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Abstract: Black carbon (BC) is a significant source of air pollution since it impacts public health and
climate change. Understanding its distribution in the complex urban environment is challenging.
We integrated a land use model with four machine learning models to estimate traffic-related BC
concentrations in Oakland, CA. Random Forest was the best-performing model, with regression
coefficient (R2) values of 0.701 on the train set and 0.695 on the validation set with a root mean
square error (RMSE) of 0.210 mg/m3. Vehicle speed and local road systems were the most sensitive
variables in estimating BC concentrations. However, this approach was inefficient at identifying
hyperlocal hotspots, especially in a complex urban environment where highways and truck routes
are significant emission sources. Using the land use method to estimate BC concentrations may lead
to underestimating some localized hotspots. This work can improve air quality exposure assessment
for vulnerable populations and help emphasize potential environmental justice issues.

Keywords: air pollution; black carbon; land use regression; transportation; machine learning; support
vector regression; random forest; neural network

1. Introduction

Fine particulate matter (PM2.5) is a critical ambient air pollutant, consisting of a mixture
of components with adverse health effects [1,2]. Black carbon (BC) is one of the major
components of PM2.5 and is assumed to play a significant role in the harmful health effects
of PM [3,4]. Long-term exposure to BC is associated with increased all-cause mortality
risk [5,6]. Besides the adverse health impacts, BC also contributes to global climate change
due to its ability to absorb solar radiation [7,8]. BC is the dominant component contributing
to aerosol light absorption [9,10]. The direct radiative effect can heat and evaporate clouds,
which may further change the atmospheric dynamics [10].

Black carbon is produced from the incomplete combustion of fossil fuels, biofuels, and
biomass. Primary BC emission sources are residential, transportation, industrial, energy
production, and wildfire. A study focusing on BC emissions in 2017 shows that the top two
sources are residential biomass fuel and on-road motor vehicle diesel, which contribute
35% and 26% of the total BC emissions, respectively [11]. These two dominant sources are
both densely located within the urban areas, leading urban areas to become hotspots of
BC pollution problems. Besides emission sources, the complex surface topography and
meteorology make BC concentrations highly variable in the urban environment [12,13].
Furthermore, the dense population in urban areas makes it important yet difficult to accu-
rately assess exposure. A vital aspect to focus on is the characterization of within-city air
pollutant concentration gradients, which play a significant role in exposure assessment [14],
urban planning [15,16], air pollution monitoring [13], and environmental equity [17].
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Studies are trying to understand the distribution of BC and PM2.5 concentrations using
stationary monitors’ measurements [18–22]. Among these studies, the performance of
different machine learning and deep learning models is evaluated and compared against
left-out monitors. Nevertheless, these studies rely on the long-term measurements of BC
and PM2.5 concentrations at fixed locations, which cannot validate the model’s performance
at unmeasured locations. With the development of advanced geospatial techniques and
artificial intelligence algorithms, the integration of Global Positioning System (GPS) tech-
nology and high-accuracy portable air pollution monitoring devices makes it possible to
obtain reliable high-spatial-resolution air pollution concentrations via the use of moving
vehicles. These mobile sensors can potentially be used to test the model’s performance in
refining spatial resolution under the current monitoring system.

Land Use Regression (LUR) is a common method to extend air pollution concentrations
at unmeasured locations and is widely used in urban environment air pollution predictions
and health exposure assessments because of its simplicity and interpretability. Most
works in the literature use stationary measurements to build the LUR models, but mobile
observations have been used in LUR model development in some studies [13,23,24]. To
maximize the model’s performance while maintaining mobile measurements’ high spatial
resolution, the land use variables in the LUR model should have a similar spatial scale.

Due to the complexity of the urban environment and various emission sources, many
LUR studies have not shown high prediction accuracies with pollutant source data created
on the microscale [23–26]. To increase prediction accuracy, some studies have built the LUR
model at carefully selected locations with extra datasets to capture the local variations for a
limited period [27–29], which significantly reduces the generalizability of their LUR models.

