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Abstract: The inefficient use of urban resources and the imbalance of spatial structures make opti-
mizing land use management a top priority in urban environmental management. Traditional land
use classification systems that prioritize only natural features while disregarding human activity
can result in redundancy and conflicts in urban planning. The Production–Living–Ecological Space
(PLES) approach was developed as an integrated method for territorial spatial classification. However,
most existing studies on PLES are conducted at provincial scales, largely overlooking fine-scale usage
within cities. In addition, the existing concept of PLES has been vaguely defined, resulting in linear
and simple identification methods that are not applicable to complex urban environments. To address
these issues, this study proposes a method to identify urban PLES based on supervised classification
using random forest models, which integrate empirical knowledge and multi-source heterogeneous
information. The experiments conducted in Haikou reveal the regional aggregation of living and
production spaces and the scarcity of ecological space in the city. Our study proposes a concrete
concept of PLES and a method for identifying PLES that can be applied to multiple regions, provid-
ing an effective tool for the coordinated management of urban production, living, and ecological
environments.

Keywords: Production–Living–Ecological Space; random forest; spatial structure; multi-source data

1. Introduction

The frequency of socio-environmental issues, such as urban land use conflicts, ecolog-
ical pressure, water pollution, and declining food production, is increasing due to rapid
urbanization. These issues pose a significant threat to the sustainable development of
our society [1,2]. A series of studies related to sustainable development have been con-
ducted to address these challenges, most of which have focused on the analysis of land
use structure [3–5]. Land use classification relies on the division of physical space and
refers specifically to objects on land, such as grasslands, cultivated areas, and built-up areas.
However, this hard division fails to capture the relationship between human activity and
nature, as it attempts to portray human activity in terms of a single object. For instance,
greenery, residential areas, and commercial premises often coexist within the same area
of the city, and describing this area as a single object is insufficient. To address this issue,
the concept of “Production–Living–Ecological Space” (PLES) was developed at the 18th
National Congress of the Communist Party of China [6], which provides a new perspective
for understanding and governing urban space. The PLES concept divides urban space
into living, production, and ecological spaces from the perspective of human activities.
Production space typically refers to land used for agricultural, industrial, and commer-
cial activities aimed at obtaining or generating products, while living space encompasses
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land for human habitation, consumption, and entertainment. Conversely, ecological space
refers to land used for regulating, maintaining, and securing ecological functions [4]. The
PLES concept is an integrated functional zoning approach that can be oriented towards
multiple spatial scales and is compatible with diverse functional needs. It facilitates the
formulation of regional development strategies in accordance with local conditions and
has been applied in various fields such as environmental protection [7], regional spatial
planning integrating multiple regulations [8], ecological services management [9], and land
use structure analysis [10].

The prospect of a wide range of applications has inspired research on PLES, which
includes concepts of identification and optimization [11,12] and evolutionary analysis [13],
among which the identification of PLES contributes to the scientific knowledge of spatial
distribution patterns and forms the cornerstone of subsequent simulation and optimiza-
tion [8,14,15]. Initially, owing to the limited availability of data, scholars focused on
macro-scale studies with cities, counties, and towns as the basic research units. For exam-
ple, Liao et al. [16] analyzed the spatial distribution trends and structural differentiation
of PLES in the hilly areas of Sichuan Province at the county scale, while Duan et al. [11]
analyzed the spatial distribution characteristics and quantitative transformation process
of PLES at the village scale. Bian et al. [17] analyzed the functional characteristics and
equilibrium of the study area, with streets and townships as research units, and proposed
corresponding optimization suggestions for the coordinated and sustainable development
of spatial functions. The subsequent rise of multi-source spatio-temporal big data (e.g.,
remote sensing imagery data, social media data, and travel data) has provided scholars
with the opportunity to identify functional patterns at the microscopic scale. Fu et al. [18]
used point of interest (POI) data and hierarchical analysis to identify the patterns of urban
PLES at a 300 m grid scale. Li et al. [10] constructed a functional classification system for
urban PLES by coupling biophysical process measurement and value conversion methods.
The emergence of these studies has enhanced the implementation of the PLES approach at
the human scale, which is useful for the fine-grained planning and management of cities.
However, these studies mostly described the functions of urban space in terms of physical
space, neglecting the significance of human activity space in representing the functions of
land parcels. Urban space provides a place for human activities and constrains them in turn.
Therefore, identifying urban functions while considering human activity characteristics is
vital for bridging the gap between physical space and real functional space.

