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Abstract: This paper addresses two common challenges in analyzing spatial epidemiological data,
specifically disease incidence rates recorded over small areas: filtering noise caused by small local
population sizes and deriving estimates at different spatial scales. Geostatistical techniques, including
Poisson kriging (PK), have been used to address these issues by accounting for spatial correlation
patterns and neighboring observations in smoothing and changing spatial support. However, PK has
a limitation in that it can generate unrealistic rates that are either negative or greater than 100%. To
overcome this limitation, an alternative method that relies on soft indicator kriging (IK) is presented.
The performance of this method is compared to PK using daily COVID-19 incidence rates recorded
in 2020–2021 for each of the 581 municipalities in Belgium. Both approaches are used to derive
noise-filtered incidence rates for four different dates of the pandemic at the municipality level and
at the nodes of a 1 km spacing grid covering the country. The IK approach has several attractive
features: (1) the lack of negative kriging estimates, (2) the smaller smoothing effect, and (3) the better
agreement with observed municipality-level rates after aggregation, in particular when the original
rate was zero.

Keywords: COVID-19; Belgium; Poisson kriging; indicator kriging; disaggregation; semivariogram

1. Introduction

Geostatistics has emerged as a powerful tool for the analysis of spatially correlated
data in medical geography [1]; in particular, disease incidence and mortality rates. These
rates are typically recorded at the level of administrative units, such as census tracts,
counties or municipalities which can be sparsely populated and of different sizes and
shapes. These areal data tend to be noisy when recorded for small population sizes, while
the aggregation process may distort the true underlying spatial patterns of the disease
and the subsequent interpretation, a phenomenon known as the modifiable areal unit
problem [2–4]. To address these challenges, geostatistical techniques have been developed
to filter the noise and downscale areal data to finer spatial scales [5].

One widely used geostatistical technique for smoothing or noise-filtering is Poisson
kriging (PK). This technique was originally developed for characterizing the spatial distri-
bution of rare wild species [6] from infrequent sightings and heterogeneous observation
efforts (i.e., the total number of hours spent observing at a given location). Such data
often feature a strongly skewed distribution with a large percentage of zeros and a few
extremely large values. Since then, PK has been applied to a wide range of health outcomes
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and spatial scales. For example, [7] mapped incidence rates of cholera and dysentery and
associated measure of reliability in a 184 km2 endemic area of Bangladesh using PK and
data collected at the household level. Another study [8] applied PK to filter noise attached
to lung and cervix cancer mortality rates recorded for white females in two contrasted
county geographies: (1) state of Indiana that consists of 92 counties of fairly similar size
and shape, and (2) four states in the western US (Arizona, California, Nevada and Utah)
forming a set of 118 counties that are vastly different geographical units. In the western US
and Utah, PK was used to smooth county-level incidence rates of drug poisoning deaths,
populate data gaps and improve the reliability of rates recorded in sparsely populated
counties [9].

Area-to-point (ATP) kriging [10,11] is a variant of kriging that allows the mapping
of attribute values within each sampled geographical unit; in other words, converting
choropleth maps into isopleth maps. This spatial downscaling, or disaggregation, is
accomplished under the constraint that the average of point estimates returns the areal
data (coherency constraint). The so-called pycnophilactic property, however, can lead to
unrealistic estimates, such as negative values. For instance, the disaggregation of null
areal data requires a mixture of positive and negative point estimates to ensure that the
average within each unit is zero. This is especially problematic when implemented under
the PK framework for analyzing health outcomes with a lot of zeros. A good example
are COVID-19 incidence rates, as many geographical units had no cases detected at the
beginning of the pandemic. This issue was, however, never mentioned in the studies that
applied Poisson kriging to this type of data [12–14].