Remote sensing products can be used to improve the LUR models’ performance by
providing supporting datasets that better reflect the surrounding environment and potential
emission sources and further help generalize the model over larger regions. One of the
most important remote sensing products relevant to PM2.5 and BC is the Aerosol Optical
Depth (AOD) [30]. Many studies focus on estimating PM2.5 and BC concentrations based on
AOD with other supplementary datasets using statistical models [31], chemical transport
models [32], or physical models [33]. Moreover, the land cover dataset and the digit
elevation model can also help reflect the surrounding emission sources and the potential
air pollution hotspots [34]. With the availability of high-resolution satellite products and
unmanned aerial vehicles (UAVs), it is possible to extract traffic conditions with remote
sensing techniques [35,36]. Vehicles are an import emission source and contribute to local
air pollution hotspots; therefore, the availability of traffic conditions from remote sensing
products not only enhances air pollution prediction capability but also helps generalize the
air pollution prediction model to larger and more diverse regions.

This study has two major contributions to the urban-scale air pollution prediction
studies. First, we explore the predictive power of the LUR model for long-term mobile-
based air pollution concentrations over various urban environments. We use West Oakland,
California’s hyperlocal air pollution data, which measured every street in West Oakland
for over a year. Modern computational algorithms are integrated with the LUR model. The
second contribution is to test the validity of using LUR with modern machine learning and
deep learning methods to refine the spatial resolution of BC concentrations at a hyperlocal
scale in a complex urban environment. To thoroughly assess model performance using
sophisticated statistical techniques, we integrate land use models with various advanced
statistical regression algorithms, encompassing linear regression, Random Forest (RF),
Support Vector Regression (SVR), and Neural Network (NN).

2. Materials and Methods

The general structure of the workflow of this work is summarized in Figure 1 below.
We utilize multiple datasets including various remote sensing products to calculate the
independent land use variables as input for air pollution estimation models. Four ma-
chine learning and deep learning models are carefully tuned with comprehensive feature
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selection and dimension reduction techniques to improve computational efficiency and
model performance. We identify the major sources contributing to ambient air pollution
concentrations and the hyper-local outliers based on the models’ estimation results.
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Figure 1. General research structure and workflow of the paper.

2.1. Study Area and Air Pollution Data

The research zone encompasses the West Oakland (WO) district in Oakland, CA,
USA (Figure 2), spanning around a 10-square kilometer area, featuring a combination of
residential and industrial sections, and bordered by three significant interstate highways
(I-880, I-980, and I-580); additionally, it is home to the 9th-largest cargo port in the United
States (Port of Oakland). Two Google Street View vehicles were used as mapping vehicles,
outfitted with Aclima environmental monitoring devices, and a data integration platform
was utilized within the research zone from June 2015 to May 2016. Weekday daytime
concentrations of black carbon (BC), nitric oxide (NO), and nitrogen dioxide (NO2) were
continuously measured, covering all streets in Oakland, California [37]. BC concentrations
are measured by photoacoustic absorption spectroscopy (Droplet Measurement Technolo-
gies, Boulder, CO, USA); NO concentrations are measured by chemiluminescence (Model
CLD64, Eco Physics AG, Dürnten, Switzerland); and NO2 concentrations are measured
by cavity attenuated phase shift spectroscopy (Model T500U, Teledyne Inc., San Diego,
CA, USA) [12]. The instantaneous measurements were aggregated into an annual weekday
median concentration map with 30 m resolution over the study domain by Apte et al. [12].
Black carbon (BC) concentrations were used in this study to evaluate the LUR model’s
ability in predicting traffic-related air pollution concentrations (Figure 2).



ISPRS Int. J. Geo-Inf. 2023, 12, 290 4 of 16ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 4 of 16 

Figure 2. Study domain and high-resolution BC concentration map. 

2.2. Land Use Model Specification 

As mentioned, the primary challenge of our study is to effectively utilize LUR models 

with extensive, spatially detailed data. In this situation, we have over 5500 sections of 30 

m roadways, each with an annual average BC concentration. To fully benefit from the 

spatial resolution provided by these concentrations, it is essential to have land use varia-

bles that ideally vary at or close to the same spatial scale. For defining the LUR, we employ 

the natural logarithm of BC concentrations as the dependent variable, as the distribution 

of log-transformed BC concentrations more closely resembles a normal distribution. Fol-

lowing the approach outlined by Messier et al. (2018) [38], we compute independent var-

iables incorporating factors such as road length, road classifications, truck routes, local 

zoning categories, normalized difference vegetation index, land cover, population, point 

sources, elevation, and more (refer to Section S1 in supplementary material). Six buffer 

sizes (50 m, 100 m, 250 m, 500 m, 1000 m, and 2500 m) were used to calculate 108 variables. 

