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Abstract: Using remote sensing and GIS techniques to monitor long time series land cover changes is
of great significance to understanding the impact of human activities on spatiotemporal conflicts and
changes in cropland and forest ecosystems in the black soil region of Northeast China. Spatial analysis
and dynamic degree were used to analyze the evolutionary process and spatiotemporal association of
land cover from 1990 to 2020; the transfer matrix was used to analyze and reveal dynamic conversions
of land cover from 1990 to 2000, 2000 to 2010, and 2010 to 2020; and the GM (1,1) model was used to
forecast the changes in land cover by 2025 based on historical data. The results indicated that the
dominance of forest and cropland did not change from 1990 to 2020, and the average area of forest and
cropland was 512,713 km2 and 486,322 km2, respectively. The mutual conversion between cropland,
forest, grassland, and bare areas was the most frequent. The area of cropland converted into forest
and grassland was 14,167 km2 and 25,217 km2, respectively, and the area of forest and grassland
converted into cropland was 27,682 km2 and 23,764 km2, respectively, from 1990 to 2000. A similar
law of land cover change was also presented from 2000 to 2020. In addition, the predicted values of
cropland, forest, grassland, shrubland, wetland, water bodies, impervious surfaces, and bare areas
were 466,942 km2, 499,950 km2, 231,524 km2, 1329 km2, 11,775 km2, 18,453 km2, 30,549 km2, and
189,973 km2, respectively, by 2025. The maximum and minimum residuals between the predicted
and actual values were 6241 km2 and −156 km2 from 1990 to 2020. The evaluation results of the
GM (1,1) model showed that all of the evaluation indices were within an acceptable range, and that
the posteriori error ratio and class ratio dispersion were both less than 0.25. Through comparison
with other studies, this study is not only able to provide some experience for further analyzing the
spatial and temporal changes in land cover and its future prediction but also provide a basis for
comprehensive management in Northeast China.

Keywords: land cover; long time series; GM (1,1) model; black soil region; spatiotemporal analysis;
human activities; Northeast China

1. Introduction

Humans have been reshaping the Earth’s surface for millennia [1,2]. However, lacking
the change information of regional or global time series land cover about millennium
ecosystem, which constrains analyzing the consequences of ecosystem change [3–6]. With
the increasing focus on sustainability [7,8] and global changes in climate and environ-
ment [9–11], the discipline of land change has become an important scientific area for
addressing these challenging problems [12–14]. Changes in global land use and land cover
have affected the condition and integrity of different ecosystems, giving rise to damage to
ecosystem services and functions in recent decades [15–17]. Land change associated with
biodiversity loss, deforestation, and soil desertification can be understood through the dy-
namic evolution of land cover [18–20]. Exploring the structure and dynamics of land cover
is also crucial for urban planning and management [21–23], which can guide planners and
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managers to promote the development of sustainable urban areas [24,25]. More specifically,
the accurate evaluation of the changes in land cover is the basis for studying the evolution
mechanisms of ecosystems as well as a significant tool for quantifying the impact of human
activities on ecosystems [2,26–28].

With the development of remote sensing (RS) and geographic information system
(GIS) technology, the specific applications for land cover change information are many
and varied [29–32]. Information on long time series land cover changes provides a repro-
ducible and efficient means of simulating the dynamic scenario of vegetation succession
in future forests, cropland, and grassland [33,34]. The National Aeronautics and Space
Administration (NASA) and the United States Geological Survey (USGS) jointly initiated
Landsat 1 in the early 1970s, which represents the longest collection period of Earth ob-
servation satellite data for agriculture, forestry, animal husbandry, and water resources
around the world [35,36]. Since 2008, all Landsat data with an invariable spatial resolution
and similar spectral bands have been freely available to users. The global Collection 1 data
processing (since 1982) includes consistent observation quality analyses and geometric as
well as radiometric correction, enabling a multidecade assessment of land cover changes
and land use to a large geographical extent [37]. The transfer matrix of land use/land
cover can define the important processes of anthropogenic changes to land cover, such
as ecological restoration engineering, cultivated land expansion, land degradation, and
urbanization [38,39]. Different from land use, land cover focuses on the natural properties
of land and can be an important input for climate models of terrestrial ecosystems and
natural resources. Land use focuses on the social attributes of land and describes its social,
economic, and cultural utility, as well as its ecosystem functions [40–42]. Collectively,
these sources allow researchers to make improvements to operational classification and
change detection and to draw better inferences about landscapes and inherent processes
that are associated with forest destruction and agricultural expansion caused by human
activities [43–45].