One quick and easy way to correct for negative ATP kriging estimates is to reset
these estimates to zero [15], albeit at the cost of losing the pycnophilactic property. More
elaborate solutions have been proposed in the geostatistical literature, such as (i) constraints
on the kriging weights, (ii) the soft-kriging approach, and (iii) constrained predictions via
non-linear optimization techniques. These solutions are reviewed in detail in [16]. Indicator
kriging (IK) is explored here as an alternative to PK for filtering noise in data that display
varying levels of reliability and a strongly skewed distribution with a large percentage of
zeros and a few extremely large values.

This is not the first comparison of IK and PK performances. The authors of [17]
compared IK and area-to-point PK for mapping patterns of herbivore species abundance in
Kruger National Park, South Africa. This study indicated that IK was less accurate than PK
for mapping animal abundance, in particular, the few large counts. Opposite conclusions
were reached by [18], who investigated the applicability of ordinary kriging (OK), PK and
IK to recreational fishery data, which are highly skewed, zero-inflated and when expressed
as catch rates are impacted by the small number problem. In that case, IK was found to
provide more accurate predictions of the latent catch rate for the three fish species under
study compared to OK and PK, the later generating smoother spatial distributions. The
present comparison study however differs in two major aspects: (1) the spatial support of
the data are not regular squares but municipalities with irregular shape and size, and (2)
the uncertainty attached to the observations is accounted for through the “soft” indicator
coding (i.e., indicators are valued between zero and one) of a binomial distribution defined
by the incidence rate and the underlying population size instead of a “hard” (i.e., indicators
are zero or one) indicator coding of original data [15].

In this paper, we present an application of geostatistical techniques for the smoothing
and downscaling of areal data, with a focus on disease incidence rates. We illustrate
the advantages and limitations of PK and compare its performance to an innovative
implementation of IK that propagates the uncertainty attached to the data through the
creation of indicator transforms. The study is illustrated using daily COVID-19 incidence
rates recorded in 2020–2021 for each of the 581 municipalities in Belgium.
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2. Materials and Methods
2.1. COVID-19 Incidence Data

The geostatistical mapping approach is illustrated using daily COVID-19 incidence
rates recorded in 2020–2021 for each of the 581 municipalities in Belgium (300 in the
Flemish, 262 in the Walloon and 19 in the Brussels-Capital Region); see Figure 1A. The
data were collected by Sciensano, the Belgian institute for health [19]. No individual-level
information (e.g., gender, age) was available. Each rate was calculated as the sum of
newly confirmed positive cases in the past 7 days divided by the population size of the
respective municipality as of 1 January 2020 according to Statbel, the Belgian statistical
office (Figure 1B). Rates are expressed as number of cases per 10,000 inhabitants. Belgian
municipalities have an average area of 52.8 km2, and finer details on the spatial distribution
of the population was provided by a raster (31,557 cells of 1 km2 each) of the 2016 population
(Figure 1C). These high-resolution population data were derived through the geocoding
of individual addresses from the National Register of Natural Persons (RNPP) and are
publicly available [20]. Only very few individuals could not be geolocated (6827 individuals
out of a population of 11,492,641 in 2020), leading to very accurate statistics.
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2.2. Poisson Kriging

Let {z(vα,t), α = 1, . . ., M} be the set of COVID-19 incidence rates (areal data) recorded
at M = 581 municipalities vα on day t. Since the same analysis is undertaken independent-ly
for every day t, the temporal reference is omitted from the notation hereafter for simplicity.
Each rate is calculated as z(vα) = d(vα)/n(vα), where d(vα) is the number of positive cases
and n(vα) is the size of the population at risk (i.e., total population of the municipality). The
objective of the analysis is twofold: (1) filter the noise attached to the observed rates z(vα),
and (2) estimate incidence rates at L = 31,557 nodes ul of a 1 km spacing grid discretizing
the entire country of Belgium (spatial disaggregation). The results will be two sets of rate
estimates for any single day t: {ẑPK(vα), α = 1, . . ., M} and {ẑPK(ul), l = 1, . . ., L} with the
following coherency constraint that is satisfied for each municipality vα:

ẑPK(vα) =
1

n(vα)