Before performing regression analysis, we normalized numeric variables to have a mean 

of zero and unit variance. 

2.3. Model Specification 

Four machine learning models are developed to analyze the processed land use var-

iables. These are a linear model; random forest (RF); support vector regression (SVR); and 

neural network (NN). Our models are constructed using Python 3.7.6 [39] and scikit-learn 

0.22 [40]. For the linear model, the least absolute shrinkage and selection operator 

(LASSO) algorithm is applied for both feature selection and regression. We regularize in-

dependent variable coefficients with a shrinkage parameter to limit their magnitude, 

which helps prevent overfitting and identifies influential features. The LASSO model also 

serves as a benchmark for comparison with other models. 

RF utilizes resampling techniques to create numerous regression trees; this consti-

tutes a supervised learning algorithm. The individual trees function as an ensemble, with 

key features emerging in the final model’s aggregation. The RF model is a versatile and 

robust model which is capable of handling complex data. 

SVR is a machine learning model that utilizes support vector machines for regression 

tasks. It aims to find an optimal hyper-plane that maximizes the margin between 

Figure 2. Study domain and high-resolution BC concentration map.

2.2. Land Use Model Specification

As mentioned, the primary challenge of our study is to effectively utilize LUR models
with extensive, spatially detailed data. In this situation, we have over 5500 sections of 30 m
roadways, each with an annual average BC concentration. To fully benefit from the spatial
resolution provided by these concentrations, it is essential to have land use variables that
ideally vary at or close to the same spatial scale. For defining the LUR, we employ the
natural logarithm of BC concentrations as the dependent variable, as the distribution of log-
transformed BC concentrations more closely resembles a normal distribution. Following
the approach outlined by Messier et al. (2018) [38], we compute independent variables
incorporating factors such as road length, road classifications, truck routes, local zoning
categories, normalized difference vegetation index, land cover, population, point sources,
elevation, and more (refer to Section S1 in supplementary material). Six buffer sizes (50 m,
100 m, 250 m, 500 m, 1000 m, and 2500 m) were used to calculate 108 variables. Before
performing regression analysis, we normalized numeric variables to have a mean of zero
and unit variance.

2.3. Model Specification

Four machine learning models are developed to analyze the processed land use
variables. These are a linear model; random forest (RF); support vector regression (SVR);
and neural network (NN). Our models are constructed using Python 3.7.6 [39] and scikit-
learn 0.22 [40]. For the linear model, the least absolute shrinkage and selection operator
(LASSO) algorithm is applied for both feature selection and regression. We regularize
independent variable coefficients with a shrinkage parameter to limit their magnitude,
which helps prevent overfitting and identifies influential features. The LASSO model also
serves as a benchmark for comparison with other models.

RF utilizes resampling techniques to create numerous regression trees; this constitutes
a supervised learning algorithm. The individual trees function as an ensemble, with key
features emerging in the final model’s aggregation. The RF model is a versatile and robust
model which is capable of handling complex data.
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SVR is a machine learning model that utilizes support vector machines for regression
tasks. It aims to find an optimal hyper-plane that maximizes the margin between predicted
and actual target values. SVR applies kernel functions to map nonlinear data into a high-
dimensional feature space where complex nonlinear relationships become linear. The
dependent variables are regressed against the independent variable via the optimization
of the support vectors. SVR is sensitive to input features and requires meticulous feature
selection. Three feature selection methods and one dimension reduction method are applied
to pre-process the input features to optimize SVR performance; these are random forest
feature importance ordering, feature ordering by conditional independence (FOCI), the
genetic algorithm (GA), and principal component analysis (PCA). Section 2.4 explains these
feature pre-processing algorithms.

NN is a powerful deep learning model which is inspired by the structure and function
of the human brain. It consists of many inter-connected layers or artificial neurons which
can learn complex, nonlinear patterns. A multi-layer feed-forward neural network model
is developed in this study to predict BC concentrations based on land use variables. A
graphics processing unit (GPU) is used to increase the training process of the NN model,
and all the work is carried out in the Google Colaboratory Cloud platform [41].