In recent years, the systematic monitoring of large areas of land cover has become
popular, and most researchers assume that the changes in land cover and land use are
mainly caused by human activities (including induced environmental changes) [46]. Tem-
goua et al. analyzed land cover dynamics in the Melap forest reserve in the years 1988,
2000, and 2018 in the west of Cameroon [47]. Faruque et al. used remote sensing and
geographic information system techniques to monitor the changes in land cover in the
mangrove areas of Bangladesh in 1990, 2000, 2010, and 2020 [48]. Kombate et al. studied
the dynamic changes in land cover and forest cover in Togo between 1985 and 2020, and
found that forest cover decreased substantially over the most recent 30-year period [49].
Souverijns et al. used Landsat time series data to evaluate the changes in 30 years of land
cover in the Sudano-Sahel region, and were able to detect forest degradation resulting
from subtle changes [50]. The drivers and implications of land cover dynamics in the
Finchaa Catchment, northwestern Ethiopia, were analyzed using Landsat images [51].
By correlating the area of the Lake Victoria Basin from natural vegetation categories to
farmland and urban areas and exploring the relationship between these categories of land
cover conversion, it can be found that, during the 1985–2014 period, land cover change
was mainly driven by human activities, resulting in the conversion of forests, woodland,
grassland, and wetland into farmland or settlements [52]. The use of long time series land
cover data provided a theoretical basis for promoting ecological sustainable development
and environmental decision making in the Yellow River Basin [53], Mongolian Plateau [54],
Loess Plateau [55,56], and Tibetan Plateau [57]. Land cover change was also used to moni-
tor long-term desertification changes in the Ternata oasis in the country of Morocco [58].
Thamaga et al. used the Landsat dataset to assess the impact of land cover change on
unprotected wetland ecosystems in the arid tropics of South Africa [59]. In particular, the
La Plata region had major losses in grassland area from 2000 to 2014, mostly as a result of
the expansion of agricultural boundaries [60]. The combination of Landsat and Sentinel-2
sensors has also become an important data option for assessing the changes in land cover
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in different countries around the world, such as Germany, Russia, and Poland [61]. Nasiri
and Som-ard et al. determined the spectral time index extracted from the satellite time
series through the synthesis method of Landsat 8 and Sentinel 2, and generated a land
cover map [62,63]. The results showed that Landsat 8 had greater advantages over Sen-
tinel 2 in the monitoring of forests, herbaceous vegetation, and water; the former was
more accurate [64]. The use of long time series data also provided opportunities for the
forecasting of land cover and desert greening in the future, such as a dynamics of land
system (DLS) model [65], land change evaluation model [66], CA-Markov model [44,67,68],
and GM (1,1) model [69,70]. Among them, the GM (1,1) model can build mathematical
models and make forecasts based on a small amount of incomplete information and data
by considering the law of the past and present development of objective things [71]. It is
usually used in time series prediction, distortion prediction (disaster prediction), system
prediction, and topological prediction (waveform prediction). In particular, it has a unique
effect on the analysis and modeling of a system with a short time series, less statistical data,
and incomplete information. Compared with a common regression analysis, the GM (1,1)
model will not produce a large error in the case of small samples, so it has a wide range of
applications in various prediction fields, such as grain consumption, satellite clock bias,
and runoff forecasts, and is an effective tool for dealing with the problem of small-sample
prediction [72–74].