Lα

∑
l=1

n(ul)ẑPK(ul) with n(vα) =
Lα

∑
l=1

n(ul) (1)

where Lα is the number of grid cells within municipality vα and n(ul) represents the
population within the grid cell centered on the node ul . In both cases, each rate estimate
is calculated as the weighted sum of rates recorded in (B − 1) neighboring municipalities,
besides the municipality vα where the estimation is taking place:

ẑPK(vα) =
B

∑
β=1

λβz
(
vβ

)
and ẑPK(ul) =

B

∑
β=1

κβz
(
vβ

)
(2)

where the weights are the solution of the following systems of linear equations known
respectively as area-to-area (ATA) PK and area-to-point (ATP) PK:

B

∑
β=1

λβ

[
CR
(
vβ, vθ

)
+ δβθ

z
n(vθ)

]
+ µ(vα) = CR(vα, vθ) θ = 1, . . . , B

B

∑
β=1

λβ = 1

(3)

B

∑
β=1

κβ

[
CR
(
vβ, vθ

)
+ δβθ

z
n(vθ)

]
+ µ(ul) = CR(ul , vθ) θ = 1, . . . , B

B

∑
β=1

κβ = 1,

(4)

where µ (.) is a Lagrange multiplier accounting for the unit sum constraint on the weights.
The term

_
z is the population-weighted average of the M observed rates, and its division by

n(vθ) is an error variance term, which is added to the variance CR(vθ , vθ), as the Kronecker
delta δβθ is 1 if β = θ and 0 otherwise. Thus, municipalities with a small population size
n(vθ) (i.e., small denominator) receive smaller kriging weights, as incidence rates based on
fewer cases are viewed as more error-prone (small number problem).

Under the assumption of second-order stationarity, the area-to-area covariance
CR
(
vβ, vθ

)
is numerically approximated as the average of the point-support covariance C

(h) calculated between any two locations discretizing the geographical units corresponding
to municipalities vβ and vθ . Similarly, the area-to-point covariance CR(ul , vθ) is estimated
by averaging the covariance C (h) computed between grid node ul and a set of locations
discretizing the geographical unit vθ .
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The point-support covariance C (h) is inferred in three steps. First, an area-based
semivariogram is calculated from incidence rates using the Poisson estimator introduced
in [5]:

γ̂v(h) =
0.5

∑N(h)

α,β
n(vα)×n(vβ)
n(vα)+n(vβ)

N(h)

∑
α,β

{
n(vα)× n

(
vβ

)
n(vα) + n

(
vβ

) [z(vα)− z
(
vβ

)]2 − z

}
, (5)

where N (h) is the number of pairs of municipalities (vα, vβ) whose population-weighted
centroids are separated by the vector h, and

_
z is the population-weighted mean of the

M incidence rate. The squared spatial increments
[
z(vα)− z

(
vβ

)]2 are weighted by a
function of their respective population sizes, n(vα)× n

(
vβ

)
/[n(vα) + n

(
vβ

)
], a term which

is inversely proportional to their standard deviations [6]. More importance is thus given to
the more reliable data pairs (i.e., smaller standard deviations). Second, a model is fitted to
the experimental semivariogram γ̂v(h) and deconvoluted using an iterative procedure [21]
to derive the point-support semivariogram model γ(h). Last, the covariance is calculated
as C(h) = C (0) − γ(h), where C (0) is the sill of the semivariogram γ(h).

2.3. Soft Indicator Kriging

To avoid the issue of negative estimates, ẑPK(ul) < 0, being generated during the
disaggregation of municipality-level incidence rates by PK, a novel methodology was
implemented. It relies on a soft indicator coding of rate data, followed by their spatial
disaggregation using ATP kriging [11]. In the case of daily incidence rates, this new
approach proceeds for each day as follows:

1. Compute K = 50 percentiles zk of the frequency distribution of M = 581 municipality

rates, F(.), as: zk =F-1(pk) with
{

pk = pmin + (k− 1)× (1−pmin)
50 , k = 1, · · · , K

}
where

pmin = F(zmin) is the proportion of rates no greater than the minimum observed rate
zmin. This formulation avoids obtaining a series of zero-valued thresholds for days
where no cases were recorded in many municipalities.

