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Abstract: The urban road network is a large and complex system characterized by significant het-
erogeneity arising from different spatial structures and traffic demands. To facilitate effective man-
agement and control, it is necessary to partition the road network into homogeneous sub-areas. In
this regard, we aim to propose a hybrid method for partitioning sub-areas with intra-area homo-
geneity, inter-area heterogeneity, and similar sizes, called CSDRA. It is specifically designed for
bidirectional road networks with segment weights that encompass traffic flow, speed, or roadside
facility evaluation. Based on community detection and spectral clustering, this proposed method
comprises four main modules: initial partition, partitioning of large sub-areas, reassignment of
small sub-areas, and boundary adjustment. In the preliminary partitioning work, we also design
a road network reconstruction method which further helps to enhance the intra-area homogeneity
and inter-area heterogeneity of partitioning results. Furthermore, to align with the requirement for
comparable work units in practical traffic management and control, we control the similarity in the
size of sub-areas by enforcing upper and lower bound constraints on the size of the sub-areas. We
verify the outperformance of the proposed method by an experiment on the partitioning of an urban
road network in Guangzhou, China, where we employ sidewalk barrier-free score data as segment
weights. The results demonstrate the effectiveness of both the road network reconstruction method
and the CSDRA proposed in this paper, as they significantly improve the partitioning outcomes
compared with other methods using different evaluation indicators corresponding to the partitioning
objectives. Finally, we investigate the influence of constraint parameters on the evaluation indicator.
Our findings indicate that appropriately configuring these constraint parameters can effectively
minimize sub-region size variations while having minimal impact on other aspects.

Keywords: bidirectional road network partitioning; graph reconstruction; multi-objectives; community
detection; spectral clustering

1. Introduction

The urban road network comprises intersections and road segments, which correspond
to vertexes and edges in a graph. Due to variations in spatial distribution, population,
economy, and traffic, among other factors, there exists both local homogeneity and hetero-
geneity within the urban road network. Such differences make it impractical to implement a
single management or control strategy that can effectively adapt to all areas of a large-scale
road network. Therefore, it becomes necessary to partition the large-scale heterogeneous
road network into homogeneous sub-networks, enabling fine management of the urban
road network. Existing road network partitioning methods can be categorized into two
groups: those based on data derived from the road network and those based on the road
network itself. The former primarily involves using OD data, occupational and residen-
tial population distribution data, and similar data sources to determine the partitioning.
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This type of method does not directly consider the topological relationship of the road
network and is suitable for macroscopic traffic management and analysis. On the other
hand, the latter mainly focuses on partitioning based on the data of intersections [1] or
road segments. This method takes into account both the microscopic traffic operation
and the topological relationship of the road network. Road segments, as integral compo-
nents of the road network, carry essential traffic information such as flow, density, speed,
and even roadside facility evaluation. Therefore, investigating the partitioning of road
networks based on road segments is necessary. For example, by partitioning sub-areas
based on traffic flow data, it becomes possible to identify congested and uncongested re-
gions, providing insights for managing traffic congestion effectively. Similarly, partitioning
sub-areas based on roadside facility evaluation allows relevant departments to prioritize
maintenance and renovation efforts accordingly. Furthermore, it is important to note that
actual road segments are bidirectional and exhibit different data characteristics. Thus, in
contrast to previous studies that primarily focused on unidirectional road networks [2,3],
our research investigates bidirectional road networks with unidirectional road segments as
the minimum unit of analysis.

Existing methods for road network partitioning encompass empirical-based partition-
ing, heuristic algorithms [4,5], clustering algorithms [6,7], and community detection [8].
Empirically-based partitioning relies on administrative districts or physical features such
as mountains and rivers to delineate partitions [9]. While simple, this method is restrictive
and fails to consider segment attributes. The heuristic algorithm suffers from slow conver-
gence and difficulty in reducing the connection between sub-areas [10]. Other clustering
algorithms, such as k-means [11], spectral clustering [12], and related graph partitioning
methods such as N-cut [13,14], α-cut [15], and k-way [16] are commonly used in road
network partitioning. However, traditional clustering algorithms such as k-means do
not account for road network adjacency and are not directly applicable to partitioning.
Spectral clustering and its improvement algorithms have been widely used in road network
partitioning. For example, Yang et al. [12] utilized spectral clustering to analyze daily traffic
state changes based on traffic speed data, extracting traffic change characteristics. Another
study by Yang et al. [17] applied Markov chains to enhance the robustness of spectral
clustering similarity graphs, combined with genetic algorithms for improved partitioning
results. One limitation of clustering algorithms is the need for customizing the number of
sub-areas, without a clear connection to the quality of the partitioning results. Compared
to the aforementioned algorithms, community detection algorithms are more suitable for
large networks and offer potential advantages in road network partitioning studies [2].

Community detection algorithms were initially developed to identify communities
within social networks, such as classifying traffic communities based on traffic information
in social networks [18]. Although these algorithms are rarely applied directly to road
network data partitioning, they are often used in the context of commuting data [19], multi-
modal traffic trajectories [8], cell phone signaling [20], POI data [21] and other sources
to partition urban road networks or explore urban cluster structures. However, urban
road networks possess nonlinear and complex network properties that can be represented
as graphs and partitioned using community detection algorithms. The key to applying
these algorithms to urban road network partitioning lies in the reconstruction of the road
network. There are two main ways to convert the road network into a graph. The first
one is a direct conversion [11] where the intersections correspond to vertexes and the road
segments correspond to edges. However, this way is not suitable for partitioning based on
road segments and may not yield reasonable sub-areas. In complex network theory, ver-
texes typically represent entities of interest, while edges describe the connections between
them. Therefore, some studies take the road segments in the original road network as
vertexes and determine the edges base on the connectivity of road segments to create a new
graph for partitioning [22,23]. The focus of this conversion is on establishing meaningful
connections between road segments to facilitate subsequent partitioning. During the recon-
struction of the road network, the selection of partitioning feature parameters is crucial.
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Most of the studies primarily focused on the partitioning of individual factors, such as
solely considering the topology of the road network [24] or only taking into account a single
traffic attribute, such as traffic flow or density. Liu et al. [25] proposed a novel approach
that combines methods such as Pearson coefficients and data normalization to incorporate
multiple traffic parameters for partitioning. It is important to note that considering only
traffic attributes is insufficient for urban road network partitioning, as the adjacency rela-
tionship between road segments should also be taken into account. The edges in the graph
can be redefined [26] to obtain a more suitable graph for road network partitioning.