2.4. Model Tuning

Tuning refers to the optimization of a machine learning (ML) model by selecting
suitable hyperparameters that guide the learning process.

We need to employ different methods for specifying the hyperparameters for our
models. The grid search algorithm is used to optimize the constant shrinkage parameter of
the LASSO model. For the RF model, multiple hyperparameters need to be tuned, which
can be computationally demanding. We integrate RF with the Bayesian hyperparameter
optimization algorithm, a probabilistic model-based technique. This method uses previous
iterations’ information to build a probability model, which increases search efficiency. The
actual objective function’s hyperparameters are optimized according to this probability
model. We utilize Hyperopt [42] to carry out the Bayesian hyperparameter optimization
procedure. The detailed tuning process with the Hyperopt optimization algorithm is
illustrated in Figure S1 in the supplementary material. We define the search space for the
RF hyperparameters (Table S1), and the optimization function within Hyperopt yields the
optimized values for all hyperparameters (Table S2). For consistency, we set the maximum
iteration numbers to 100 for all Bayesian hyperparameter optimization processes.

FOCI calculates conditional dependence coefficients based on the predictive power to
select a subset of input features, which is a forward stepwise feature selection method [43].
The RF model uses regression trees to make predictions, which can also calculate the
relative importance of each input feature. Based on this relative feature importance, we
can subset different numbers of features as input for the SVR model. The GA-based
method is uniquely designed to select optimized feature combinations and SVR model
hyper-parameters, concurrently [44].

Utilizing the FOCI method, we selected 13 features from the 108 input features
(Table S3), which are used as input variables for the SVR model. The SVR model is then
tuned by the Bayesian optimization algorithm. Similarly, different feature combinations
are selected by the RF feature importance and PCA methods, and the corresponding SVR
models are optimized by the Bayesian optimization algorithm.

The fittest survival strategy with the next generation of offspring is introduced into the
optimization process to create the genetic algorithm (GA). In this algorithm, the solution
of each iteration is represented by a “chromosome”, which represents a set of parameters
(features and hyperparameters in this case). The fitness value (R2) is calculated for every
individual to indicate the solution’s quality. We initialize the GA algorithm by randomly
creating 100 individuals to form a mating pool. Two individuals with the highest fitness
values are chosen as parents, and they will produce eight offspring. The newly generated
offspring and the parents together form an updated mating pool, which iterates until the
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fitness value does not improve or the number of iterations matches its maximum threshold.
Mutation and crossover are applied to the mating process to introduce randomness to avoid
the algorithm getting stuck at the local optimum points. The setup of the GA method’s
parameters is listed in Section S3.2, and more details about this algorithm are described in
Zhang et al.’s work [44].

Lastly, we manually adjust the NN model to achieve good prediction performance
while preventing overfitting. The number of layers, the number of neurons in each layer,
and the activation functions are carefully tuned with experience. Ultimately, the model
with the highest prediction accuracy is selected.

2.5. Model Validation

The data are randomly split into training and validation sets, which account for 80%
and 20% of the total number of samples, respectively. To split the data into training and
validation sets, we first randomly shuffled the data to ensure that the split is representative
and avoid any potential bias that might exist in the original order of the data. The next
step is to split the data based on the split ratio, which in our case is 80% of the data split
into the train set and 20% into the validation set. As for the 80% and 20% split ratio, it
is the most widely used ratio in various fields and has proven to be effective in many
scenarios. In our case, this split ratio provides enough data to train the models, allowing
them to learn complex relations, and allocates a substantial amount of data to evaluate
the models’ performance accurately. During the tuning process of all the models, only
the train set is used (Section 2.4), while the validation data are employed to calculate
the coefficient of regression (R2) and root mean square error (RMSE) for each optimized
model. These metrics serve as the criteria for evaluating each model’s performance. For
consistency, we use R2 as the criterion to fine-tune all models over the training set, and
5-fold cross-validation is implemented to calculate R2 to prevent overfitting.

3. Results
3.1. Model Development

A total of 75 features are selected by the LASSO model, and Table S6 lists the corre-
sponding regression coefficients. The train and validation set R2s of the LASSO model are
0.596 and 0.594, respectively. The very similar R2s show the accuracy and robustness of the
LASSO model in predicting BC concentrations.