2. For each municipality vα:

• Create a binomial distribution Bi (n(vα),z(vα)) characterized by the daily inci-
dence rate z(vα) and the population n(vα) within that geographical unit. This
step allows one to capture the uncertainty attached to the observed rate z(vα),
which can be substantial for municipalities that are sparsely populated (i.e., small
population size n(vα)),

• Discretize the probability distribution using the set of K thresholds zk calculated
at step 1: {j(vα; zk) = FBi(vα; zk), k = 1, · · · , K} where FBi(vα) is the cumulative
binomial distribution for the α-th municipality. The quantity j(vα; zk) represents
the probability that the underlying rate is no greater than the threshold zk for
municipality vα.

3. For each threshold zk:

• Calculate and model the population-weighted indicator semivariogram as:

γ(h; zk) =
1

∑N(h)

α,β
n(vα)× n

(
vβ

)
N(h)

∑
α,β

n(vα)× n
(
vβ

) [
j(vα; zk)− j

(
vβ; zk

)]2
where N (h) is the number of pairs of municipalities (vα, vβ) whose population-
weighted centroids are separated by the vector h [19].

• Use this model and ATP ordinary kriging to disaggregate the probabilities
j(vα; zk) (i.e., soft indicator data) at the nodes ul of a 1 km spacing grid dis-
cretizing the country (total number of nodes is L = 31,557).
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4. For each node ul of the discretization grid:

• Assemble the K estimated probabilities j∗(ul ; zk) into a probability distribution.
• Correct for order relation deviations [15] as: (1) each probability j∗(ul ; zk) can be

negative or larger than 1 since it was estimated by ATP kriging (same potential
issues as PK), and (2) the set of K probabilities j∗(ul ; zk) were estimated separately,
with no guarantee that j∗(ul ; zk) ≤ j∗(ul ; zk+1) ∀ zk+1 > zk.

• Create a continuous distribution using linear interpolation between thresholds,
as well as between the first (last threshold) and the minimum (maximum) ob-
served rate.

• Calculate the mean ẑIK(ul) and variance of the local probability distribution
(ccdf).

5. For each municipality vα:

• Estimate each of the K probabilities j∗(vα; zk) as the population-weighted average
of the corresponding probabilities j∗(ul ; zk) for all nodes ul that fall within that
geographical unit, i.e.,

j∗(vα; zk) =
1

n(vα)

L

∑
l=1

i(ul ; vα)× n(ul)× j∗(ul ; zk) (6)

with i(ul ; vα) = 1 if ul ∈ vα and 0 otherwise. n(ul) is the population size within
the raster cell centered on node ul while n(vα) is the population for the α-th
municipality. Each probability j∗(vα; zk) can be interpreted as the population-
weighted fraction of the α-th municipality area, Aα, where the threshold zk is not
exceeded.

• Assemble the K estimated probabilities j∗(vα; zk) into a probability distribution.
• Correct for order relation deviations and create a continuous distribution us-

ing linear interpolation between thresholds, as well as between the first (last
threshold) and the minimum (maximum) observed rate.

• Calculate the mean ẑIK(vα) and variance of the local probability distribution
(ccdf).

2.4. Software

The analysis was conducted using the following public-domain software: (1) SpaceStat
4.0 [22] for Poisson kriging, ATP kriging and some of the data processing (e.g., creation of
interpolation grids, mapping), and (2) program AUTO-IK [23] for indicator kriging.