Indeed, the existing methods for road network partitioning have their advantages
and disadvantages, and they may not be able to simultaneously satisfy multiple objectives
and directly achieve the desired partitioning results. To address this, some studies have
proposed combined algorithms to improve the partitioning outcomes [27]. For example,
Chen et al. [3] proposed a partitioning method that includes initial partition, merging,
and boundary adjustment to obtain homogeneous sub-areas. Jiang et al. [28] proposed
a six-step partitioning method that aims to achieve intra-area homogeneity and inter-
area heterogeneity. These methods primarily focus on obtaining partitioning results with
balanced intra-area homogeneity and inter-area heterogeneity [29]. Some studies also
consider the balance of sub-area sizes [5], but they may lack control over the size intervals
of the sub-areas. Obtaining many smaller sub-areas or a few larger sub-areas achieves a
balance of sub-area sizes, but such a partition is meaningless. Hence, it is important to
explore approaches that can achieve a reasonable number of sub-areas and similar sub-area
sizes while ensuring intra-area homogeneity and inter-area heterogeneity. This requires
careful consideration of the objectives and trade-offs involved in road network partitioning.

Previous studies have employed simplistic models of the road network, failing to
account for the presence of bidirectional road segments found in real road networks.
Moreover, there was insufficient consideration of the connectivity and traffic attributes
of the network when determining the basis of partition. Additionally, existing studies
primarily focused on achieving intra-area homogeneity and inter-area heterogeneity as
partitioning objectives, disregarding the practical need for uniformity among sub-areas.
Meanwhile, the majority of existing partitioning methods fail to meet the requirements of
multi-objective partitioning. To address these issues, we propose the following approaches.

In this paper, we propose the CSDRA algorithm which aims to accomplish bidirectional
weighted road network partitioning by considering the connectivity of the network and the
similarity of traffic attributes. Our algorithm considers the objectives of achieving intra-area
homogeneity, inter-area heterogeneity, and similar sub-area sizes within controlled intervals.
The choice of traffic attributes used in the algorithm depends on the specific application
scenario. For instance, traffic flow [30], speed [31], or management facility scores can be
considered as potential traffic attributes in different contexts. To improve the partitioning
results, we also introduce a road network reconstruction method that incorporates network
adjacency relationships and weight similarity between road segments. The output of this
road network reconstruction is an edge graph, which serves as the input for the CSDRA
algorithm. Initially, the algorithm employs a community detection algorithm to obtain
the initial partition result. Then, by controlling constraint parameters, larger sub-areas
are partitioned while smaller sub-areas are reassigned to surrounding sub-areas, reducing
the variability in sub-area size. This paper differs from previous literature by not only
obtaining line sub-areas through road network partitioning [2], but also deriving smooth
surface sub-areas. By overlaying spatial data such as population, economy, or points of
interest (POI) [26] onto these surface sub-areas, we can provide valuable theoretical support
for traffic partition management and control. To assess the effectiveness of our proposed
method, we conducted a case study in the downtown area of Guangzhou, China, focusing
on the road network of secondary or higher roads. We utilized evaluated data on roadside
barrier-free facilities as segment weights for the partitioning process. The performance
of our method will be evaluated by comparing the quantitative indicators with those
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obtained from other existing methods. In summary, we make the following contributions
in this paper.

• We propose a road network reconstruction method that considers the adjacency re-
lationship between network segments and their weight similarity. This method uses
road segments as vertexes, recalculates the correlation between the road segments, and
then obtains new edges and their corresponding weights through threshold screening.
Therefore, this method can be seen as a form of data pre-processing that can improve
the effectiveness of the road network partition by enhancing the association among
similar segments and reducing the association among dissimilar segments.

• We propose a multi-step partitioning method for bidirectional road networks with
weights. The method can solve a multi-objective optimization problem and achieves
road network partitioning results with intra-area homogeneity, inter-area heterogene-
ity, and similar size of sub-areas. Through comprehensive evaluations using various
indicators, our proposed partitioning method demonstrates superior performance
compared to existing algorithms.

The rest of the paper is organized as follows. Section 2 introduces the fundamental
theories, defines the problem, and provides an overview of the framework. It also provides
an introduction to the road network reconstruction method. In Section 3, we present a
comprehensive methodological overview, providing a detailed description of each module
comprising the CSDRA approach proposed in this study. Moving on to Section 4, we
showcase the results of the road network partitioning case study and compare CSDRA with
alternative methods using evaluation indicators. Furthermore, we analyze the impact of
constraint parameters on the partitioning results obtained with CSDRA. Finally, in Section 5,
we conclude the paper by highlighting potential avenues for future research.

2. Problem Definition and Framework Overview

This section serves to introduce key definitions and concepts pertinent to the method-
ology presented in this paper. It outlines the problem at hand and provides an overview of
the method framework.

2.1. Definition

To make the urban road network in the form of a physical network to be a machine-
understandable network, it is necessary to give it a mathematical representation in the
form of a graph, as defined in Definition 1 below. In this paper, we take the road segments
in the original road network as vertexes and redefine the edges connecting them, so as to
construct the Edge Graph as Definition 2.

Definition 1 (Road network). A real bidirectional urban road network is defined as R = (I, S),
comprising a set of intersection points I = (i1, i2, i3, . . . , in) as nodes, and a set of road segments
S = (s1, s2, s3, . . . , sm) connecting these nodes. Where the road segment si carries a weight wi,
which range is (0, 1).

The road segment weights can encompass various factors such as traffic flow, speed,
pedestrian flow, and roadside facility evaluation. Once the road network is established, it
can be transformed into an Edge Graph, which facilitates the partitioning process.