Existing spatial identification methods for PLES can be categorized into the merge,
value measurement, and indicator synthesis methods. The merge method refers to the
grouping of categories into living, ecological, and production functions based on an existing
classification system [19], which is limited by the classification accuracy of the existing
classification systems and ignores the intensity of the functions. The value measurement
method refers to the representation of land functions through the biophysical process and
value conversion calculations [10,20], which are more refined but complex to calculate and
difficult to obtain. The indicator synthesis method indicates the construction of a functional
evaluation indicator system based on the interpretation of PLES and then quantifies the
functional intensity by applying the entropy weight method, expert scoring method, and
hierarchical analysis to synthesize the indicators [8,17,21]. Indicator synthesis methods
are often preferred due to the computational simplicity and flexibility of built-on-demand
indicator systems. Methods such as entropy weighting and hierarchical analysis provide
ways to establish weights among indicators, while such linear calculation rules (applying
a set of weighting coefficients to all indicators) are too simple to model complex rules for
the interaction of multiple variables in geographic space. It is crucial to solve this problem
by mining non-linear rules based on human knowledge. The rise of supervised learning
methods has provided a method to achieve this from the limited empirical knowledge
of humans, allowing training to find rules between features and labels based on existing
data [22,23].



ISPRS Int. J. Geo-Inf. 2023, 12, 276 3 of 17

In summary, to identify PLES more precisely, two problems need to be solved: (I) how
to understand the functional structure of urban space by combining human activity char-
acteristics with physical environment characteristics, and (II) how to mine the rules of
non-linear spatial cognition from empirical knowledge data. To address the above prob-
lems, a description system of PLES from two perspectives of human activities and physical
environment was constructed by integrating the data of online taxi trips, POI data, and
AOI (area of interest) data. The annotation set was then constructed using empirical percep-
tion to annotate living, production, and ecological spaces that can be easily distinguished.
Finally, a random forest model was used to mine non-linear rules between the indicator
set, serving to describe the urban function and the annotated set, and the rules were ap-
plied to other unlabeled regions to obtain the full spatial structure of the urban PLES. An
experimental study and analysis were conducted in the main urban area of Haikou City to
provide a theoretical basis for the optimization of spatial patterns in the city.

This paper consists of five sections: Section 1 comprises the study background and
introduction. Section 2 describes the study area and the data selected. The research method
is described in detail in Section 3. In Section 4, the results of the identification of the PLES
in the study area are presented. The discussions and conclusions are presented in Section 5.

2. Study Area and Data
2.1. Study Area

Haikou, the capital of Hainan Province, is located in the northeastern part of the
province and is the first pilot area for provincial spatial planning reform in China. The
identification of the urban functional structure is a prerequisite for the implementation of
its spatial planning strategy. In response to the need for urban spatial planning, the main
urban area of Haikou, which is densely populated, economically prosperous, and has a
variety of land uses, was selected as the study area to provide a proxy for the identification
of PLES in other areas. As the road network density in Haikou is roughly 5.41 km/km2, this
corresponds to an average neighborhood scale of about 300 m [24], totaling 2794 regular
grids. The study area is shown in Figure 1.

Figure 1. Map of the study area.

2.2. Data and Pre-Processing

POIs refer to geographical entities that are closely related to people’s lives, such as
restaurants, banks, and restaurants. We obtained 129,608 POIs in December 2017 from
Gaode Maps (https://lbs.amap.com/ (accessed on 29 December 2017)), a leading Chi-
nese navigation and location service solution provider, comprising 10 categories such as

https://lbs.amap.com/
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restaurants, living services, and companies. Subsequently, 67,339 POIs were maintained
after removing any data sourced from beyond the study area. The POIs were aggregated
into three general categories to eliminate coupling between the original categories. The
aggregation rules are listed in Table 1.