3. Results
3.1. Temporal Trend and Spatial Patterns

The proposed approach (IK) was compared to results obtained by both ATA (area-to-
area) PK for municipalities and ATP (area-to-point) PK for grid nodes. The comparison
was conducted for four dates of the pandemic; from the time series of 365 daily incidence
rates starting on 1 March 2020 (Figure 2), the analysis was conducted for times t = 10 days
(10 March 2020), t = 200 days (16 September 2020), t = 242 days (28 October 2020) and
t = 300 days (25 December 2020). This choice allowed one to consider a range of frequency
distributions, from low incidence rates (mean = 0.444 cases/10,000 inhabitants) with 64% of
null rates (10 March 2020), to a date (25 December 2020) with an average incidence rate of
11.66 cases/10,000 inhabitants and only a few municipalities with no COVID-19 cases; see
Table 1. The peak was reached on 28 October 2020, when the incidence rate per municipality
ranged between 12.98 and 303.8 cases/10,000 inhabitants, with a mean of 105.63. Note
that at the beginning of the pandemic, the testing capacity was low, so that only patients
admitted to the hospital were tested; the rates were therefore largely underestimated as for
other infectious diseases [24]. This is visible in the amplitude of the first peak (t = 40 days),



ISPRS Int. J. Geo-Inf. 2023, 12, 328 7 of 17

which is 10 times smaller than the second peak (t = 242 days), while mortality rates were
similar [25].

Table 1. Summary statistics of COVID-19 incidence rates (number of cases per 10,000 inhabitants)
recorded at four different dates for all 581 Belgian municipalities.

Dates

Statistics 10 March 2020
(t = 10)

16 September 2020
(t = 200)

28 October 2020
(t = 242)

25 December 2020
(t = 300)

Mean 0.444 6.049 105.6 11.66
Variance 0.932 31.97 3573 55.65

Minimum 0.0 0.0 12.98 0.0
Maximum 6.981 45.59 303.8 50.84

% null values 64.4 10.8 0.0 1.9
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Figure 2. Time series of COVID-19 incidence rates (number of cases per 10,000 inhabitants), which
were averaged over all 581 municipalities in Belgium. The time axis represents the number of days
after 1 March 2020, while vertical red lines denote the four dates used for the comparison study.

The spatial distribution of incidence rates recorded at the municipality level was
mapped in Figure 3 for each of the four dates. As the pandemic progressed and the
incidence rate increased, a spatial pattern of higher incidence in the southeastern part
of Belgium emerged. This spatial structure was particularly pronounced at the peak of
the pandemic (28 October 2020). The semivariograms in Figure 4 confirmed this visual
interpretation; in particular, the long-range structure became predominant while the relative
nugget effect (i.e., discontinuity at the origin expressed as proportion of the sill) vanished
as the infectious disease spread.
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Similar results were obtained in studies on the temporal variation of spatial autocorrela-
tion of COVID-19 cases. In particular, using county-level incidence rates in Poland, ref. [14]
found that the overwhelming majority of dates without any spatial autocorrelation, as
measured by the Poisson semivariogram, happened at the beginning of the pandemic
(March to August 2020) when the number of cases was low, and geographical units with
extremely low and high values were directly adjacent to each other. Other measures of
autocorrelation, such as Global Moran’s I or the spatial component of generalized linear
models, revealed similar temporal trends for other countries [26–28].

The application of IK required the computation and modelling of semivariograms,
albeit in a much larger number (50 vs. 1), which was conducted automatically by the
program AUTO-IK [23]. Indicator semivariograms for the first (second for 28 October 2020)
threshold were plotted for all four dates (Figure 5), while Figure 6 shows experimental
and modeled semivariograms for three additional thresholds (# 10, 25, 40) on two different
dates (10 March 2020, 25 December 2020). Like for Poisson semivariograms (Figure 4),
stronger spatial structures, in particular longer ranges of autocorrelation, were observed at
later dates, as incidence rate increased.
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Figure 5. Experimental population-weighted indicator semivariogram calculated for the first (second
for 28 October 2020) threshold at four different dates, with the model fitted. The first threshold
corresponds to a null COVID-19 incidence rate that was recorded among 1.9% (25 December 2020) to
64.4% (10 March 2020) of Belgian municipalities. COVID-19 cases were identified in all 581 Belgian
municipalities on 28 October 2020 when the mean incidence rate peaked.
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Figure 6. Experimental population-weighted indicator semivariogram calculated for three different
thresholds (# 10, 25, 40) and two different dates (10 March 2020, 25 December 2020), with the
model fitted.