In addition, some scholars have carried out a series of studies on the black soil region
of Northeast China. Northeast China was a significant ecological forest region, accounting
for more than 30% of China’s total forest area, and the trees were cut down most frequently
in this region before 1998 [75]. At the same time, it was also the most important agricultural
production region in China, which was one of the three largest black soil regions in the
world [76]. Black or dark black humus topsoil is a significant natural resource and is
the most fertile soil in the world [77]. The accurate determination of the quantity and
spatial distribution of cultivated land in the black soil region of Northeast China is very
important for sustainable agricultural development [78]; however, the land exploitation
and utilization have been fast and intensive since large-scale agricultural development in
1900, and the land cover has changed significantly in Northeast China [79]. The total area
and unit stock of natural forest have decreased sharply because of human activities [80,81].
Since 2021, the national government, together with the Chinese Academy of Sciences
and universities, has set up a black soil research demonstration zone in Northeast China
and put forward a black soil protection project to protect the sustainable development
of black soil. Ye et al. reconstructed the changes in cultivated land cover in Northeast
China in the past 300 years by converting literature data and multisource data [82]. Mao
et al. assessed the impact of policies on land cover and ecosystem services from 2000 to
2015 by combining remote sensing, meteorological records, and statistical data [83]. Liu
et al. analyzed the ecological security pattern and its influences on urban expansion in
the black soil agricultural area of Changchun City [84]. Xie et al. combined 300 years of
cropland area and national water conservancy survey data to quantitatively analyze the
spatial and temporal variations in soil erosion from 1653 to 2012 in Northeast China [85].
Zhu et al. combined a Markov chain model and remote sensing data in 2000, 2005, and
2010 to simulate a land use/cover change structure in Fuyuan City, a black soil region in
Northeast China [86]. Wang et al. improved the accuracy of cropland extraction in the
black soil region of Lishu County by using multiseason remote sensing images [78]. Zhao
et al. also combined multitemporal Landsat images with postclassification strategies to
analyze the laws of urbanization, deforestation, and agricultural expansion in Northeast
China [75]. Therefore, from the above literature survey, it can be known that it is necessary
and urgent to study the internal conversion law of forest, farmland, grassland, and other
types of land cover caused by human activities and policies in this region, which is also
crucial for understanding the land loss caused by human activities. In particular, there
are very few studies on large-area land cover change and its spatiotemporal prediction in
recent years with regard to the black soil region of Northeast China.
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In summary, the internal conversion among different types of land cover caused by
human activities in Northeast China in recent years is still unclear, which is not conducive
to the comprehensive management of regional land cover. Thus, the primary aims of this
study are as follows: (1) Firstly, we used the remote sensing and GIS techniques to analyze
the spatiotemporal changes in and dynamic degree of land cover in Northeast China in
the past thirty years (Section 3.1). (2) Secondly, we made attempts to uncover the dynamic
conversions of land cover from 1990 to 2000, 2000 to 2010, and 2010 to 2020 (Section 3.2),
and used the GM (1,1) model to forecast changes in land cover from 1990 to 2020 based
on historical data. (3) Finally, we used the maximum residuals to analyze the differences
between predicted and actual values, and used the GM (1,1) model to predict changes in
land cover by 2025. The posteriori error ratio, root mean square error, infinitesimal error
probability, and class ratio dispersion were calculated to verify the accuracy of the GM (1,1)
model (Section 3.3). This research provides some experiences for the further analysis of
the spatiotemporal transformation of land cover and its future prediction in the black soil
region of Northeast China.