Definition 2 (Edge Graph). The Edge Graph is an undirected weighted graph, defined as
G = (V, E). Where the set of vertexes is defined as V = (v1, v2, v3, . . . , vm), which corresponds to
the set S of segments of the road network R; ei,j denotes the edge connecting (vi, vj).

During the construction of the edge graph, a crucial step is to calculate the weights
assigned to the edges. These weights reflect the similarity between two vertexes, indicating
the similarity between two corresponding road segments.
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Definition 3 (Weight of the edge). The edge weight ωi,j of the Edge Graph is calculated by
weighting the Jaccard correlation J(si, sj) and the similarity Sim(si, sj) of the weights of the
corresponding segments si and sj in the road network R, as shown in Equations (1)–(3).

ωi,j = β·J(si, sj) + (1− β)·Sim(si, sj) (1)

J(si, sj) =

∣∣Nsi ∩ Nsj
∣∣∣∣Nsi ∪ Nsj
∣∣ (2)

Sim(si, sj) = 1−
∣∣wi − wj

∣∣ (3)

In Equation (1), β is the weight of the Jaccard correlation of the road section in the range of (0, 1).
The value can be determined empirically, such as β = 0.5, or confirmed by an objective weighting
method such as the entropy weighting method.

The Jaccard correlation can be used to measure the correlation of edges in the graph [32],
but to ensure the continuity of partitioning the resultant sub-areas, a threshold ∂ is needed
before calculating the edge weights, such as J(si, sj) > ∂, ∂ = 0.3. It is calculated as the
ratio of the number of elements of the intersection of sets Nsi and Nsj to the number of
elements of their concurrent sets, where the two sets are the vertexes connected to the
endpoints of segments si and sj, respectively. The closer the value is to 1 the better the
network association of the two road segments. Equation (3) calculates the similarity of
segment weights, the closer the value is to 1 means the more similar the weights of two
segments are. It is necessary to set a certain threshold γ to ensure intra-area homogeneity
and inter-area heterogeneity, and to filter the ei,j worthy of retention according to ωi,j > γ.

Once the Edge Graph is constructed, the community detection algorithm can be
applied to implement the initial partition that considers the maximum modularity [33,34].

Definition 4 (Modularity). Modularity is a widely used metric in network analysis to assess the
structural properties of a network. It quantifies the level of clustering within different communities
of the network [35]. Usually, the higher the modularity value is, the more obvious and tighter the
communities exist in the network. Considering that the graph used for partitioning in this paper is
an undirected weighted graph, the modularity degree is defined as follows:

Q =
n

∑
c=1

[
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c is the sum of the weights of the edges inside
sub-area c; dc is the sum of the strengths of all vertexes inside sub-area c. The concept of strength is
similar to the degree of a vertex in a graph and refers to the sum of the weights of the neighboring
edges of the vertex [33].

Define a k× k symmetric matrix M = (lpq), where lpq denotes the ratio of the sum of
the edge weights connected between sub-areas p and q in the network to the sum of all
edge weights. Particularly, lpp represents the ratio of the sum of the edge weights within
the sub-area p to the sum of all edge weights. Summing the rows of the matrix M yields
ap = ∑q lpq, which represents the ratio of the strengths of the vertexes connected to the
sub-area p to the strengths of all vertexes. Thereby, the modularity expressed in Equation
(4) can be further expressed as:

Q = ∑p

(
lpp − ap

2
)

(5)

Urban roads typically have bidirectional traffic, and different directions on the same
road often carry distinct weights, such as traffic flow, density, or sidewalk barrier-free
facilities evaluation. In the real road network, as illustrated in Figure 1a for segment 1a
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and segment 1b, there is no direct connection between the different directions of the same
segment. Without other processing, the graph generated with the initial road network
would cause two related road segments (e.g., Figure 1a,b) to lose their close connection in
the graph. To avoid this, we establish connections by linking the endpoints of bidirectional
segments, as shown in Figure 1b. Subsequently, we convert the road network into an
Edge Graph for partitioning, as illustrated in Figure 1c,d. Figure 1c is specifically tailored
to consider pedestrian flow or roadside facilities evaluation, while Figure 1d focuses on
vehicle flow. The disparity between them primarily lies in the connectivity of road segments.
For instance, in Figure 1c, road segments 4a and 3b are directly connected, whereas in
Figure 1d, these two road segments lack a direct connection. This indicates that our network
reconstruction method is specifically designed to partition the network while considering
the aspects of pedestrians, roadside facilities, and vehicles.
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Figure 1. Schematic conversion of the initial road network to an Edge Graph: (a) initial road network;
(b) road network; (c) Edge Graph (for pedestrian flow or roadside facilities); (d) Edge Graph (for
vehicle flow).

In the schematic of the Edge Graph, we have distinguished three types of edges: Initial
Edges, Extra Edges and Removed Edges.

Definition 5 (Initial Edges). The Initial Edges are established based on the adjacency of the road
network during the construction of the Edge Graph, which is commonly used in similar studies [22].

Definition 6 (Extra Edges). The Extra Edges are obtained by removing the Initial Edges after per-
forming calculations based on Equations (1)–(3) and applying the filtering conditions J(si, sj) > ∂
and ωi,j > γ. In other words, the Extra Edge includes connections between segments that were not
originally connected in the road network.

The inclusion of these Extra Edges has somewhat strengthened the internal linkages
within the homogeneous group of road segments.
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Definition 7 (Removed Edges). Removed Edges are edges that are filtered out by the threshold
constraint ωi,j > γ in Initial Edges.

The Removed Edges correspond to road segments in the road network that have
adjacent relationships but significant differences in weights. These Removed Edges are
eliminated from the Edge Graph. Eliminating Removed Edges from the Edge Graph can
effectively reduce the linkage between widely differing segments.

This processing enhances the connectivity among homogeneous segments while
reducing the connectivity among heterogeneous segments. As a result, it improves the
modularity within the sub-areas, leading to more favorable partitioning outcomes.