3.2. Kriging Estimates

The semivariogram models in Figure 4 were used to filter the noise attached to
municipality-level rates using area-to-area PK (ATAPK) and the eight closest municipalities
(B = 8 in Equation (2)). ATA kriging results were mapped for the first and last dates at
the top of Figures 7 and 8, while statistics (variance, rank correlation with observed rates)
for all four dates were listed in the first two rows of Tables 2 and 3. Compared to PK, the
IK approach generated less smoothing, both at the municipality level (compare top maps
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in Figures 7 and 8) and after downscaling to a 1 km resolution (compare middle maps in
Figures 7 and 8).
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Figure 7. Maps of smoothed COVID-19 incidence rates (number of cases per 10,000 inhabitants)
calculated by PK and IK at the municipality level (ATA kriging, A,B) and at the nodes of a 1 km
spacing grid (ATP kriging, C,D) for time period 1 (10 March 2020). Black pixels indicate negative
kriging estimates. Bottom maps (E,F) show the kriging variance for ATP kriging.
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Figure 8. Maps of smoothed COVID-19 incidence rates (number of cases per 10,000 inhabitants)
calculated by PK and IK at the municipality level (ATA kriging, A,B) and at the nodes of a 1 km
spacing grid (ATP kriging, C,D) for time period 1 (25 December 2020). Black pixels indicate negative
kriging estimates. Bottom maps (E,F) show the kriging variance for ATP kriging.

Table 2. Variance of Poisson (PK) and indicator kriging (IK) estimates calculated at the municipality
level (ATA) and after spatial disaggregation (ATP) for four different dates.

Dates

Variance 10 March 2020
(t = 10)

16 September 2020
(t = 200)

28 October 2020
(t = 242)

25 December 2020
(t = 300)

ATA PK 0.194 15.91 3219 25.10
ATA IK 0.754 25.77 3575 49.07
ATP PK 0.190 10.49 3031 26.95
ATP IK 0.559 16.73 3225 45.81
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Table 3. Rank correlation between Poisson (PK) and indicator kriging (IK) estimates calculated at
the municipality level (ATA) and after spatial disaggregation (ATP) for four different dates. At the
municipality level, the rank correlation with observed rates is also listed.

Dates

Correlation 10 March 2020
(t = 10)

16 September 2020
(t = 200)

28 October 2020
(t = 242)

25 December 2020
(t = 300)

ATA PK vs.
rate 0.645 0.846 0.989 0.851

ATA IK vs.
rate 0.883 0.976 0.998 0.997

PK vs. IK
(ATA) 0.645 0.889 0.989 0.862

PK vs. IK
(ATP) 0.849 0.875 0.980 0.907

The magnitude of the smoothing effect, hence discrepancies between the two ap-
proaches, was the largest when the average incidence rate was low, and many municipal-
ities had no cases. For example, the variance of noise-filtered municipality-level rates is
0.194 (PK) vs. 0.754 (IK) for the first time period (10 March 2020) with 64.4% of null rates,
while the ratio of variances is the smallest (3219 vs. 3575) at the peak of the pandemics
when cases were recorded in all municipalities (Table 3). Similarly, the correlation between
the two sets of kriged rates strengthened as we moved from time period 1 to 3: r = 0.645 to
0.989 (Table 3).