Table 1. The aggregation rules of POIs.

General Category Detailed Category Description with Examples

Entertainment

shopping shopping centers, stores, etc.
restaurants snack bars, dessert stores, etc.

leisure places cinemas, theaters, cabarets, etc.
sports stadiums, fitness centers, etc.
hotels star-rated hotels, budget hotels, B&Bs, etc.

Industry companies -
factories -

Service
living services post offices, communication offices, laundromats,

photo studios, etc.
financial services banks, credit unions, pawnshops, etc.

government agencies Administrative units, public prosecutors and law
enforcement agencies, welfare agencies, etc.

AOIs refer to area-like geographical entities on a map that do not comprise a single
point but rather a polygon area, such as schools. A total of 1481 AOIs were obtained from
Baidu Maps (https://lbsyun.baidu.com/ (accessed on 28 December 2017)) through web
crawling techniques and consisted of three categories: education, medical, and residential
areas. The boundary of each AOI was stored as a polygon so that its area could be calculated.

The land cover data for Haikou City in 2017 were downloaded from the 30 m annual
land cover dataset [25], including a total of nine land use categories: cropland, forest,
grassland, shrub, wetland, water, impervious, barren, and snow/ice. Forests, shrubs,
and grasslands were combined into the greenery category, given their relatively similar
functions in ecological regulation.

The road network data of Haikou City were obtained from OpenStreetMap (https:
//www.openstreetmap.org (accessed on 12 February 2020)), including the road number,
road type, road name, and other attributes. Road types were categorized as primary,
secondary, and tertiary roads. Data outside the study area were removed, leaving 509 rows
of data for use in analyses.

The travel data from vehicles with online tracking were obtained from the pub-
licly available Gaia dataset of DiDi ChuXing (https://gaia.didichuxing.com (accessed
on 22 March 2021)), which is a diversified travel platform in China that provides users
with travel-booking services. Based on the passenger transport data released by the Min-
istry of Transport of the People’s Republic of China [26], taxis accounted for around 20%
of the total passenger transport in Haikou City in January 2020, serving as a significant
addition to public transportation. Additionally, the Didi company’s user base mainly
consists of individuals aged between 20 and 40 in the urban area, which represents the
primary demographic engaged in productive activities within the city. Understanding their
activity patterns provides valuable insights for comprehending the functional structure of
the city. Data were collected on weekdays between 4 September and 29 September 2017,
with 1,338,144 travel records. Weekday data were chosen because the difference between
people’s living and production behaviors is more pronounced on weekdays. Each travel
record includes five attribute fields: order ID, departure time, pick-up position, arrival
time, and drop-off location. Because the coordinates and time recorded by the vehicle
GPS positioning sensor may contain some errors due to meteorological and environmental
influences, travel records with excessive travel time (>2 h) or a travel time record of 0 were
deleted. Duplicate travel records and travel records with origins or destinations outside
the study area were also removed. In total, 1,326,473 travel records were included.

https://lbsyun.baidu.com/
https://www.openstreetmap.org
https://www.openstreetmap.org
https://gaia.didichuxing.com
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3. Methodology

To address the biases caused by neglecting human activity and the limitations caused
by the simple linear combination of indicators in the existing research on urban PLES, we
first constructed a set of indicators for the description of PLES by enriching the existing
indicators with human activity and AOI data. Then, the living, production, and ecological
spaces were identified based on artificial empirical experience to obtain the annotation
set of PLES. Finally, the random forest algorithm was applied to identify the PLES, and a
comprehensive analysis of the PLES was performed based on the identification results. The
workflow of the research process is shown in Figure 2.

Figure 2. The workflow of the research process.