2.2. Problem Statement

Road network partitioning is an NP-hard problem, and it is difficult to obtain an
exact solution directly. To verify the effectiveness of the proposed method, some indicators
are needed to evaluate the partitioning results [36]. These indicators include the inverse
temperature [37], NMI [38], and GC-measure [39], which have been commonly used in
previous studies. In this paper, we summarize the existing literature and propose three
evaluation indicators including normalized overall variance (VT), weight cutting (WC),
and size variability (LM). These indicators are tailored to the specific partitioning objectives,
and smaller values across all three indicators correspond to better partitioning results.

• Normalized overall variance

This indicator measures the degree of intra-area homogeneity within the partition
results. It is represented on a scale ranging from 0 to 1, where a smaller value indicates a
higher level of intra-area homogeneity. The equation is as follows:

VT =

N
∑

c=1
Lc·Var(wc)

L·Var(w)
(6)

where, Lc is the sum of the segment lengths of sub-areas c, Var(wc) denotes the variance
of each segment weight of sub-areas c. While L and Var(w) are the sum of the segment
lengths of the whole road network and the variance of all segment weights, respectively.
Different from similar indicators in the existing literature [14], this paper uses the length of
a road segment rather than the number of road segments as the unit of calculation, because
the minimum unit of the division method in this paper is road sections of varying lengths.

• Weight cutting

This indicator measures the degree of inter-area heterogeneity within the partition
results. It is represented on a scale ranging from 0 to 1, where a smaller value indicates a
higher level of inter-area heterogeneity. The equation is as follows:

WC =
1
N

N

∑
c=1

ρ(Rc) (7)

where, ρ(Rc) represents the mean value of the similarity of the weights of the connected
sections of the sub-network Rc and its surrounding road network Rnc; N represents the
total number of sub-areas.

• Size variability

This indicator measures the variability in the size of the sub-areas and is essentially
the standard deviation of the normalized length of the road segments in each sub-area. A
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smaller value of this indicator represents less variability in the size of the sub-areas and the
equation is as follows:

LM =

(
1
N

N

∑
c=1

(Lc − L)2
) 1

2

(8)

L is the average value of the total length of the segments of all sub-areas, which is the
ideal total length of the sub-areas.

Taking the above three evaluation indicators as objective functions, the road network
partitioning problem can be formulated as a multi-objective optimization problem. The
objectives are to minimize the variability within sub-areas, minimize the similarity between
sub-areas, and minimize the variability in the size of all sub-areas. In addition to these
objectives, several constraints need to be considered:

subject to : L =
N

∑
c=1

Lc (9)

ρ(Rc) =
1
M ∑

wi∈Rc

∑
wj∈Rnc

(1−
∣∣wi − wj

∣∣) , Rc, Rnc ∈ R and Rc 6= Rnc, i 6= j (10)

Lc ≥ Lmin, c ∈ {1, 2, · · · , N} (11)

Sqmin ≤ Sqc ≤ Sqmax, c ∈ {1, 2, · · · , N} (12)

N, M > 0, and N, M ∈ N∗ (13)

where wi and wj are the weights of the connected segments between Rc and Rnc, respec-
tively, while M denotes the number of connected segments. Lmin is the length constraint
used in the initial partition to repair the effects of the bottleneck segments, as explained
later in 3.1. The Sqmin and Sqmax are the upper and lower bound constraints, respectively,
which are essentially the area of the corresponding sub-areas and are used to control the
size of the sub-areas.

To solve the above problem, we propose the method shown in the next subsection to
obtain the ideal partitioning result by initial partition and dynamic adjustment.

2.3. Framework Overview

Before introducing the methodological framework proposed in this paper, it is impor-
tant to re-emphasize the objectives of this study. The objectives include achieving intra-area
homogeneity, inter-area heterogeneity, and similarity in size. While the first two objectives
are commonly considered in relevant studies, the importance of similarity in size is often
overlooked. In the partitioning of a heterogeneous road network, it is crucial to not only
obtain homogeneous sub-areas but also ensure that the sizes of the sub-areas are similar.
This is essential for effective regional coordination control and traffic management. If the
sizes of the partitions vary significantly, it becomes challenging to manage and control
them in practical application scenarios, despite achieving homogeneity.

The framework of the CSDRA method is illustrated in Figure 2. Unlike most existing
road network partitioning methods, our proposed method outputs both line sub-areas and
surface sub-areas. The surface sub-areas are intended to be used for overlaying spatially-
distributed population, GDP, and other data for analysis. This integration of data can
provide valuable insights for urban planning and traffic management.
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In Figure 2, the blue boxes indicate the input data of the method, and the green boxes
indicate the final output. In addition, the orange boxes represent important modules within
the method, including the initial partition, partitioning of large sub-areas, reassignment
of small sub-areas and boundary adjustment. These modules will be discussed in greater
detail in Section 3 of the paper. The CSDRA method can be summarized as a process of
iteratively adjusting the initial line sub-areas based on the defined constraints, ultimately
generating both line and surface sub-areas. The framework of CSDRA can be divided into
three main parts:

• Generation of homogeneous sub-areas.

To obtain the initial line sub-areas, we begin by inputting the initial road network and
transforming it into an Edge Graph with weighted connections, as outlined in Figure 1. The
data input here can be a road network with segment weights as shown in Figure 1a,b. Next,
we partition the Edge Graph using the initial partition module (shown in Algorithm 1)
and assign sub-area numbers to each road segment, resulting in the initial line sub-areas.
We then perform a spatial join between the input grids data and the initial line sub-areas.
This process assigns numbers to each grid, resulting in the initial surface sub-areas. The
grid data refers to square cells that are uniformly divided based on a specified size, such
as square cells with a side length of 500 m, within the defined study area. Then, to ensure
the closure and boundary smoothing of each sub-area, the initial surface sub-areas were
processed by boundary adjustment.

• Size adjustment and output of the line sub-areas.