The smaller variance of PK estimates at t = 10 days is caused by the weaker spatial
structure (shorter range and larger nugget effect of semivariograms in Figure 4), which led
to assigning almost as much weight to remote observations than closer ones in Equation (2).
In other words, the kriging estimate starts mimicking the arithmetical average and deviates
more from the original rate. This is reflected by the lower correlation between ATA PK rates
and observed rates compared to ATA IK rates and observed rates, in particular for the first
date (r = 0.883 for IK vs. 0.645 for PK); see Table 3 (first two rows). Interestingly, the greater
variance of IK estimates vs. PK estimates is not observed over the entire range of values.
The scatterplots of Figure 9 illustrate the narrower range exhibited by IK rate estimates vs.
PK results for municipalities with no case (green ellipses). This is a desirable feature, as one
should be suspicious of estimated rates that greatly exceed observed rates after smoothing.
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Figure 9. Scatterplots of COVID-19 incidence rates smoothed by PK and IK at the municipality level
(ATA kriging) versus rates recorded for time period 1 (10 March 2020). Notice the larger smoothing
effect (i.e., smaller spread) caused by PK vs. IK, except for null incidence rates where the estimates
range from 0 to 2 cases per 10,000 inhabitants vs. 0 to 1 for IK (green ellipse).

Similar to the case of municipality rates, the correlation between the two sets of grid-
ded estimates (ATP kriging) increases with time as the average incidence rate increases:
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r = 0.849 to 0.980; see Table 3 (last row). In addition to reducing the smoothing effect
(Table 2, last two rows), disaggregation by IK also avoids the generation of negative es-
timates for the first time period where many municipalities do not have any case; see
black pixels in the map of Figure 7C. The disaggregation of municipality-level probabilities
{j(vα; zk), k = 1, · · · , K} using ATP ordinary kriging (Step 3 in Section 2.3) can, however,
generate a set of probabilities {j∗(ul ; zk), k = 1, · · · , K} that violates order relations, includ-
ing negative probabilities, and needs to be corrected. The magnitude of these corrections
(Table 4, second line) is of the order of 0.045 and are less frequent at the peak of the pan-
demic (t = 242 days): 43% vs. 80% for other days (Table 4, first line), likely because of the
absence of zero incidence rates. Once corrected at the grid level, no more order relation
deviation is observed after aggregation to the municipality level; see Table 4 (last two lines).

Table 4. Frequency and magnitude of corrections applied to IK-based ccdfs that violate order relations
at the grid node (ATP IK) and municipality (ATA IK) levels.

Dates

Order
Relations

10 March 2020
(t = 10)

16 September 2020
(t = 200)

28 October 2020
(t = 242)

25 December 2020
(t = 300)

Freq. (ATP) 0.798 0.791 0.427 0.708
Magn. (ATP) 0.044 0.042 0.051 0.049
Freq. (ATA) 0.0 0.0 0.0 0.0

Magn. (ATA) 0.0 0.0 0.0 0.0

3.3. Kriging Variances

In addition to rate estimates, PK and IK differ in terms of the variance of prediction
errors; see distinct spatial patterns at the bottom of Figures 7 and 8. Once again, differences
are the largest for the first time period: the correlation between the two sets of ATA kriging
standard deviations (not mapped) is only -0.176, while the correlation is 0.728 for the
last time period (Table 4, first row). While the PK variance is a function of the geometric
configuration of the data (i.e., larger variance where distance between municipality cen-
troids is large) and the population size (i.e., smaller variance in more heavily populated
municipalities), the variance of the IK-based probability distributions is also a function of
the mean of these distributions (i.e., risk estimates), a phenomenon known as proportional
effect. This is illustrated by the correlation coefficients listed in Table 5. For ATA IK, the
correlation between kriging standard deviation and estimates ranges between 0.724 (t = 242)
and 0.986 (t = 10) while it never exceeds 0.259 for PK. Similar results are obtained for ATP
kriging (Table 5, bottom half) although the magnitude of negative and positive correlations
is smaller, which is an artefact of the larger population size: n = 581 municipalities versus
n = 31,557 grid nodes.

Table 5. Rank correlation between Poisson (PK) and indicator kriging (IK) outputs (i.e., estimated
value, error standard deviation) calculated at the municipality level (ATA) and after spatial disaggre-
gation (ATP) for four different dates. Correlation with municipality population size is also listed.

