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Abstract: Historical geographic data play an important supporting role in the study of long‑termgeo‑
graphic studies, such as climate change, urban expansion and land‑use and land‑cover change. These
data vary in source, format and accuracy and are widely found in historical documents, old maps,
produced vector data, aerial photographs, old photographs, etc. The complex nature of data makes
it difficult for researchers to organize, store and manage in a unified manner. Thus, GIS practition‑
ers and social scientists will collectively face the challenge of integrating historical data into spatial
databases. Herein, we introduced the concept of a multi‑level spatial grid, selecting Shanghai as the
study area, to construct the Shanghai historical geographic database and give the conceptual model
and processing method. The experiment was performed using the China Historical Geographic In‑
formation System (CHGIS), which showed the historical evolution of Shanghai more conveniently.
Meanwhile, we simulated one million rows of historical geographic data in Shanghai and compared
the retrieval efficiency of the encoding method with the latitude–longitude and geometric object in‑
dexingmethods, which demonstrated that ourmethodwas very effective. This research is important
for the construction of a historical urban database, which can better preserve historical resources and
promote urban culture with information science and technology.

Keywords: historical GIS; spatial database; multi‑level grid; GeoSOT; Shanghai

1. Introduction
The integration of Geographic Information Systems (GIS) into the humanities and

social sciences fields has increasingly gained attention, with many academic institutions
in China and abroad continuing to develop methods for this integration [1,2]. In 2006, the
Center for Geographic Analysis was established at HarvardUniversity to support research
and demonstrate the utilization of geospatial technology across all disciplines in the Uni‑
versity [3]. The integration of spatial information science into the traditional humanities
has brought new opportunities to the discipline and has also provided conditions for its
expansion [4].

Historical geographic data play an important supporting role in the study of long‑
term geographic studies, such as climate change, urban expansion and land‑use and land‑
cover change. Via these studies, we can learn about the historical geography and even
reconstruct the past geography so as to further understand the relationship between man
and land from a longer‑term perspective. The study of historical geography and spatial
information science facilitates innovations in historical geographic data collection, storage,
retrieval and representation and overall improvements in effective data use [5,6]. Histor‑
ical geographic data are widely presented in historical documents such as old maps, pro‑
duced historical vector data, historical aerial images, old pictures and even old videos, as
shown in Figure 1 [7–9]. With the continuous discovery of historical data and the improve‑
ment of digitizing methodology, the amount of spatial data available is increasing [10,11].
These data often have different sources and creators, diverse structures, scattered distribu‑
tions, long time series, ambiguity and large differences in spatial resolution.
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Figure 1. Multi-sourced historical geographic data. 

Therefore, accurately organizing and storing historical geographic data, particularly 
the continuous and complex historical changes in China, is necessary. In the China His-
torical Geographic Information System (CHGIS) project, Man Zhimin proposed the “life-
time” description method, which is different from the time section description [12]. By 
using the start and end time of the spatio-temporal entity to describe the existence time, 
the storage space can be effectively saved. Chen et al. developed a conversion method 
between the traditional Chinese chronology method and the standard calendar and pro-
posed a spatiotemporal data model of historical place names for representative data, and 
taking “Sino-family-tree GIS” as an example, a spatiotemporal framework for Chinese 
history and culture was constructed [13]. From the perspectives of geography and history, 
Hu et al. combined the four elements of time (the time of the beginning and the end), 
place, person and event, integrated the idea of a “human–land relationship” in geography 
and finally designed a basic, general and historical GIS data model using the spatiotem-
poral object modeling method [14]. However, many historical GISs do not consider data 
formats that can be easily shared and integrated. Therefore, based on the precise and vast 
geographic data contained in geographic databases, the major challenge for humanistic 
scholars is to develop a historical geographic database that combines historic and contem-
porary data [15]. Nowadays, some research or applications based on ontologies, RDFs and 
Linked Open Data are gradually carried out. Sharing data in the FAIR principle is cur-
rently a popular trend in HGIS. 