To output the final line sub-areas, we need to partition the large sub-areas that exceed
the upper bound constraint by Algorithm 2 and reassign the small sub-areas that fall
below the lower bound constraint by Algorithm 3. This framework ensures that the output
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sub-areas satisfy the lower bound constraint, as complete control over sub-area size within
the given tighter constraint interval cannot be guaranteed. It is important to emphasize
that the adjustments primarily focus on the line sub-areas, with the surface sub-areas being
adjusted accordingly after the line sub-areas have been modified.

• The adjustment and output of the surface sub-areas.

The line sub-areas output from the previous process is used as input to adjust the
initial surface sub-areas. Finally, the surface sub-areas are processed by Algorithm 4 to
ensure their smooth boundaries.

Due to variations in road network density, this method takes into account length
constraints during the initial partitioning phase, while area constraints are primarily con-
sidered during size control. Moreover, we want to emphasize that the partitioning and
adjustment are oriented to the line sub-areas. While the surface sub-areas, derived from the
line sub-areas, are mainly used for area calculation to facilitate size control and provide
support for the spatial analysis of subsequent partition management.

3. Methodology

In this section, we will describe each module mentioned above in detail.

3.1. Initial Partition

To accommodate the computation of large-scale road networks, this paper adopts
the FN algorithm [40] for the initial partitioning process. The FN algorithm employs a
greedy approach to search for a partitioning result that maximizes the modularity of the
Edge Graph. In real road networks, the weights of road segments may not be uniformly
distributed, and bottleneck segments may exist, characterized by significant weight dif-
ferences compared to their surrounding connected segments. These bottleneck segments
can affect the construction of the Edge Graph and may result in smaller and independent
sub-graphs. Therefore, to ensure that the initial partition basically aligns the partitioning
objective, an adjustment based on the length constraint is necessary. The specific steps for
this module are as follows:

1. Initialize the edge graph so that each node is an independent sub-area. By this time,
in the matrix M = (lpq) discussed in Definition 4, the initial lpq and ap satisfy:

lpq =

{
ωp,q
2
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Define a k k×  symmetric matrix ( )pqM l= , where pql  denotes the ratio of the sum of 
the edge weights connected between sub-areas p  and q  in the network to the sum of 
all edge weights. Particularly, ppl   represents the ratio of the sum of the edge weights 
within the sub-area p  to the sum of all edge weights. Summing the rows of the matrix 
M  yields p pqq

a l= , which represents the ratio of the strengths of the vertexes connected 

(15)

2. Merge the sub-areas connected with edges in turn and calculate the increase in modu-
larity after merging:

∆Q = lpq + lqp − 2apaq = 2(lpq − apaq) (16)

According to the idea of the greedy algorithm, each merger proceeds in the direc-
tion where Q increases the most or decreases the least. After each merge, the lpq
corresponding to the merged sub-area is updated and the ap and aq are recomputed.

3. Repeat step 2 until the entire network is merged into one sub-area, then stop and
find the partitioning result corresponding to the largest Q in the merging process and
output it.

4. Check whether there are sub-areas that do not satisfy the length constraint by Equation
(11). If so, assign these sub-areas according to the principle that are adjacent and have
the most similar weights. If not, skip directly to step 5.

5. Output the intra-area homogeneous and inter-area heterogeneous partition results.
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Algorithm 1: Initial partition

Input: G = (V, E): Edge Graph to be partitioned.
Output: C_list: List of sub-areas numbers for each road segment si.
1. C_list← [{v} f or v in G.nodes()]
2. Q← modularity(G, C_list)
3. While True:
4. Find merge_pair that can be merged
5. If merge_pair is None:
6. EndWhile
7. Initial best_pair ← None , best_∆Q← 0
8. For i, j in merge_pair:

9.
Merge sub-areas and get C_list_new, which is the new list of sub-areas numbers for each

road segment.
10. ∆Q← modularity(G, C_list_new)
11. If ∆Q > best_∆Q:
12. best_pair ← (i, j) , best_∆Q← ∆Q
13. Renew C_list with best_pair, Q← Q + best_∆Q
14. EndIf
15. EndFor
16. If Lc < Lmin:
17. Reassign this sub-area c.
18. EndIf

3.2. Partitioning of Large Sub-Areas

To address large sub-areas that do not meet the upper bound constraint, we employ
spectral clustering, a clustering method derived from complex network theory. Spectral
clustering allows us to specify the number of sub-areas to be partitioned, facilitating better
control over the partitioning process. The method can be summarized in the following steps:

1. Input the road network Rc
up of the sub-area to be partitioned, and obtain the adjacency

matrix A according to the segment adjacency relationship.

[A(Rc
up)]ij =

{
1, I f si is connected to sj

0, else
(17)

2. The degree matrix D is first calculated by summing each row of the adjacency matrix
A. Then the Laplace matrix is obtained from Lap = D− A.

3. Calculate the eigenvalues and eigenvectors of the Laplacian matrix, sort the eigenval-
ues from smallest to largest, and select the top k eigenvalues and their corresponding
eigenvectors f .

4. Combine the selected eigenvectors into a feature matrix, and each row represents the
k-dimensional features of the corresponding road segment. Then the feature matrix is
used as the input data to obtain the k-class classification results by k-means clustering.

5. Check whether the newly partitioned sub-area all meet the upper bound constraint. If
so, output the result directly; if not, extract those unsatisfied sub-areas and return to
step 1 for further processing.

Algorithm 2: Partitioning of large sub-areas

Input: Rc
up: Road network to be partitioned.

k: The number of sub-areas.
Output: C_listup: List of sub-areas numbers for each road segment si in the target area.
1. Rtemp ← Rc

up.copy()
2. While True:
3. Construct the adjacency matrix A from Rtemp
4. The degree matrix D ← diag(A.sum(axis = 1))
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5. The Laplace matrix Lap← D− A
6. Calculate the eigenvectors and eigenvalues of Lap.
7. Sorting the eigenvalues from smallest to largest
8. C_listup ← Kmeans([ f1, · · · , fk], n_cluster ← k)
9. If Sqi

new < Sqmax, where Sqi
new ∈ [Sq1

new, · · · , Sqk
new]:

10. Renew C_listup
11. EndWhile
12. Else:
13. Rtemp ← Ri

up_new
14. EndIf

In the partitioning process, determining an optimal value for k is not straightforward.
Therefore, we set k = 2 and use an iterative approach in conjunction with the upper bound
constraint test to achieve bi-partitioning. This ensures that each new sub-area satisfies
the upper bound constraint. Due to the structural characteristics of the road network,
the bi-partitioning process may generate smaller sub-areas. These small sub-areas are
controlled by the lower bound constraint and eliminated through the reassignment of small
sub-areas module.