2. Materials and Methods
2.1. Study Area

Northeast China is between 111◦8′~135◦5′ E and 38◦43′~53◦33′ N, and includes Liaon-
ing, Jilin, Heilongjiang, and parts of Inner Mongolia Province (Figure 1). The study region
covers nearly 1,448,286 km2 and an average altitude ranging from 50 to 200 m. It is located
in the middle and cold temperate zone, belonging to the temperate monsoon climate zone,
which is warm and rainy in summer, while being cold and dry in winter. The annual mean
temperature and precipitation are−20~25 ◦C and 300~1000 mm, respectively. It is bounded
on the south by the Yellow River and the Bohai Sea, on the east and north by the Yalu River,
the Tumen River, the Ussuri River, and the Heilongjiang River, and on the west by Mongo-
lia and Russia. The inner part is the high mountains, middle mountains, low mountains,
and hills of the Greater Khingan Mountains, Lesser Khingan Mountains, and Changbai
Mountains, and the central part is the Northeast Plain. The total area of the Northeast Plain,
which can be divided into the Songnen Plain, Liaohe Plain, and Sanjiang Plain, is almost
equal to the mountain area. The land area suitable for reclamation in Northeast China is
about 666,667 km2, mainly rich in rice, corn, soybean, potatoes, sugar beet, sorghum, and
temperate fruits and vegetables. Animal husbandry is the main industry in the eastern In-
ner Mongolia Autonomous Region (East Mongolia Region), which refers to Hulunbuir City,
the Hinggan League, Tongliao City, Chifeng City, and the Xilin Gol League of the eastern
Inner Mongolia Autonomous Region in the Northeast Economic Zone. The main types of
soil are black soil, chernozems, castanozems, and grey forest soil in Northeast China, in
addition to a small amount of dark-brown and brown earth [87]. The black soil region in
Northeast China accounts for about one-fifth of the country’s annual grain output, and is
the main supplier of corn, japonica rice, and other commercial grains to China, ranking first
in both grain commodity volume and grain export volume. It is also the largest natural
forest region in China. The total forest stock in the mountainous areas accounts for about
1/3 of China’s, and the timber output accounted for 38.4% of the country’s in 1995. The area
of forest is about 500,000 km2, which can lengthen the melting time of snow and ice, and the
snow storage in the forest is conducive to the progress of agriculture and forestry. The forest
region of Changbai Mountain, which is located in the eastern part of Jilin Province, is the
most complete preservation of original ecology in the world. The forest region of Hinggan
Mountain is located in the northern part of Heilongjiang Province and the northeast of
Inner Mongolia. Northeast China once accounted for 98% of the country’s heavy industry.
In 2021, the GDP of Northeast China reached 8126 billion dollars, an increase of 6.1 percent.
In recent years, due to long-term high-intensity land utilization coupled with soil erosion,
which results in a decrease in organic content and the degradation of physical as well as
chemical properties and ecological functions. These changes have seriously threatened our
country’s grain production and ecological security. Therefore, it is necessary to use remote
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sensing and GIS techniques to monitor the changes in forest and agricultural ecosystems
in the black soil region of Northeast China, which can minimize the impact of human
activities on surface conditions.
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Figure 1. Distribution of the main soil types in Northeast China. Data source: a soil map (a million-
scale soil map) was downloaded from the second national soil survey. The map of China and vector
boundaries were from the Ministry of Natural Resources: GS(2020)3184.

2.2. Data Collection

Land cover data from 1990 to 2020 were downloaded from 30 m land cover fine clas-
sification product V1.0 at Earth System Science Data (https://data.casearth.cn/ accessed
on 18 February 2023). This product used the method of coupling change detection and
dynamic updating. The main data were Landsat TM, ETM+, and OLI images, and the
change detection for long time series was completed on the Google Earth Engine [88]. Com-
bined with the change detection results, the dynamic updating of land cover was realized
region-by-region and period-by-period [89,90]. We obtained 112 images covering Northeast
China from 1990 to 2020, which were synthesized using Landsat images taken throughout
the whole year. The fine classification system was divided into cropland (10), forest (20),
grassland (30), shrubland (40), wetland (50), water bodies (60), tundra (70), impervious
surfaces (80), bare areas (90), and permanent ice and snow (100) using ArcGIS 10.2 software.
Among them, tundra did not exist in Northeast China, and permanent ice and snow was
less than 0.25 km2 from 1990 to 2020, so we ignored these two categories in the subsequent
analysis. Soil data (a million-scale soil map) were downloaded from the second national soil
survey (http://vdb3.soil.csdb.cn/extend/jsp/introduction accessed on 17 February 2023).
The vector boundaries of China downloaded were a 1:1 million public version of basic
geographic information data (http://vdb3.soil.csdb.cn/extend/jsp/introduction accessed
on 17 February 2023). The map of China was downloaded from a national standard map at