At the same time, we believe that there is a growing need to combine today’s geo-
graphic data with historical geographic data for long-term research in order to better un-
derstand land cover change and human–land relationships and to better protect digital 
cultural heritage. Historical geographic data are widely available in different formats, 
sources and precisions, as shown in Figure 1. Therefore, in combination with the China 
Historical GIS, we analyze its data characteristics, current data structure and existing 

Figure 1. Multi‑sourced historical geographic data.

Therefore, accurately organizing and storing historical geographic data, particularly
the continuous and complex historical changes in China, is necessary. In the China His‑
torical Geographic Information System (CHGIS) project, Man Zhimin proposed the “life‑
time” description method, which is different from the time section description [12]. By
using the start and end time of the spatio‑temporal entity to describe the existence time,
the storage space can be effectively saved. Chen et al. developed a conversion method
between the traditional Chinese chronology method and the standard calendar and pro‑
posed a spatiotemporal data model of historical place names for representative data, and
taking “Sino‑family‑tree GIS” as an example, a spatiotemporal framework for Chinese his‑
tory and culture was constructed [13]. From the perspectives of geography and history,
Hu et al. combined the four elements of time (the time of the beginning and the end),
place, person and event, integrated the idea of a “human–land relationship” in geography
and finally designed a basic, general and historical GIS data model using the spatiotem‑
poral object modeling method [14]. However, many historical GISs do not consider data
formats that can be easily shared and integrated. Therefore, based on the precise and vast
geographic data contained in geographic databases, the major challenge for humanistic
scholars is to develop a historical geographic database that combines historic and contem‑
porary data [15]. Nowadays, some research or applications based on ontologies, RDFs
and Linked Open Data are gradually carried out. Sharing data in the FAIR principle is
currently a popular trend in HGIS.

At the same time, we believe that there is a growing need to combine today’s geo‑
graphic data with historical geographic data for long‑term research in order to better un‑
derstand land cover change and human–land relationships and to better protect digital cul‑
tural heritage. Historical geographic data arewidely available in different formats, sources
and precisions, as shown in Figure 1. Therefore, in combination with the China Historical
GIS, we analyze its data characteristics, current data structure and existing problems and
actively introduce the methods of GIS, hoping to explore a database construction plan that
is more suitable for the characteristics of historical geographic data. In this study, we will
not only propose a theoretical foundation for the method but also design corresponding
experiments to finally verify the feasibility and effectiveness of our proposed method. We
hope the proposal of ourmethodwill solve the data storage problems often encountered in
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the fields of urban cultural heritage, historical geography, etc. and directly improve data
utilization and query efficiency. In the experimental part, Shanghai was selected as the
study area owing to the availability of extensive historical data, especially surveyed maps
and current aerial surveys, after the opening of Shanghai’s port. Additionally, Shanghai’s
rapid development and the standardization of its modern database construction serve as
an important reference for other cities (Figure 2).
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This paper will be discussed in the following format. Section 2 describes the CHGIS
project and lifetime structure. Section 3 provides a detailed description of the database
using a multi‑level grid. Section 4 details the experiment using CHGIS data and query
efficiency in Shanghai, China. Finally, Section 5 concludes the study and explores the di‑
rection for future research.

2. CHGIS and Lifetime Structure
Historical geographic data have the characteristics of multi‑source andmulti‑precision.

Which data format does the existing platform or system use? In this section, the CHGIS
project and lifetime structure are discussed in detail to analyze the development status of
CHGIS and the problems of data structure display. China has a long history, and the geo‑
graphical environment and human factors have been constantly evolving for thousands of
years. The goal of the CHGIS project is to establish a basic geographic information system
database of China’s historical period. Historical geographic information includes natural
information, such as climate, landforms, disasters, animals and plants, etc.; it also includes
human information, such as political regions, settlements, economy, population and cul‑
ture. Considering the integration and sharing of more data, on the basis of CHGIS, the
author’s HGIS research team further explored the integration platform of historical geo‑
graphic data and possible new data models.