3.3. Reassignment of Small Sub-Areas

To ensure the similar size of sub-areas, we need to reassign the road segments of small
sub-areas to adjacent sub-areas. This reassignment process takes into account both the
adjacency and the similarity of the weights of the road segments, following the principle of
adjacent and most similar. To achieve this, we propose an inverse search algorithm. The
algorithm works by searching for the most similar adjacent road segment in other sub-areas
and adopting its sub-area number as the new number for the road segment to be assigned.
As shown in Figure 3, the method successfully eliminates the sub-areas to be assigned
by sequentially reassigning the road segments of the sub-areas that are adjacent to other
sub-areas. The specific steps of the method are as follows:

1. Select the segments of the road network Rc
down of the sub-areas to be assigned that are

adjacent to the road network Rnormal of other normal sub-areas. These are the road
segments to be assigned si for each assignment.

2. Calculate Sim(si, sj), where sj ∈ Rnormal . Assign si to the sub-area where the connected
road segment with the highest similarity of road segment weights is located.

3. Check whether there are still road segments of sub-areas to be allocated. If they do
not exist, output the final result. If they exist, go back to step 1.
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Algorithm 3: Reassignment of small sub-areas

Input: Rc
down: Road network to be assigned.

Rnormal : Normal road network
Output: Lid: New sub-area number for the segment si to be assigned.
1. While True:
2: For si ∈ Rc

down
3. If si has connected segment sj:
4. Find the starget

j that is most similar to si by max
{

Sim(si, sj)
}

5. Update the number of the target road segment, Lidsi ← Lidstarget
j

6. EndIf
7. EndFor
8. Renew Rc

down and Rnormal
9. If Rc

down == ∅
10. EndWhile
11. EndIf

3.4. Boundary Adjustment

To achieve smoother boundaries for the output surface sub-areas, we propose a
boundary adjustment method specifically designed for the surface sub-areas. The method
follows these steps:

1. The target grid is updated based on the mode of the sub-area numbers in its neighbor-
hood. The neighborhood of the target grid includes other grids that are connected to
its points or lines. An example illustrating this step is presented in Figure 4.

2. Check whether there is any change in the sub-area number of each grid in this round
compared with the previous round. If there have been changes, continue with the
next round of updates. If there have been no changes, conclude the update process
and output the final result.
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In Figure 4, the sub-areas to which each grid belongs are represented by different
colors and numbers. The solid red boxes indicate the target grid that is being updated,
and the dashed boxes represent the neighborhoods of the target grid. It is important to
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mention that this method is also applied to the boundaries of the study area, as depicted in
Figure 4b.

Algorithm 4: Boundary adjustment

Input: F: Grid data with sub-areas numbers, [F1, F2, · · · , Fn]
Fid: The sub-areas numbers for each grid.

Output: Fadj: Adjusted grid data with sub-areas numbers.
1. While True:
2. For Fi ← F1 to Fn

3.
Find the Fid of all grids in the neighborhood of Fi

and get
{

Fidi
1, Fidi

2
, Fidi

3
· · ·
}

4.
Update the number of the target grid with the mode of the neighborhood numbers

Fidi ← mode
{

Fidi
1, Fidi

2
, Fidi

3
· · ·
}

5. EndFor
6. change← Number o f changed Fid
7. If change == 0
8. EndWhile
9. EndIf

4. Case Study

This paper uses the survey data of the barrier-free facilities of sidewalks in the down-
town area of Guangzhou, China, as a case study. The survey data covers about 963.9 km2

of land in Guangzhou, including the primary and secondary roads and some expressways
with sidewalks in both directions, with a total mileage of about 2076.9 km.

4.1. Weights of Road Segments

In this paper, the survey data were organized into positive evaluation indicators with
the value range of (0, 1), and the barrier-free facility level score was calculated by the
entropy weight method. The score range is (0, 1), and the higher the score is, the better the
comprehensive level of the barrier-free facilities of the road segment, the specific indicators
are shown in Table 1. To realize partition management and special upgrade or renovation,
we will partition the road network based on the barrier-free facility level score of the
road segments.

Table 1. Evaluation indicators system of sidewalk barrier-free facilities.

Category Content

Pedestrian infrastructure Spatial validity, facility completion rate

Tactile paving Tactile paving coverage, tactile paving continuity,
Tactile paving conformity rate

Curb ramps Curb ramps coverage, curb ramps completion rate,
Curb ramps conformity rate

Other environmental facilities
Articulation rate of bus stops and tactile paving,
coverage of wheelchair access to refuge,
sign coverage

4.2. Road Network Processing

Because of the wide coverage of this survey, there are inevitably some missing data.
We used the average of the barrier-free facilities scores of the adjacent road segments of
the road segments missing data to fill the data of these segments. In addition, we also
processed the initial road network to obtain a road network in the form of Figure 1b. As
shown in the visualization of the barrier-free facility level score in Figure 5, the green color
indicates a high score, while the red color is the opposite.
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4.3. Partitioning

By inputting the bi-directional road network with weights, as depicted in Figure 5, we
can observe the intermediate and final outputs shown in Figure 6. Each subplot in Figure 6
corresponds to a specific stage of the CSDRA framework. Let us delve into the details
of each subplot combined with the framework. In Figure 6a, we can see the initial line
sub-areas obtained through the initial partitioning of the Edge Graph. Each color represents
a distinct sub-area. Moving on to Figure 6b, the study area is divided into multiple grids
at a scale of 500 m. By combining these grids with the initial line sub-areas, we obtain the
unadjusted surface sub-areas. Figure 6c shows the surface sub-areas after undergoing the
boundary adjustment process. The adjustment ensures smooth boundaries and eliminates
any small sub-areas that may have nested relations. Nested relations refer to the possibility
of having one sub-area contained within another, which is undesirable in the context of
traffic partition management.