Dates

Correlation 10 March 2020
(t = 10)

16 September 2020
(t = 200)

28 October 2020
(t = 242)

25 December 2020
(t = 300)

ATA
PKstd vs. IKstd −0.176 0.379 0.728 0.721
PKstd vs. PKest −0.197 −0.053 0.259 0.115
IKstd vs. IKest 0.986 0.657 0.724 0.619

PKstd vs. Population −0.908 −0.933 −0.980 −0.919
IKstd vs. Population 0.175 −0.339 −0.737 −0.689
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Table 5. Cont.

Dates

Correlation 10 March 2020
(t = 10)

16 September 2020
(t = 200)

28 October 2020
(t = 242)

25 December 2020
(t = 300)

ATP
PKstd vs. IKstd −0.106 0.414 0.499 0.508
PKstd vs. PKest −0.208 −0.040 0.257 0.116
IKstd vs. IKest 0.952 0.571 0.631 0.585

PKstd vs. Population −0.665 −0.711 −0.680 −0.669
IKstd vs. Population 0.040 −0.302 −0.384 −0.390

4. Conclusions

In this study, we addressed two common challenges associated with the analysis of
health outcomes aggregated over small areas, namely filtering noise caused by small local
population sizes and deriving estimates at different spatial scales. Geostatistical techniques,
such as PK, have been widely used to address these challenges by accounting for the pattern
of spatial correlation and neighboring observations in the smoothing and change in spatial
support. However, a limitation of PK is the possibility of generating unrealistic rates that
are either negative or larger than 100%.

To overcome this limitation, we proposed an alternative approach that relies on a soft
indicator coding of probability distributions inferred from rate data and population size for
a series of geographical units. The use of a binomial distribution was novel and allowed us
to account for uncertainty attached to rates recorded in sparsely populated geographical
areas. This was followed by a kriging interpolation to derive these distributions at different
spatial scales. The effectiveness of this approach was demonstrated by applying it to daily
COVID-19 incidence rates recorded in 2020–2021 for each of the 581 municipalities in
Belgium.

The absence of data at the grid level prohibited the quantitative comparison of the
accuracy of the two types of disaggregation procedures. The IK approach has, however,
several attractive features: (1) the lack of negative kriging estimates, (2) the smaller smooth-
ing effect, and (3) the better agreement with observed rates after aggregation, in particular,
when the original rate was zero (i.e., epidemiologists might be suspicious of smoothed rates
that deviate too much from observed rates). It is noteworthy that as the mean incidence
rate increases, differences between approaches decrease, which can be viewed as a positive
development.

Indicator kriging is computationally more expensive since it requires the solving of
50 kriging systems instead of a single PK system, yet it is still tractable as it took just a
few CPU minutes in the present case. Another limitation is that probabilities estimated
through disaggregation can be negative and might not form a valid probability distribution,
with the need for a posteriori correction of these order relation deviations. Such correction
has, however, been routinely applied in the geostatistical literature [29]. Future work will
extend the applications of these techniques to chronic diseases, including the mapping of
cancer incidence and mortality rates [30].

One of the main benefits of geostatistical techniques is their ability to incorporate
multiple layers of secondary information that can be more densely sampled or available
at a finer spatial resolution. This is particularly useful when disaggregating areal data
to explain some of the unknown spatial variation present at local scales. One of the
most widely applied technique is area-to-point residual kriging, where ancillary data are
used to inform on within-area variation through a regression model, followed by the
disaggregation of regression residuals by ATP kriging. This multivariate interpolation
approach improved the accuracy of prediction in multiple studies, including the mapping
of urban population density using remote sensing covariates [31], the prediction of soil
organic carbon content [32] using recent soil measurements and disaggregated legacy
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soil data (soil map) in addition to high resolution auxiliary variables (elevation, airborne
radiometric K), and the downscaling of 25 km resolution surface soil moisture remote
sensing products using fine scale auxiliary data [33]. Recent findings [34,35] indicate a
connection between geo-environmental factors (e.g., air pollution, chemical exposures,
climate and the built environment) and the transmission, susceptibility and severity of
COVID-19. A similar methodology could thus be implemented for incorporating such
environmental factors in the space-time prediction of COVID-19 incidence rates.
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