3.1. Description of PLES: Construction of a Set of Indicators

Among the existing indicators describing urban PLES, living space mainly focuses on
residential functions, ecological space concerns green areas, and production space concerns
functions such as transport and industry [27]. These studies demonstrate valid experi-
mental results by concretizing human knowledge in the understanding of concepts and
consequently measuring living, production, and ecological functions separately. However,
this concretization process is prone to disagreement because people are usually sensitive to
the results and are not sensitive to the judgment process used to obtain them. For instance,
while it is straightforward to categorize a hospital as a living area, it becomes challenging
to quantify the extent to which we disregard the dispersed office spaces and ecological
functions surrounding the hospital, opting to define it solely as having a living function.
Instead of specifying definitions of living space, production space, and ecological space,
these multiple sources of data are combined to provide as rich a description of the function
of this region as possible.

AOI and land cover data were used to characterize the functional intensity of edu-
cational resources, medical resources, and residential and office buildings, considering
that the influence of these entities cannot be expressed by a single coordinate point. The
functional intensity of some entities that can be abstracted as point entities were character-
ized by their density. To date, eight functional descriptions of physical space have been
established, including housing, healthcare, education, industry, green space, and other
aspects of daily life.

The ability to attract human activity varies significantly across urban functional areas,
influenced by the rhythm of human life. Areas providing commercial services typically
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maintain high levels of population dynamics throughout the day, while residential and
industrial production areas show differences in population dynamics at night and during
the day, influenced by the work rhythms of residents [28]. The important role of travel
activity differences in the identification of the functional structure of a city has also been
demonstrated in many applications [29,30]. Four indicators were constructed using online
taxi data based on the pick-up and drop-off behaviors of users to enrich the functional
description of the area. Detailed indicator descriptions and calculations are presented
in Table 2.

3.2. Labeling PLES in Combination with Empirical Knowledge

A region where a landmark is located was selected as the priority label region because
we can determine the functional properties of such regions. Satellite imagery and street
maps were then integrated to label the functions of the study units, thus establishing a set
of labels for the identification of PLES. Figure 3 shows the labeled map, and in Table 3, we
have listed some typical examples: schools, hospitals, and housing estates were labeled
as living spaces because they mainly serve human activities, such as housing, medical
care, and education. Woods and lakes were labeled as ecological spaces, and production
workshops and commercial offices as the main workplaces were labeled as production
spaces. A total of 524 grid cells were obtained for the annotation set, of which 236, 102, and
186 corresponded to living, production, and ecological spaces, respectively.

Figure 3. Distribution of the annotation set on the map (Road names are shown on the map in both
English and Chinese).
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Table 2. Definition of indicators.

Dimensions Indicators Calculation Formula Explanation Mean Min Max

The functional intensity
of physical space

Housing function
intensity x1 = Sresidence/Sunit Area of AOIs in the residential category as a proportion of the grid area. (%) 7.7 0 77.5

Entertainment function
intensity x2 = nentertainment/Sunit The density of the POI category entertainment in the grid. (pcs/km2) 177.2 0 4477.8

Educational function
intensity x3 = Seducation/Sunit Area of AOIs in the education category as a proportion of the grid area. (%) 2.3 0 48.8

Medical function
intensity x4 = Shospital/Sunit Area of AOIs in the residential category as a proportion of the grid area. (%) 0.3 0 44.4

Service facility
intensity x5 = nservice/Sunit The density of the POI category service in the grid. (pcs/km2) 67.3 0 1022.2

Office building
intensity x6 = nindustry/Sunit The density of the POI category industry in the grid. (pcs/km2) 23.3 0 688.9

Water coverage x7 = Swater/Sunit Area of water as a proportion of the grid area. (%) 0.3 0 43.7
Greenery coverage x8 = Sgreen/Sunit Area of greenery as a proportion of the grid area. (%) 0.4 0 44.4

Travel characteristics of
residents

Complexity of travel x9 =
√

∑24
t=1(xO,t − xO,t−1)

2 xO,t is the number of cabs departing from the grid, where t represents the
hour ranging from 1 to 24. (x 10 × 104)

xD,t is the number of cabs arriving at the grid, where t represents the hour
ranging from 1 to 24.

Complexity is an estimate of the fluctuation level of the time series [31].
(x 12 × 104)

36.4 0 1917.9

Travel intensity x10 = ∑24
t=1(xO,t)

2 4.0302 0 1524.5

Complexity of arrival x11 =
√

∑24
t=1(xD,t − xD,t−1)

2 38.2 0 1864.3

Arrival intensity x12 = ∑24
t=1(xD,t)

2 8.5199 0 6864.7
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Table 3. Examples of labeling.