For the RF model, Table S2 shows the optimized hyper-parameter values. The train
and validation set R2s based on the RF model are 0.701 and 0.695, respectively. Like
the LASSO model, RF also shows robustness when coupled with land use models in air
pollution predictions.

Since the SVR model is sensitive to feature collinearity, it is necessary to conduct
feature selection or dimension reduction to achieve better performance. SVR models with a
different number of features as input are trained, and the train set R2s are shown in Figure 3.
The GA method provides the best performance of all the pre-processing methods used
for SVR model optimization, which selects 45 feature combinations with R2 of 0.693 and
0.667 for the train and validation sets, respectively. Tables S4 and S5 list the optimized
hyper-parameters of the SVR model and the 45 selected features. The difference between
train and validation set R2s proves that the SVR model is less robust and less generalizable
than LASSO and RF.
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Figure 3. Train set R2s of the SVR model based on different feature selection and dimension reduc-
tion algorithms.

The NN model shows R2s of 0.723 and 0.467 for train and validation sets, respectively;
it has the highest train set R2s and lowest validation set R2s among all models in this study.
The large difference between train and validation set R2s suggests that the NN model may
have overfitting issues. The NN model contains three dense layers with a sigmoid as an
activation function for all layers. There are 50, 25, and 10 neurons in each layer, respectively.

The R2s and RMSEs of each model over the train and validation sets are summarized
in Table 1 below. The RMSEs agree relatively well with the R2s; RF has the lowest RMSE
value, followed by SVR, but NN has a smaller RMSE value than LASSO, although LASSO
has a higher validation R2 than NN.

Table 1. Model performance criteria summary.

5-Fold CV R2 for Train Set R2 for Validation Set RMSE for Validation Set, µg/m3

LASSO 0.596 0.594 0.273
SVR 0.693 0.667 0.221
RF 0.701 0.695 0.210
NN 0.723 0.467 0.253

3.2. Model Performance Evaluation

RF has the best performance among all the models, with the highest R2 and lowest
RMSE over the validation set. The scatter plots comparing model predicted values against
measured values in the validation set are shown in Figure 4. All the models do not show
significant bias in their predictions. The LASSO and NN models show more outliers and
are more scattered than SVR and RF models, which are consistent with their R2 and RMSE
performance. All four models have more outliers below the 1:1 line, suggesting they fail to
capture some hyperlocal hotspots fully.
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Figure 5 shows the Taylor diagram to compare the prediction performance of all four
models. The Taylor diagram is a common method used to compare different models or
datasets to reproduce observed data. The diagram consists of a polar plot, where each
model is represented as a point in the figure. The Taylor diagram is based on statistical
measurements including correlation, standard deviation, and root mean square difference.
From the figure, RF performs best, while SVR achieves similar performance, and both are
better than LASSO and NN.
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To better show the spatial distribution of outliers within the domain, we calculate the
differences between model predicted and measured values and compare the spatial distri-
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bution of differences with some critical land use variables in Figures 6–8. The measured
values are used to normalize the differences, where green dots represent points less than
10th percentiles, representing locations where the model underestimates BC concentrations;
the red dots designate points greater than 90th percentiles, representing the locations where
the model overestimates the observed BC concentrations. The summary statistics of BC
concentration between model predicted and measured values are shown in Table 2.
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Table 2. BC concentration difference between model predicted and measurement concentrations.

BC Concentration Differences, µg/m3

Outliers (<10th Percentile) Inliers Outliers (>90th Percentile)
Mean Standard Deviation Mean Standard Deviation Mean Standard Deviation

LASSO −0.52 0.35 −0.01 0.16 0.32 0.19
RF −0.38 0.29 −0.02 0.13 0.24 0.14

SVR −0.40 0.29 0.00 0.13 0.28 0.17
NN −0.41 0.32 0.00 0.16 0.33 0.20

Figure 6 compares the spatial distribution between the normalized differences and
the land use types. Overestimations from all the models are spatially scattered, while most
underestimations happen in three clustered locations for all four models. When spatially
overlaying the outliers with the land use types, underestimations tend to happen in the
industrial and mixture of commercial regions.