The initial line sub-areas obtained from the initial partitioning are not optimal and
require further adjustment. To achieve control over the sub-area sizes, we utilize the
initial surface sub-areas as a guiding factor. In other words, the upper and lower bound
constraints for sub-area sizes are determined based on the surface sub-areas. Referring
to Figure 6c, the sub-areas marked with red borders indicate those that do not satisfy the
upper bound constraint, while the sub-areas marked with blue borders do not satisfy the
lower bound constraint. These sub-areas can be processed using the partitioning of large
sub-areas and the reassignment of small sub-area modules, respectively. This ensures that
the resulting partition satisfies the constraints to the greatest extent possible.

Finally, after applying the processing steps described above, we obtain the final output
shown in Figure 6d. This includes the line sub-areas and the corresponding surface sub-areas.
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4.4. Evaluation and Testing

To validate the effectiveness of the method proposed in this paper (CSDRA), we se-
lected well-established partitioning methods for comparison, including Administrative
Division (AD), Spectral Clustering Algorithm (SC), and Ncut, which have been widely
used. Meanwhile, to assess the performance of the method proposed in this paper (CS-
DRA) without constraint adjustment and the effectiveness of constraint adjustment, we
include CSDRA-N (with maximum constraint intervals) in the comparison. Furthermore,
to validate the effectiveness of the road network reconstruction method, we also applied
the Edge Graph obtained by this method to SC and Ncut, resulting in SC-R and Ncut-R
for comparison. The performance of each method was evaluated using three evaluation
indicators, as shown in Figure 7 and Table 2. The data in Figure 7 represents the relative
growth value, which is calculated by comparing each indicator with the corresponding
indicator value of the AD method used as a benchmark. A larger value indicates a better
partitioning result obtained by the method, corresponding to a smaller original indica-
tor value. The evaluation results of the first two indicators, obtained from CSDRA and
CSDRA-N, show better performance compared to other methods. This suggests that the
partitioning results achieved by CSDRA exhibit improved intra-area homogeneity and
inter-area heterogeneity. Furthermore, the evaluation results based on the LM indicators
demonstrate that CSDRA performs the best, while CSDRA-N, without effective partition
and assignment, shows poorer performance. This indicates that CSDRA effectively reduces
the size variability by adjusting the sub-area sizes within constraints without significantly
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compromising the intra-area homogeneity and inter-area heterogeneity of the partitioning
results. Additionally, a comparison of Ncut with Ncut-R and SC with SC-R reveals that
incorporating the Edge Graph obtained through road network reconstruction enhances
the performance of the partitioning results in terms of both intra-area homogeneity and
inter-area heterogeneity. However, it should be noted that this improvement may come at
the minor cost of increased size variability.
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Table 2. Comparison of indicator values of each method.

Method VT Relative
Growth (VT) WC Relative

Growth (WC) LM Relative
Growth (LM)

AD 0.9832 0.0000 0.8513 0.0000 0.3508 0.0000
CSDRA 0.9101 0.0731 0.8334 0.0179 0.2571 0.0937
CSDRA-N 0.9048 0.0784 0.8374 0.0139 0.3161 0.0347
SC 0.9438 0.0394 0.8463 0.0050 0.2904 0.0604
SC-R 0.9146 0.0686 0.832 0.0193 0.2971 0.0537
Ncut 0.9223 0.0609 0.8356 0.0157 0.2755 0.0753
Ncut-R 0.9211 0.0621 0.8176 0.0337 0.3126 0.0382

These findings demonstrate the effectiveness of the CSDRA method in achieving
desirable partitioning results that balance intra-area homogeneity, inter-area heterogeneity,
and size variability, while the incorporation of the Edge Graph in related algorithms shows
promise in improving the overall performance of the partitioning process.

To conduct a thorough analysis of the CSDRA performance and investigate the impact
of constraint parameter adjustments on the partitioning results, we conducted multiple
experiments with different combinations of upper and lower bound constraints. The results
of these experiments are presented in Figure 8. In Figure 8, the vertical axes represent
the values of different evaluation indicators, denoted by different colors. Specifically,
Figure 8a–c represent VT, WC, and LM indicators, respectively. The horizontal axes repre-
sent the upper and lower bound constraints. Each subplot in Figure 8 is a scatter trend plot,
where the scatter points are differentiated by color shades and sizes. Each point represents
the evaluation result of an indicator under specific constraints. The curve or straight line
represents the trend fitting line of all scatter points. To facilitate the following discussion,
we must clarify a few concepts. Regarding the upper bound constraint, a larger value
indicates a more relaxed constraint, while a smaller value indicates a tighter constraint. The
opposite is true for the lower bound constraint. Furthermore, the lower bound constraint
should not exceed the upper bound constraint, and the maximum value of the lower bound
constraint should not exceed the minimum value of the upper bound constraint.
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In the subsequent analysis, we will interpret each subplot in Figure 8 individually,
aiming to explore the impact of size constraints on the partitioning results.

• The intra-area homogeneity of the sub-areas is minimally affected by the upper bound
constraint and slightly decreases when the upper bound constraint is relaxed. How-
ever, it significantly increases when the lower bound constraint is tightened.

In Figure 8a, the VT indicator is used to measure the intra-area homogeneity of the
partitioning results, with a smaller value indicating better homogeneity. The subplot illus-
trates that changes in the upper bound constraint have minimal impact on the VT value,
whereas tightening the lower bound constraint significantly increases the VT value. This
phenomenon is easily understandable, as partitioning a homogeneous sub-area results
in another homogeneous sub-areas, thus leading to minimal impact. However, the reas-
signment of smaller sub-areas can significantly reduce the homogeneity of the resulting
receiving sub-areas. Additionally, as the lower boundary constraints become tighter, the
impact becomes greater with a larger number of sub-areas being assigned.