ID Name Description Label

1 Hainan University, Haidian Campus A campus of Hainan University Living space

2 Wanlv Garden The largest open tropical seaside
eco-garden in Haikou Ecological space

3 Hainan Overseas Chinese High School A high school Living space

4 Hainan Haima Automobile
Limited company

Automotive companies responsible for the
development and manufacture of

automotive components
Production space

5 Jinniuling Park A large landscaped area in Haikou with a
96% greenery rate Ecological space

6 Jing Rui Building A commercial office building Production space

7 The Second Affiliated Hospital of Hainan
Medical College A general hospital Living space

8 Hongchenghu Park An open park with a green area of
64,567.16 square meters Ecological space

3.3. Identification of PLES by Random Forests

Traditional regression methods are mostly based on linear or curve assumptions to
model the relationship between variables, which cannot model complex rules under the
interaction of multiple variables [32]. Random forest models have been widely used for
mining non-linear rules between variables because of their ability to prevent overfitting
and tolerate outliers [33–35]. The random forest classification model [36] consists of many
decision tree classifiers based on the idea of ensemble learning. Sub-datasets are constructed
by sampling the original dataset with multiple inputs, and the data that are not sampled
are called the out-of-bag data of the tree. Separate classifiers were constructed based on the
sub-datasets used for training, and the classification result of the model was determined by
the vote of all classifier output categories.

Three random forest classification models were built on these three datasets to iden-
tify the living, production, and ecological functions of the study area. Given that many
geographical areas have multiple functions, it would not be practical to classify an area
that contains both office buildings and residential areas as a single function using a multi-
classification model. To address this, we developed three datasets for single-function
recognition, using the functional labels provided in the annotated sets. For instance, to
construct the production-oriented dataset, we labeled all areas in the annotation sets as
non-production spaces, except for those that were explicitly identified as production spaces.

A total of 70% of each dataset was used as the training set and 30% was used as
the validation set. Four important hyperparameters need to be considered in a random
forest classification model, namely, ntrees indicating the number of decision trees, tcriterion
indicating the type of decision tree, max_depth indicating the maximum depth of the tree,
and max_ f eatures indicating the maximum number of features considered when training.
The hyperparameters for each classification model are determined by a grid search method,
where ntrees ranges from 10 to 200 in intervals of 20, tcriterion ranges from {gini, entropy},
and max_depth and max_ f eatures range from {3,5,7,9}. Ultimately, each grid can obtain
classification results from the production-oriented, living-oriented, and ecological-oriented
classification models, which are combined to form the grid’s functional labels, as shown
in Figure 4.

In addition, we analyze the identification rules for PLES using feature importance and
radar plots obtained from a random forest model. Feature importance was determined by
calculating the average decrease in impurity [37] for each PLES indicator, utilizing the Gini
index. This helps us to identify the key indicators in the identification of PLES. Radar plots
provided a visual representation of the average value of each PLES indicator. To validate
our findings, given the challenges in obtaining precise spatial distribution data for PLES,
we compared our results with previous studies, specifically examining the consistency and
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discrepancies. We used jobs–housing space [30] as a point of reference due to its significant
correlation with living/production activities.

Figure 4. Rules applied when combining functional labels.

4. Results
4.1. Results of PLES Classification

To assess the effectiveness of the random forest classification models, we employed two
metrics: classification accuracy and out-of-bag error. The classification accuracy measures
the agreement between the true labels of the grid and the classification results, with higher
accuracy indicating better model performance. Meanwhile, the out-of-bag error reflects the
error rate of the classification model on out-of-bag data, and it is desirable for this metric to
be as small as possible to ensure the model’s reliability. According to Table 4, the accuracy
of all three classification models exceeded 92%, and the maximum out-of-bag error was
0.1503, indicating that the three classification models have good generalization ability and
can accurately identify the functional labels of the study units.