When comparing the spatial distribution of the outliers over the local highway systems
(Figure 7), most of the underestimated outliers are located within a 100 m distance from
major highways. Nearly all the underestimated outliers happen within a 500 m distance
from major highways. However, there are no strong relations between the overestimated
outliers and the local highway systems.

The truck route has been identified as a significant variable in BC predictions [45–47].
Figure 8 shows the spatial relationship between designated truck routes and the outliers
for all the models. Like local highway systems, most underestimated outliers are located
within a 100 m distance from truck routes, and all the underestimated outliers are located
within a 500 m distance from truck routes. The overestimated outliers are more spatially
scattered, and their distributions are not influenced by truck routes.

The spatial clustering of underestimated points (green points) suggests that these mod-
els cannot fully capture hyperlocal hotspots. In contrast, the distribution of overestimated
points (red points) suggests that models’ overestimations happen relatively randomly.
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3.3. Sensitivity Analysis

The one-factor-at-a-time (OAT) method is utilized to analyze the relative importance
of input features in influencing the models’ performance. As the name suggests, the OAT
method perturbs one feature at a time from 0% to 200% with a 10% increment, while
keeping the rest constant. The deviation of model predicted BC concentrations from the
observed measurements is then determined. The most sensitivity features of all the models
are plotted in Figure 9, which also illustrates how the varying input features influence
BC concentration predictions. For SVR, RF, and NN models, the vehicle speed is highly
sensitive in influencing the models’ performance; it is the most sensitive feature in both
SVR and RF. The total length of the residential roads with the 2500 m distance and the total
length of the highway with the 100 m distance is the most sensitive feature for LASSO and
NN, respectively. Variables about local road networks including highways, arterials, and
residential roads are dominant for the top five features that are highly influential to the
models’ performance. Figure S2 lists detailed information about the top five most sensitive
features of each model.
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Among all four models, the RF model is the most robust; its prediction is most unlikely
to be affected by the changing of a single input variable. On the other hand, the LASSO
model shows the least robustness; its prediction is significantly influenced by the changing
of input features. The sensitivity analysis indicates that traffic conditions (vehicle speed)
and local road system (proximity and road type) are crucial for predicting BC concentrations
for all models, which is a logical and expected result.
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4. Discussion

This study shows that there are certain benefits when combining advanced machine
learning methods with LUR models. However, some consistent underestimation patterns
were observed with all the models, suggesting that they fail to fully capture hyperlocal
hotspots in complex urban environments. The underestimation of BC concentrations from
all four models is consistent; most of the underestimated points are spatially within three
clusters, which are located within industrial and mixed commercial and industrial zoning
areas, and within 100 m distance from major highways and truck routes. Conversely, there
is no systematic bias of overestimations for all the models. For both underestimated and
overestimated points, their locations from all four models do not exhibit any significant
spatial pattern differences. These underestimation and overestimation patterns imply that
the LUR model integrated with advanced machine learning algorithms and hyper-local air
pollution measurements may still have difficulty fully capturing local hotspots, especially
near complex emission sources, like major highways and truck routes.

Regarding the performance of the various models, LASSO is the simplest model with
the shortest training time (only a few minutes to train and predict on a personal laptop);
however, it can only capture linear relationships, leading to lower prediction accuracy than
SVR and RF. The pre-processing that selects features or reduces input dimensions is crucial
for optimizing the SVR model’s performance. The feature pre-processing and the SVR
algorithm itself are computationally expensive. It costs over 500 iterations to optimize the
45 feature combinations and the SVR model hyper-parameters. Although the converging
speed may be improved via the optimization of the GA method, the GA-based feature
selection method still demands many iterations, making it computationally expensive
(taking several hours or days on a personal laptop). The inherent suitability of parallel
computing of the RF model makes it much faster in training (about one hour). The RF
model’s robustness to input features’ collinearity helps it achieve better performance than
the SVR model, without requiring any feature selection or dimension reduction processes,
even though the latter model carefully selects the input features. This result suggests that
the RF model is the best machine learning algorithm that could be coupled with the land
use model in urban-scale air pollution prediction studies.