• The inter-area heterogeneity of the sub-areas increases significantly with the relaxation
of the upper bound constraint. However, it is less influenced by the lower bound
constraint and shows an overall slightly enhancing trend with the tightening of the
lower bound constraint, with local up and down fluctuations.

Figure 8b illustrates the variation in WC, where a smaller value indicates better
inter-area heterogeneity of the partitioning results. The plot shows that WC decreases as
the upper bound constraint is relaxed. However, the relationship with the lower bound
constraint is not clear, as it exhibits a slight decrease with the tightening of the lower bound
constraint. The scatter distribution of WC also displays fluctuations. This phenomenon can
be easily understood, as a more relaxed upper bound constraint leads to the partitioning of
less homogeneous sub-areas, resulting in better inter-area heterogeneity. On the other hand,
the impact of the lower bound constraint on inter-area heterogeneity is less significant, with
minor fluctuations observed.

• The size variability in the sub-areas demonstrates distinct patterns about the constraint
parameters, exhibiting different trends on either side of the lower bound constraint
threshold. When the value is below the threshold, the size variability in the sub-areas
exhibits a slight increase with the relaxation of the upper bound constraint and a slight
decrease with the tightening of the lower bound constraint. On the other hand, when
the value is above the threshold, the size variability in the sub-areas experiences a
significant decrease with the relaxation of the upper bound constraint and a slight
increase with the tightening of the lower bound constraint.

Figure 8c depicts the variation in LM, where a smaller value indicates a smaller
size variability in the partitioning results. The variation in this indicator is influenced
by a specific threshold value of the lower bound constraint (taking Lower Bound = 50
as an example). When the value is below the threshold, the LM value exhibits a slight
increase with the relaxation of the upper bound constraint and a significant decrease with
the tightening of the lower bound constraint. Conversely, when the value is above the
threshold, the change pattern is reversed. To better explain this situation, we divide the
constraint interval into three cases (1) upper bound constraint relaxation and lower bound
constraint tightness, (2) upper bound constraint tightness and lower bound constraint
relaxation, and (3) both constraints being tight. Based on the real test results, the size
variability does indeed decrease in the first two cases, which aligns with our intuitive
understanding. However, in the third case, the change in size variability is unstable and
may even increase instead. This is because it may not be possible to maintain the size of
each sub-area within a narrow interval when both constraints are tight through multiple
partitioning and reassignment, unless we completely disregard the intra-area homogeneity
and inter-area heterogeneity of the sub-areas. Therefore, it is important not to set the
constraints too tightly simultaneously.
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Based on Figure 8 and the related analyses, it is evident that controlling and adjusting
the constraints can indeed enhance the partitioning results. While moderate changes in the
upper and lower bound constraints may have a slight impact on intra-area homogeneity
and inter-area heterogeneity, they can significantly reduce the size variability in the sub-
areas. However, it is important to note that setting tighter constraints on both the upper
and lower bounds can lead to poorer partitioning results. Therefore, finding an appropriate
balance in constraint adjustments is crucial for achieving desirable outcomes.

5. Discussion and Conclusions

In this paper, the road network partitioning objectives encompass intra-area homo-
geneity, inter-area heterogeneity, and sub-area size similarity, with certain size restrictions.
To address these objectives, we propose a network reconstruction method for bidirectional
weighted road networks, considering the coupling of network connections and traffic
attributes. This method preprocesses the road network by enhancing connectivity among
homogeneous road segments and reducing connectivity among heterogeneous road seg-
ments, which facilitates subsequent partitioning. Moreover, we introduce the CSDRA
algorithm, which consists of several modules. The initial partition module employs a
community detection algorithm to generate an initial partitioning result. The partitioning
of large sub-areas module utilizes spectral clustering to achieve bi-partitioning. The small
sub-area reassignment module applies the inverse search algorithm to reassign smaller
sub-areas. Additionally, an edge adjustment module is employed to refine the boundaries
of surface sub-areas. By adjusting the sizes of large and small sub-areas in the initial
partitioning result based on input constraint parameters, the algorithm aims to achieve a
partitioning result that aligns with the desired objectives. Through the verification of evalu-
ation indicators and testing of constraint parameters, we have observed that the proposed
algorithm performs well in real cases. The road network reconstruction method effectively
improves the performance of partitioning methods in terms of intra-area homogeneity
and inter-area heterogeneity, as evident from its application in existing partitioning meth-
ods. Through constraint control, the CSDRA method effectively reduces the differences in
sub-area sizes while maintaining intra-area homogeneity and inter-area heterogeneity.

However, in networks with bottleneck segments, the road network reconstruction
method proposed in this paper may result in the formation of isolated sub-graphs. Con-
sequently, as previously discussed, this can result in the formation of excessively small
sub-areas during the initial partitioning process. Bottleneck segments are defined as road
segments that have significantly different weights compared to the surrounding segments
in the real road network. If these bottleneck segments happen to be critical segments
within the road network, they may disrupt the connectivity between different parts of
the network. Nevertheless, our method provides a partial solution to this problem by
employing the Jaccard coefficient to establish connections between non-adjacent segments,
effectively bypassing bottleneck segments. However, it is difficult to avoid the fact that
these bottleneck segments may still become isolated sub-graphs and result in the formation
of small sub-areas due to their differences from the surrounding segments. In fact, this
limitation does not have a significant impact on the improvement of the method because
we eliminate these small sub-areas through length constraints in the initial partitioning,
and the evaluation results have been promising.

Subsequent research can be conducted on road network reconstruction methods to
explore potential improvements. This may involve investigating alternative approaches
to redefine the connection relationships between road segments, exploring the integration
of network connections with traffic attributes, and addressing other relevant aspects that
may improve the overall reconstruction process. Furthermore, future research could
investigate methods for determining the constraint parameters in the CSDRA. For example,
the constraint parameters can be determined by the size distribution of each sub-area in
the initial partitioning result.
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