2.1. China Historical Geographic Information System
The China Historical Geographic Information System (abbreviated as CHGIS) pro‑

vides a base GIS platform for researchers to use in spatial analysis or in visualizing the
historical divisions of China as digital maps [16]. It was first launched in January 2001 to es‑
tablish a database for densely populated areas and historical administrative units through‑
out China’s historical period (221 BC to 1911 AD) [12]. The benchmark of the CHGIS is the
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Historical Atlas of China (Chinese中国历史地图集), which was compiled by Tan Qixiang
at the Fudan University in China [17]. Using GIS technology, the historical geographic
information data are standardized into a contemporary spatial framework (the base map
is ArcChina), by which the temporal resolution is significantly improved (from one or sev‑
eral standard time slices per dynasty to one year). This project provides researchers with
a GIS platform with which to undertake spatial analysis and temporal statistical modeling
and represent selected historical units as digitalmaps. TheCHGIS data contain continuous
time series data andnumerous time slide updates, particularly for counties andprefectures.
Among them, the place name database of CHGIS is the Temporal Gazetteer.

Now, Fudan University has further developed the China historical geographic infor‑
mation platform [18]. They have inherited the CHGIS data and added modules such as
oldmaps, spatiotemporal frameworks, databases and resource centers (shown in Figure 3).
One of the biggest advantages of this platform is that CHGIS spatiotemporal data can be
displayed intuitively and dynamically without professional GIS software, such as ArcGIS
or QGIS.
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2.2. Lifetime Data Structure
Geographical data are largely concernedwith the spatial dimensionof thedata,whereas

time is also an important dimension for historical data. In theCHGIS project, the concept of
lifetime was proposed [19]. The lifetime concept refers to a condition under which locality
names, identified spatial characteristics and administrative affiliations remain unchanged
from the time of its establishment until that of its change. This is the most important data
attribute in the CHGIS and can therefore be considered a spatiotemporal data model. The
structure of the CHGIS database is shown in Figure 4a, and the lifetime data structure is
shown in Figure 4b.
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When opening the CHGIS data in the GIS software, there will be four columns (BEG_YR,
BEG_RULE, END_YR, END_RULE), which represent the starting and ending year and the
corresponding rules of the name of a geographic object (the administrative polygons). Any
changes to a geographic objectwill generate a new code. A code is an ID that uniquely iden‑
tifies a spatiotemporal specific object or event and has no spatiotemporal meaning. When
the spatial extent of the administrative unit changes, the ID also changes correspondingly.
For example, when identifying Fujian Province, ID#98014 and ID#98000 actually identify
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different ranges (seen in Figure 4c). In the year 1128, at the same time the administrative
seat was moved, the jurisdictional area increased. The polygons (actually, a group of poly‑
gons regionalized as one object in GIS to account for coastal islands) that represent the two
periods look almost the same, but there is a difference. In 1128, Fujian Lu expanded to
include Penghu Island (circled in red).

Then, in the GIS software, we load the CHGIS data, select the Shanghai Bund area
as the spatial query condition and select the time period of 600 to 1911 as the time query
condition, which returns the attribute table (Table 1) as the query result (only the main
columns are displayed here; non‑important parameters such as person and other columns
are not listed).

Table 1. Query results for the bund area, Shanghai.

NAME_PY NAME_FT TYPE_PY TYPE_CH BEG_YR BEG_RULE END_YR END_RULE NOTE_ID

Su Zhou 蘇州 Zhou 州 602 4 605 4 90232
Su Zhou 蘇州 Zhou 州 606 4 606 4 90233
Wu Jun 吳郡 Jun 郡 607 4 615 3 90234
Wu Jun 吳郡 Jun 郡 616 4 620 4 90255
Su Zhou 蘇州 Zhou 州 621 4 623 4 90235
Su Zhou 蘇州 Zhou 州 624 4 741 4 90236
Wu Jun 吳郡 Jun 郡 742 4 757 4 90237
Su Zhou 蘇州 Zhou 州 758 4 938 4 90238
Xiu Zhou 秀州 Zhou 州 939 5 1194 4 90256
Jiaxing Fu 嘉興府 Fu 府 1195 4 1276 5 90257
Jiaxing Lu 嘉興路 Lu 路 1277 5 1291 4 90258