https://data.casearth.cn/
http://vdb3.soil.csdb.cn/extend/jsp/introduction
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the Ministry of Natural Resources: GS(2020)3184 (http://bzdt.ch.mnr.gov.cn./download.
html?SearchText=GS(2020)3184 accessed on 17 February 2023).

2.3. Methods

In this paper, we first preprocessed the original land cover data, which mainly included
clipping, mosaicking, and reclassifying with ArcGIS 10.2 software. We analyzed the land
cover (including black and typical black soil regions) in Northeast China from 1990 to 2020
by dynamic degree, and plotted a spatial–temporal change map of land cover. Then, the
transition matrix was used to analyze the internal transition relationship of land cover from
1990 to 2000, 2000 to 2010, and 2010 to 2020. Based on the above transformation relationship
and the original data, the predicted values of land cover from 1990 to 2020 were obtained by
the GM (1,1) model. Finally, we analyzed the differences between the actual and predicted
values, and used the GM (1,1) model to predict land cover in 2025. The methods are shown
below.

2.3.1. Dynamic Degree of Land Cover

The dynamic degree of land cover can reflect the change in the quantity of land
resources in addition to the change rate of different types of land cover, and can quantify
the impact of human activities on land cover [91]. The single dynamic degree reflects the
rate of change, and also indicates the intensity of the regional change in land cover. The
higher the absolute value is, the faster the type changes. The computing formula is as
follows:

S = (
Kb − Ka

Ka
)× 1

n
× 100% (1)

where S represents the single dynamic degree of a certain type of land cover; Ka and Kb
represent the area of a certain type of land cover at the end and beginning, respectively, of
the study period; and n represents the time interval.

The comprehensive dynamic degree of land cover can describe the whole change in
land cover in the study area within a certain time range, reflecting the changes in regional
land cover. The formula is as follows:

LS =

[
∑t

i=1 ∆Ki−j

2 ∑t
i=1 Ki

]
× 1

n
× 100% (2)

where LS represents the comprehensive degree of land cover dynamics; ∆Ki−j represents
the absolute value of the area converted from class i to j during the initial year; Ki represents
the area of class i within the study period; and n represents the time interval.

2.3.2. Transfer Matrix of Land Cover

A transfer matrix can be based on the changes in land cover at different stages to obtain
a two-dimensional matrix, which was proposed by Russian mathematician Markov [92–94].
By analyzing the transition matrix of multiple time phases, we can understand the transition
between different types of land cover; this is the application of the Markov model to the
changes in land cover. The Markov model can not only quantitatively reflect the conversion
between different types of land cover, but also reveal the transfer rate between different
types of land cover. The temporal and spatial changes in different types of land cover can
be obtained through the transfer matrix of land cover, and the overall status of regional
ecosystem service functions caused by human activities can be understood. The brief
formula of a transfer matrix is as follows:

Pab =


P11 P12 . . . P1n
P21 P22 . . . P2n
. . . . . . . . . . . .
Pn1 Pn2 . . . Pnn

 (a, b = 1, 2, 3, . . . , n) (3)

http://bzdt.ch.mnr.gov.cn./download.html?SearchText=GS(2020)3184
http://bzdt.ch.mnr.gov.cn./download.html?SearchText=GS(2020)3184
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where Pab represents the area of land cover, a, converted into b before the transition; n
represents the number of different types of land cover; and a and b represent the types of
land cover before and after the conversion, respectively.