The NN model performs best over the training data but is the least accurate over the
validation set among all the models. Adding an extra pre-processing step to select input
features or reduce input dimension may improve the NN model’s overfitting issue and
achieve better performance. Moreover, adding a dropout layer or early stopping technique
to the NN model may also improve its performance [48,49]. However, the training process
of NN is considerably slower than the other three models, even with the introduction of a
GPU (taking about one hour for a single training and prediction process). The automatic
NN structure selection algorithms are mostly based on iterations, which will take much
longer time to optimize their structure. As a result of computational resource limitations,
we do not conduct comprehensive feature pre-processing calculations and automatic
structure optimization algorithms on the NN model. If optimizing prediction accuracy
is the sole purpose of a study, it may be worth allocating the necessary computational
resources to tuning the NN model with feature pre-processing steps and an automatic
structure optimization algorithm. However, if there are other purposes besides predicting
air pollution concentrations, e.g., health risk assessment, urban planning, etc., the RF model
should be the first choice due to its high prediction accuracy, shorter training time, and
robustness of using different features as input.

Our study achieves a reasonably good prediction accuracy in comparison to the
existing literature. For instance, in Ghent, Belgium, Hover et al. used a mobile platform to
measure BC concentrations in December 2015. They built the linear model coupling with
the land use model, which achieved a cross-validation R2 of 0.520 [23]. Messier et al. used
the same campaign data as our work but with a broader domain, including measurements
from Downtown Oakland and East Oakland areas. They integrated kriging regression with
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the land use model, which provides a cross-validation R2 of 0.43 [38]. Our work exhibits
better prediction accuracy than these studies with a more readily generalizable method.

Lim et al. provide similar prediction accuracy to our work, based on the mobile
measurement of PM2.5 particle numbers in Seoul, Republic of Korea [50]. In their work, the
stacked ensemble method exhibits better performance than our results, which is because this
approach combines several machine learning models’ results to improve accuracy. But this
model costs more computational resources to train and is difficult to generalize. Ren et al.
coupled 13 machine learning models with the LUR model to analyze ozone data across the
U.S. from over 1000 monitors and concluded that RF and extreme gradient boosting are
the best-performing models [51], which is consistent with our results. Moreover, our work
extends Ren et al.’s conclusion from the national scale to the hyper-local scale.

This study only focuses on a relatively small area and utilizes some specific indepen-
dent variables (e.g., vehicle speed), making it difficult to generalize to more diverse regions.
However, with the development of remote sensing products and geospatial techniques, it is
possible to extract traffic conditions with deep learning methods over high-resolution satel-
lite products and UAV images. The integration of traffic conditions and road speed limit
can replace the vehicle speed variable in air pollution prediction and makes the model gen-
eralizable over larger and more diverse regions. The next step is to generalize the proposed
LUR model over larger areas by utilizing remote sensing products and advanced geospatial
techniques and exploring the potential application of predicted super-high-resolution BC
concentration maps in environmental justice, environmental quality assessment, and health
exposure studies.

5. Conclusions

This study develops land use regression models based on high-resolution mobile
measured BC concentrations in West Oakland, CA, USA, integrating four machine learning
models, including LASSO, SVR, RF, and NN. The models are carefully tuned on the training
set, and the performance is evaluated on the validation set, which is independent of the
training process. This work concludes that RF is the best-performing model for air pollution
concentration prediction in epidemiology modeling, health exposure assessment, and urban
planning studies. It is important to note that regardless of the regression algorithms used,
the LUR model is less efficient at identifying localized hotspots, particularly when highways
and truck routes are significant sources linked to local hotspots. This highlights the need for
further research and development of models that can better capture hyperlocal variations
in air pollution concentrations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijgi12070290/s1, Figure S1: General procedure for using Hyperopt
optimization algorithm to tune machine learning models (TPE is Tree of Parzen Estimators, which
is a widely used optimization algorithm in Hyperopt algorithm). Figure S2. Top 5 most sensitive
features for each model and how their variations influence model performance in BC prediction
(box shows 25th, 50th, and 75th percentiles; dot means mean value).; Table S1. Search space for RF
model hyper-parameters. Table S2. Tuned values of RF model hyper-parameters. Table S3. The FOCI
method selected 13 features for the SVR model. Table S4. GA optimized hyper-parameters of the SVR
model. Table S5. GA selected 45 features for the SVR model. Table S6. LASSO selected features and
the coefficients.
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