Songjiang Fu 松江府 Fu 府 1292 4 1325 4 90251
Jiaxing Lu 嘉興路 Lu 路 1326 4 1327 90262

Songjiang Fu 松江府 Fu 府 1328 4 1911 5 90261

3. Spatial Database Using a Multi‑Level Grid
Uppercase is required here, which is uppercase in the original systemThe focus of this

section is on HGIS research and the CHGIS project. Which data structure can be used to
better organize and share data? Historical geographic data are often stored in different
formats and created by various sources, which makes storage difficult. However, we can
store the data by building a unified metadata template and indicate attributes such as the
data type and person. This does not address the data inaccuracy that results from varying
time periods and sources. For example, current spatial datamay be extracted fromLandsat
8 imagery that has a spatial resolution of 30 m; however, for historical spatial data, such as
aerial imagery or printed maps, the spatial resolution may have high or unknown inaccu‑
racies, which makes data integration difficult. Therefore, in the construction of long‑term
databases, an effective datamodel and database design are urgently needed [20–22]. In our
study, multi‑level spatial grids are used. Large‑scale grids are selected for low‑precision
historical period data, and small‑scale grids are selected for high‑precision remote sensing
information [23,24]. Different scales can be converted between each other. This multi‑level
spatial grid helps to store the historical geographic data.

3.1. GeoSOT Grid Model
Among the various kinds of spatial information grids, the GeoSOT grid was selected

for this study (Figure 5). The geographic coordinate subdivision grid, with one‑dimensional
integer coding on the 2n‑tree (GeoSOT) model, is a subdivision and coding method that
subdivides the Earth’s surface into 2‑D spatial grids.
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In GIS, the spatial data structure includes a vector and raster. The encoding of the
vector point can be directly converted from latitude and longitude to obtain its GeoSOT
subdivision code. For the coding of the spatial range of the surface data and raster data,
the appropriate hierarchical level is calculated according to its MBR (Minimum Bounding
Rectangle), and then the subdivision patch is determined by the spatial position informa‑
tion; thus, the GeoSOT subdivision patch code corresponding to the spatial data is ob‑
tained. In particular, the grid coding calculation method based on the spatial grid model
is an efficient position calculation system. The method for using grids for division and
spatial conversion into codes is described in detail in the references [25–27].

3.2. Design of the Table
In general, historical geographic data are stored in the structure of “raw data + meta‑

data”. Taking the most used old map in historical geographic study as an example, its
metadata is an abstraction of the spatial information and attribute information. Through
the retrieval and management of metadata, it is possible to avoid the direct manipulation
of the original map with a large amount of data (especially high‑resolution maps, which
usually take up a lot of storage space), and this is the key to realizing data sharing.

Figure 6 shows the most simplified data storage template, where Codes is the GeoSOT
code calculated through spatial position information and is used as the index of spatial
query, supporting various operations of coding‑binary; Level (the spatial granularity of the
data) is reflected by the length of the code and is not specifically stored as a column (since
GeoSOT uses quad‑tree division, the longer the code, the finer the granularity); Name is
the original data name of the data; Type is the original data type, including various types
shown in Figure 1, such as documents, maps, vector data, images, video, etc.; and FilePath
is the path of the data, which is usually a record in an existing database or a file in the file
system (operating system). In particular, we preserve the lifetime data structure in CHGIS
and preserve the concept of lifetime and four attribute columns (BEG_YR, BEG_RULE,
END_YR, END_RULE). After the metadata are stored, we index the code of the Codes col‑
umn and then associate the corresponding Data id. This index helps store data uniformly
and speeds up its retrieval.
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3.3. Optimization of the Grid‑Based Database
In the process of storing, themulti‑level grid systemhas the advantages of partitioning

and sub‑partitioning, along with the following additional advantages:
(1) Load balancing: Combined with load balancing theory and application, the master

node and slave node are set up (Figure 7). The master node stores coarse‑grained
data, and the slave nodes access fine‑grained data. When data are acquired, they will
go from the master node to the slave node and, finally, to the final node.