Table 4. Evaluation of random forest classification models.

Model Accuracy Out-of-Bag Error ntrees tcriterion max_dep max_features

Living-oriented classification 0.9338 0.1209 30 entropy 7 7
Production-oriented classification 0.9269 0.1503 70 entropy 9 9
Ecological-oriented classification 0.9292 0.1503 50 entropy 9 9

To further analyze the identification rules of the random forest model for PLES, the
feature importance and radar maps for each functional space are plotted in Figure 5.

The values of housing function intensity and educational function intensity are much
higher than those of the other indicators in Figure 5a, revealing the importance of these three
factors for living space identification. Combined with the distribution of these three factors
in Figure 5b, the definition of living space in the model can be interpreted as a place used
by residents to live and receive an education. A similar phenomenon appears in Figure 5c,
where only three indicators appear to be particularly important: office building intensity,
housing function intensity, and educational function intensity. However, the strength of
the educational function was low, as shown in Figure 5d. The resulting production spaces
typically comprise clustered office buildings and fewer schools but may include residential
areas. Figure 5e, showing the case with ecological space, is completely different; specifically,
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multiple metrics are important, but greenery coverage is extremely important. In addition,
travel characteristics are highly important, but travel complexity and intensity are low (as
shown in Figure 5f). This may be because we selected travel data of residents on weekdays,
when people rarely visit ecological spaces. We deduced that ecological spaces refer to
places where water and vegetation are located and are less visited on weekdays.

Figure 5. Feature importance and radar plots for the three classification models. (a) Feature im-
portance of the living−oriented model; (b) Radar plot of the living−oriented model; (c) Feature
importance of production−oriented model; (d) Radar plot of the production−oriented model; (e) Fea-
ture importance of ecological−oriented model; (f) Radar plot of the ecological−oriented model.
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4.2. Comparison with Jobs–Housing Spaces

The results were compared with the jobs–housing space detected by Zhang et al. [30]
to verify its correctness. In contrast to our approach, which uses supervised learning to
learn rules from human cognitive labels, Zhang et al. [30] constructed rules to identify
region functions based on human activity patterns and distributional features of POIs. The
identification results of Zhang et al. and our method are shown in Figure 6, with similar
blocks divided for ease of comparison. Because working is the main production activity of
people in urban central areas, it is assumed that the workplace mentioned in Zhang et al.’s
research is consistent with the content of our production space. As we can see, the clustering
of production spaces occurs in the XY, JM, and LT blocks in Figure 6b, which is in line
with the distribution of the workspace in Figure 6a. However, an inconsistency appears in
the HD block, where some production spaces appear in Figure 6b while no workspace is
shown in Figure 6a. This may be due to the fact that the production space we probe appears
negligible on larger grids. The living spaces in both figures are represented in purple, but it
should be noted that their definitions of living space are somewhat different. While the
living spaces detected by Zhang et al. refer specifically to dwellings, our detected living
spaces refer to places where people carry out activities related to their lives, including
housing and education. Thus, it can be seen that the living space in Figure 6b is much larger
than that in Figure 6a. In Figure 6a,b, the living areas are scattered in blocks such as BS, BY,
HF, HK, and JY, and clustered in the HD block, which demonstrates the consistency of our
identification results. However, the wide area of the jobs–housing space in the RML block
in Figure 6a is identified as a living space in Figure 6b. According to the real online map,
the RML block is the site of Hainan University surrounded by a large number of residential
areas and services, which facilitates the identification of this area as a living space in this
study. However, the residential function specified in Zhang et al.’s research is weakened
here so that it is identified as a jobs–housing space. Similarly, the HX1 and XY blocks in
both figures show different identification results affected by service facilities. In summary,
we still find that the PLES identified in this study is plausible, despite the difference in the
identification results between the two figures.

