoad‑one way 0.049 0.041 0.233 1.051 −0.018 0.048 0.704 0.982 0.015 0.044 0.738 1.015
LatRoad‑commercial density −0.020 0.002 <0.001 0.980 −0.001 0.002 0.429 0.999 <0.001 0.001 0.748 1.000
LatRoad‑public service density 0.040 0.004 <0.001 1.041 0.050 0.005 <0.001 1.052 0.012 0.005 0.026 1.012
LatRoad‑resident density 0.052 0.002 <0.001 1.053 0.030 0.003 <0.001 1.031 0.011 0.003 <0.001 1.011
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5. Discussion
It is found that time factors have a significant effect ondetermining the error types. For

instance, WREs and OJEs are more likely to be observed in the daytime and on weekdays.
This result is mainly due to the fact that taxis are usually clustered in the urban center
during the daytime and on weekdays to seek passengers [44]. Moreover, the city center
has a high‑density road network, which may be associated with increasing the occurrence
of map‑matching errors. Specifically, the trajectories of running taxis within this area are
more likely to be incorrectly matched to another road (WRE). Also, the taxis have more
complex trajectories when they enter the intersections due to the increased traffic volume
during the period [45], resulting in more matching losses (OJE). However, WJEs are more
likely to be observed at night, which may be interpreted as suggesting that taxis tend to
wait or cruise around the city’s intersections, hospitals, or transit stations, where the taxi
requirements are more intensive [46]. In this case, the trajectories could be incorrectly
matched to nearby road segments that are adjacent to intersections, leading to WJEs.

The occurrence of map‑matching errors varies across the types and sizes of intersec‑
tions. Specifically, WREs and OJEs are more likely to occur on flyovers, which is not the
case for WJEs. It could be explained by the fact that trajectories are likely to be matched to
the ground roads under the flyovers (WRE). Also, the trajectories could be lost on ramps
(OJE). However, the trajectories are not likely to be matched to another access (WJE) be‑
cause of the large size of the flyover. We also found that WRE and WJE are more overtly
observed on X‑ and T‑junctions due to the complex movements of vehicles and the diffi‑
culty of positioning at these junctions [47,48]. The probabilities of WRE, OJE, andWJE can
be interpreted as complex trajectories at medium‑ and large‑sized intersections. Compar‑
atively, the reason for map‑matching errors in small‑sized intersections may be different.
Specifically, the heights and densities of buildings and trees around intersections can affect
GPS signal transmission quality [49,50]. As such, the GPS trajectories are more difficult to
position within smaller intersections since they are more susceptible to being obstructed
by adjacent buildings and trees [51], consequently causing the failure of GPS match (OJE).

As for the characteristics of both previous and latter roads, factors of bicycle dividers,
median dividers, and one‑way control could increase the possibility of ORE and WRE,
which can be interpreted as suggesting that the dividers and one‑way control can acceler‑
ate the vehicle’s speed, meaning that there will be fewer reliable trajectories on the road
segment compared to the trajectories generated via low‑speedmovements. It is also found
that the dividers on the latter road could increase the possibility of OJE and WJE because
vehicles could easily accelerate or change lanes after they pass the junctions, which causes
more OJEs and WJEs. We notice that roadside parking on both previous and latter roads
could increase the probability ofWREs, which implies that roadside parking could hamper
the sight view of the driver and, consequently, encourage them to change lanes or adjust
their driving speed. However, the likelihood of junction errors decreases (i.e., OJE and
WJE) since vehicles have to slow down if the latter road has roadside parking. For land
use, commercial areas lower the possibility of WRE and OJE due to the traffic delay. In
contrast, WREs are prone to occur on both previous and latter roads with more public fa‑
cilities and residents due to the intensive accesses near to the junctions, meaning that the
trajectories are likely to be mismatched. This outcome is also the case for OJE and WJE if
the latter road has intensive public facilities and residents.

The speed limit of previous and latter road segments is found to significantly influence
themap‑matching errors. WREs tend to occur on road segments where previous and latter
roads have a higher speed limit, which could be explained by the assumption that higher
vehicle speeds can lead to deteriorated GPS signal quality [52]. Additionally, vehicles are
likely to lose their trajectories (OJE) if they switch from a lower speed limit road to a road
with a higher speed limit through a junction. This result occurs because the trajectories
on the roads with lower speed limits tend to be more stable, but the vehicle could lose the
trajectory signals if it suddenly accelerates and enters a high‑speed road. Conversely, the
modeling results demonstrate that WJE generally takes place when vehicles move from a
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road with a high speed limit to a road with a low speed limit. This result may be explained
by the fact that vehicles have to slow down in advance before they enter a low speed limit
scenario after they enter the junction. Hence, the vehicles could generate a large number of
trajectories within the junction, which could be mismatched to other nearby roads rather
than being lost.

6. Conclusions
The study identifies four kinds of trajectory map‑matching errors (i.e., ORE, WRE,

OJE, andWJR) based on the HMMalgorithm using taxi trajectories in Chengdu. The study
employs temporal Kernel density analysis and amultinomial logisticmodel to examine the
spatial–temporal patterns of the map‑matching errors and contributing factors associated
with different error likelihoods. Several key findings are offered below:
1. The spatial patterns of ORE, WRE, OJE, and WJE overtly vary across the time scales

(e.g., time of day and weekday/weekends), signifying that the map‑matching errors
are not consistently located in the study area.

2. Compared to ORE, the probability of WRE and OJE is higher on weekdays, while the
probability of WJE is higher on weekends. It is noted that OREs and WJEs are more
likely to occur during peak hours and at night.

3. WREs, OJEs, and WJEs are more likely to be observed at intersections, especially on
a flyover, an X‑junction, and a T‑junction.

4. WREs tend to occur on the road where previous and latter roads simultaneously
have bicycle dividers, median dividers, one‑way control, and roadside parking, while
these factors have mixed impacts on OJEs and WJEs. Also, higher resident and pub‑
lic service density on the latter road could increase the probability of WRE, OJE,
and WJE.

5. WREs are likely to occur on roads with low‑speed limits. OJEs tend to occur when
vehicles switch from a low speed limit to a high speed limit road, while the occurrence
of WJE has the opposite trend.
There are several limitations to the study. Firstly, we only identified four types of

map‑matching errors from the taxi trajectories, which may not cover all of the error types
in practice. Secondly, we only focus on the effect of time, intersection characteristics, and
road features on map‑matching errors, but the influence of traffic conditions and drivers’
responses are unknown. Thirdly, the primary objective of this paper is to utilize offline
GPS data to investigate the spatiotemporal patterns of map‑matching errors and examine
the effect of road environments on these errors. Therefore, an onlinemapmatching system
is not considered in the current study.

These three limitations could be overcome if more accurate trajectory data became
available. In the future research, we aim to develop advanced algorithms to identify more
types of map‑matching errors, such as Breakage Error, Ambiguous Match, and Ghost Tra‑
jectory Error [17,27]. On the basis of detecting more types of errors, the researchers could
gain a more comprehensive understanding of all potential errors that may occur in the sce‑
narios when conducting the map‑matching algorithm. Additionally, incorporating real‑
time traffic data and driver responses will allow us to analyze the influence of traffic con‑
ditions and driver‑related factors on the distribution of map‑matching errors, which can
potentially tackle the limitations related to the inadequacy of considering the impact of
time, intersection features, and road characteristics and enable comprehensive considera‑
tion of traffic situations and driver decision‑making processes on the trajectories. We aim
to address these challenges and provide more reliable conclusions in a future study.
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