(2) Data partition: The database is partitioned by the grid area, not necessarily on the
same scale.

(3) Read–write separation: The data are inverted according to the amount of data loaded
by the grid, and the read and write functions are separated to optimize the database
efficiency of the database.
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For example, when a user searches, first, it requests the domain name resolution; then,
the DNS server returns the corresponding IP address; then, it goes to the cluster to first an‑
alyze the accuracy (resolution) of the user’s search; finally, it locates the web server quickly
according to the partition situation.

4. A Case Study of Shanghai
To verify the effectiveness and efficiency of our proposed method, we conducted the

following experiments using Shanghai as our study area.

4.1. Experimental Environment and Design
The test software and hardware environment that were used are as follows: Python

3.6 is the development language; PyCharm 2020.2.3 is the compiler; MongoDB 4.2.0 is the
database; the GIS software used is ArcGIS 10.7. The experiments were conducted on a
server with an i7‑10750H CPU@2.60 GHz processor, 32 GB of memory and 1 TB of storage
capacity.

The design of the experiments was as follows: first, in CHGIS, the Shanghai area was
selected, a GeoSOT grid was established and a corresponding retrieval was performed and
compared with the original method. Second, one million rows of different types of histori‑
cal geographic data were generated (as shown in Figure 6) to test the feasibility of the stor‑
age and the efficiency of the retrieval (compared with the latitude and longitude indexing
method). The data will be randomly distributed in the Shanghai area and randomly set to
vector, raster and multi‑media formatted data (e.g., old maps, old videos with geotagging,
old aerial imagery).

4.2. Shanghai in CHGIS
In this study, Shanghai was selected for the GeoSOT preprocessing of the CHGIS data

(Figure 8). In the CHGIS (rawdata), a spatial locationmay correspond tomultiple different
administrative regions in the historical period, so multiple polygons are involved, and
there is a one‑to‑many spatial mapping relationship overlapping the polygons. Here, we
selected one point namedOld Ports (Chinese “老码头”) from the data. Thus, any historical
administrative region corresponding to this point will be displayed; the historical region is
usually large and will have more than one. These regions overlap with each other, making
the display of CHGIS poor.

Next, we performed the same spatial query on the CHGIS preprocessed data using
the GeoSOT method. Only the grid required in the query was selected, and changes corre‑
sponding to different political districts in the historical period were only displayed in the
attribute table, which was very user‑friendly. We can directly see which administrative
units the spatial location (corresponding grid) belongs to in different historical periods in
the attribute table, and we can also sort them in chronological order.

To query the fine‑grained gridmore accurately, we further divided the specific parent
grid through the quad‑tree, retrieved the grid of the corresponding area and performed the
corresponding spatial query. Given the fact that the child grid is completely contained in
the parent grid in the spatial extent, the political area changes of the child grid can directly
inherit the parent grid.
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4.3. Query Efficiency Using Code
First, we generated onemillion historical geographic data in different regions of Shang‑

hai randomly by the following three steps:
Step 1: Generate the spatial information of the data randomly. The structure of the

vector data can be points, lines or polygons, and the spatial range of any point is within
the region of Shanghai.

The generation of codes is complicated, and any nodes of the polygon need to be set
as follows: the lat coordinate of the left node is less than the lon coordinate of the right
node, and the lat coordinate of the upper node is greater than the lon coordinate of the
lower node (this relationship is because Shanghai is in the eastern hemisphere andnorthern
hemisphere of the Earth).

Step 2: Set the data to vector, raster and multimedia formats randomly, as shown in
Figure 1.