4.3. Analysis of Production–Living–Ecological Spaces

The detailed PLES identification results are listed in Table 5 and their spatial distribu-
tions are shown in Figure 7. A weak function refers to the fact that this grid polygon was
not identified as a corresponding function in any of the three classification models; such
areas represent the second largest percentage at 30.77%. Figure 7 demonstrates that weak
functional areas are often located in the vicinity of secondary or tertiary roads. Secondary
roads play a crucial role in connecting different parts of the city, such as residential areas
and commercial districts. Similarly, tertiary roads, including footways and cycleways,
support the daily travel needs of pedestrians and cyclists. It is, therefore, reasonable to infer
that weak functional areas act as transitional zones between different functional spaces.
These areas may lack significant functions of their own, but their location near secondary
and tertiary roads means that they can serve as gateways to other parts of the city. This
highlights the importance of well-planned transportation infrastructure in shaping the
spatial organization of a city, as it can affect how people move through and interact with
different areas. According to Table 5, the most significant daily needs of people are living
and production, accounting for 31.25% and 21.87%, respectively. These functions tend to
cluster within the area enclosed by primary roads, as indicated in Figure 7. This suggests
that the road network plays a crucial role in shaping the activity space for people in the
study area. Interestingly, only 13.71% of the grid in the study area was identified as an
ecological space, which is much lower than the proportion of living space. According to the
national garden city standards proposed by China’s Ministry of Housing and Urban–Rural
Development, the total area of all types of green areas and waters in the built-up area
should account for more than 43% of the total area of the built-up area [38]. This indicates
that the ecological space in the main urban area of Haikou still needs to be built. It is crucial
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to balance the development of living and production spaces with ecological preservation to
ensure a sustainable and healthy living environment for the residents. Contrary to what
was stated earlier, our results indicate that mixed spaces appear extremely rarely, at just
below 3%. This is likely due to the resolution of our research units, as the study area was
divided into a grid of polygons with 300 m sides, which may have limited the identification
of hybrid features. As shown in Figure 7, a higher mix of the three functions is laid out
in the central areas, meaning that the residents living there can satisfy their daily needs
more easily, while the functions in the peripheral areas are mostly composed of a single
function or a mix of two functions, which reveals the need to optimize the space in the
peripheral areas.

Figure 6. The comparison between jobs–housing space and PLES. (a) Jobs–housing space iden-
tification results of the travel flow model considering the spatial distribution of public facilities.
Reproduced from Zhang et al. [30]; (b) Identification results of PLES. BS, Baisha Street; BH, Binhai
Street; BA, Boai Street; BY, Binjiang Street & MeiYuan Street; DT, Datong Street; GX, Guoxing Street;
HD, Haidian Street; HF, Haifu Street; HK, Haiken Street; Hx1, Haixiu Street; HPN, Hepingnan Street;
JM, Jinmao Street; JY, Jinyu Street; LT, Lantian Street; RML, Renminglu Street; XY, Xiuying Street; ZS,
Zhongshan Street.
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Table 5. Results of the identification of PLES.

Function Labeling Number Density

Living Space 873 31.25%
Production Space 611 21.87%
Ecological Space 383 13.71%

Living-production Space 32 1.15%
Living-ecological Space 8 0.29%

Production-ecological Space 27 0.96%
Undefined function 860 30.77%

Figure 7. Results of the identification of PLES.

The awareness of the distribution characteristics of the three functions facilitates the
development of targeted optimization policies. To this end, we computed kernel density
estimates for the living space, production space, and ecological space, the results of which
are shown in Figure 8. The living spaces in the main urban areas of Haikou show a well-
defined circular structure, with low-density and scattered areas in the center and patches
of high-density areas in the periphery. A comparison with real-world maps reveals that
high-density living areas are usually located around schools, such as Hainan University,
Hainan Overseas Chinese High School, and Hainan Ninth Primary School, suggesting
that the construction of educational resources can promote the formation of urban living
space clusters. Production space gathers towards the southwest, mainly formed around
industrial parks in the southwest (e.g., Yakult Industrial Park, Haima Industrial Park) and
office clusters in the center (e.g., Huayin Building and China World Trade Center), with this
layout probably resulting in long-distance commuting within the city. The ecological space
shows a sparse dotted distribution, mostly in park-based scenic areas such as Jinniuling
Park and Wetland Park, indicative of a lack of green space in terms of residential areas
and industrial estates. The Haikou government needs to promote a balanced layout of
educational resources and industrial clusters, as well as to improve residents’ well-being
by increasing vegetation cover in the vicinity of residential areas and industrial parks.
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Figure 8. Kernel density analysis of PLES: (a) living space; (b) production space; (c) ecological space.