Step 3: Generate the begin and endyears of data randomly, and set beg_year <= end_year.
Then, according to the spatial resolution of the simulated data, the 15 layers of the

GeoSOT grid were selected for the experimental verification of the query efficiency (since
Shanghai, as an urban research area, is usually studied on a kilometer‑scale grid, level 15
in the GeoSOT model is chosen, which corresponds to the kilometer‑scale grid). We built
a B‑tree index for the latitude/longitude columns, a B‑tree index for the code columns and
a 2dsphere for the geometry object columns, respectively. Next, we arbitrarily selected
polygonal regions of different regions (disjoint) within Shanghai for the query, returned
all attribute columns, recorded the execution time of the returned results and, finally, took
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the average of multiple results for comparison. The statistical comparison of the query
time is shown in Figure 9.
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When comparing the different experiments in theMongoDB database, using the same
query conditions, the query efficiency of the encoding was higher than that of the lati‑
tude/longitude and geometry object. The average time was improved by an order of mag‑
nitude more than that of using the latitude and longitude method, which means that our
method is very efficient.

We analyzed the accuracy and integrity of query results. The accuracy of the results
shown in Table 2 tells us whether the results satisfy the query criteria, and the integrity
tells the situation where all qualified data have been selected.

Table 2. Experiment results.

Retrieval Method Lat/Lon Geometry Code

Time (ms) 1032.75 103.89 76.71
Accuracy (%) 90.3 96.8 88.9
Integrity (%) 100 100 100

In terms of the accuracy of the search results, geometric search has the highest accu‑
racy; more than 96% of the search results are consistent with the query conditions. When
Code is used for retrieval, its precision is slightly lower than those of the other two. This is
because an extra space region that does not belong to the search region will appear in the
result of a grid‑based query, and the range returned will be larger than the original query
condition. The smaller the grid scale, the higher the query precision. The integrity of the
three query results is 100%, that is, all the data that meet the conditions are detected.

4.4. Discussion
Through the experiments in Sections 4.2 and 4.3, we have verified the feasibility and

effectiveness of the method.
First of all, in Section 4.2, we saw that the polygons in the CHGIS project overlapped

with each other, resulting in the poor visualization. Our method using the grid method
makes the data more intuitive and clear and can conveniently sort the attributes in chrono‑
logical order. The only thing of concern is that the scale of the grid needs to be constructed
according to the amount of data in the query area itself. In our experiment, Shanghai, as
the central and eastern coastal area of CHGIS, has more than 2000 years of data. There‑
fore, when Shanghai meets this query requirement, other regions will also meet it, thus
demonstrating the feasibility of this method.
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Then, in Section 4.3, we designed simulation data covering this area, and the amount
of data reached 1million. By comparing different storage indexingmethods, we know that
the efficiency of ourmethod is significantly improved, approaching an order of magnitude.
The only regret is that, comparing the accuracy and completeness of the query, the accuracy
of ourmethod is slightly lower than that of the other two, but considering the improvement
of the query efficiency, we think it is acceptable. If the accuracy of the results needs to be
further improved, this can be achieved by reducing the size of the grid so that less data
exceed the query area.

Overall, the method in this paper is feasible and efficient. In terms of visualization,
it makes presentations more intuitive and understandable. In terms of retrieval efficiency,
there is also a significant improvement. When using our method, the spatial scope of the
research area and the scale of the research data should be reasonably grasped, and an
appropriate grid scale should be selected.

5. Conclusions
Historical geographic data have the characteristics of having many sources, different

formats and significant differences in accuracy. Building a historical geographic database
that combines history with the current situation is a major challenge for social scientists. In
this study, the concept of a multi‑level grid was introduced. Using Shanghai as the study
area and the described conceptual model and method, the Shanghai historical geographic
database was constructed. The experiments verified the effectiveness and efficiency of
the method. Spatial queries were conducted using CHGIS data, and the results showed
that gridded storage could more conveniently display the historical evolution of Shanghai.
Additionally, the experiment also simulated one million rows of varying historical geo‑
graphic data formats in Shanghai, and the retrieval efficiency of the coding method was
compared with those of the latitude–longitude and geometric object indexing methods,
which showed that the method was efficient.

This research is significant for the construction of the Shanghai historical geographic
database. It serves as an important reference for the preservation of different forms of
cultural resources. Furthermore, our future research can be extended to include other
data types notmentioned above and facilitate the interdisciplinary cohesion between other
disciplines.
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