5. Discussions and Conclusions

As an important part of the urban spatial structure, urban PLES have an important
impact on people’s daily activities. Accurate identification of urban PLES can help provide
a theoretical basis for understanding human mobility and further guide the resolution
of conflicts between human activities and functional layouts. In this regard, this study
proposes a city-oriented approach to the identification of PLES using supervised learning
techniques that fuse empirical knowledge and multi-source data. An accuracy of more than
92% and an out-of-bag error below 0.1503 guaranteed the soundness of the random forest
model. In addition, a comparison with the jobs–housing pattern also confirms the validity
of the method in this study. By analyzing the results of the PLES identification, the spatial
optimization of Haikou was guided by the discovery of the regional aggregation of living
and production spaces and the scarcity of ecological space in the major cities of Haikou.

Specifically, to address the biased nature of physical space features for functional recog-
nition, we introduced human activity features to enrich the feature dimension. Although
none of these human activity features occupy the top position in the feature importance
results (Figure 5), it can be seen that travel characteristics are more important than arrival
characteristics in the living space, whereas the difference is not obvious in the production
space, which confirms the need to consider the human activity. At the same time, the
insignificance of these features of human activity may also be related to the methods used
to establish the indicators. By relying solely on the volume of travel within a 24 h period to
represent the travel characteristics of a region, this approach may inadvertently conceal the
temporal patterns associated with morning and evening peak occurrences, thereby imped-
ing the accurate identification of production and living spaces. The oversimplification of
travel data in this manner disregards the intricate dynamics that play out during different
times of the day and might hinder the ability to discern distinct activity patterns within the
analyzed dataset. Furthermore, the study’s construction of human activity characteristics is
limited in its scope as it exclusively focuses on two dimensions: the complexity of travel and
the volume of travel. While these dimensions do offer valuable insights into overall activity
patterns, the exclusion of other pertinent dimensions, such as the temporal variation in
travel intensity, restricts the depth of understanding regarding human activity.

To address the limitations of linear weighting rules in indicator synthesis, the method
of random forest classification was applied to mine the non-linear rules between empirical
perception and objective description, which makes the identification of functional spaces
quicker and more flexible, as we only need to use the human experience to modify the
annotated set when oriented to different optimization goals, reducing human effort. In
addition, we analyzed the definition of PLES based on feature importance. Huang et al. [15]
pointed out that production space mainly provides people with products and services;
living space is the space for human activities to meet the needs of housing, consumption,
and entertainment, while ecological space is the space to provide ecological products.
Zhang et al. [39] defined PLES from the perspective of land function cognition, that is,
production space is the land that carries out agricultural, industrial, and commercial
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activities to obtain products and supply functions; living space provides the function of
carrying and securing human habitation; and ecological space focuses on the function of
regulating, maintaining, and securing ecological security. Compared with the generality of
these definitions, this study provides the concept of PLES concretely through the random
forest model, which enriches the theoretical knowledge of related studies. Additionally,
we constructed learning units based on grid polygons with a side length of 300 m, which
encouraged the study of functional patterns at fine scales. Meanwhile, we found that more
mixed functions may appear when the study cell becomes larger than the jobs–housing
space identified by Zhang et al. [30], emphasizing the important influence of the size of the
study unit on the identification results.

Future research can be improved by considering further the following aspects: (1) Con-
sider more human activity characteristics. In addition to the functional characteristics
identified in our study, future research can consider more human activity characteristics
such as morning and evening peak travel patterns. Such patterns can help to distinguish
between residential areas and workplaces more effectively. (2) Conduct multi-scale studies.
Future research can conduct multi-scale studies to identify the functional characteristics
of different regions at various levels of granularity. Integrating functional identification
results across multiple scales can provide domain knowledge for spatial optimization, as
the optimization of a target region usually requires considering its neighboring regions.
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