2.3.3. GM (1,1) Prediction Model

The GM (1,1) model was used to forecast the area of different types of land cover
from 1990 to 2020, and the relationship between the actual value and the predicted value
was obtained. At the same time, land cover in 2025 was forecast, and the posterior error
ratio, infinitesimal error probability, root mean square error, and class ratio dispersion were
calculated to verify the accuracy of the GM (1,1) model and predicted results by using
Matlab 2020 and SPSS software.

The GM (1,1) model is a first-order single-variable differential equation model. It
generates new data series by accumulating obvious trends in one data series. Then, the
cumulative method is used for reverse calculation to recover the original data series and
achieve the purpose of prediction [69,70,95]. The commonly used generation methods of
the GM (1,1) model include the following: (1) cumulative sum, (2) cumulative subtraction,
(3) mean generation, (4) grade ratio generation, etc. This is a kind of quantization of
uncertainty by grey mathematics, which can make full use of known information to seek
the inherent relationship of limited data and predict the changes in land cover in the
future [71–74]; the computing formula is as follows:

(1) Assume that the raw sequence is as follows:

h(0)= {h(0)(1), h(0)(2), . . . , h(0)(i)} (4)

(2) and then add up to form the following:

h(1)(m) =
m
∑

n=1
h(0)(n) m = (1, 2, . . . , i)

h(1) = {h(1)(1), h(1)(2), . . . , h(1)(i)}
(5)

(3) Take the average sequence:

y(1)(m) = 0.5h(1)(m) + 0.5h(1)(m− 1) m = (2, 3, . . . , i) (6)

(4) The grey differential equation and albinism equation are as follows:

h(0)(m) + ay(1)(m) = b
dh(1)

dt + ah(1) = b m = (2, 3, . . . , i)
(7)

(5) Introduce a matrix vector:

µ = (a, b)T , g =
{

h(0)(2) , . . . , h(0)(i)
}T

B =


−y(1)(2) 1
−y(1)(3) 1

...
...

−y(1)(n) 1


(8)

(6) The least squares method is used to obtain the minimum value:

f (
∧
µ) = (g− B

∧
µ)

T
(g− B

∧
µ)

∧
µ = (a, b)T = (BT B)−1BT Bg

(9)
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(7) Establishment of the prediction formula:

∧
h
(1)

(m + 1) =

{
∧
h
(0)

(1)− b
a

}
e−am + b

a

∧
h
(0)

(m + 1) =
∧
h
(1)

(m + 1)−
∧
h
(1)

(m) m = (1, 2, . . . , i− 1)

(10)

3. Results and Analysis
3.1. Spatiotemporal Change in Land Cover

After the reclassification of the original land cover data with ArcGIS software, the
growth patterns of land cover in Northeast China for the years 1990, 1995, 2000, 2005,
2010, and 2020 were presented in Figure 2 and Table 1. Boundary datasets of the black
and typical black soil regions were obtained from the Digital Journal of Global Change Data
Repository [82,96]. At the same time, we plotted the change curve of forest, cropland,
grassland, and bare areas, which accounted for the largest proportion of Northeast China
from 1990 to 2020 (Figure 3).
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and bare areas, which accounted for the largest proportion of Northeast China from 1990 
to 2020 (Figure 3). 

 
Figure 2. Land cover of Northeast China from 1990 to 2020. 

  

Figure 2. Land cover of Northeast China from 1990 to 2020.

Table 1. Land cover in Northeast China from 1990 to 2020 (km2).

Classification
System 1990 1995 2000 2005 2010 2015 2020

Cropland 487,702 495,656 494,197 493,348 487,719 478,674 466,955
Forest 530,912 522,945 510,213 507,255 505,552 505,463 506,654

Grassland 224,906 215,457 223,364 223,379 225,166 228,165 227,482
Shrubland 42 38 430 534 632 720 1197
Wetland 4673 4906 5955 6057 6801 8814 11,121

Water bodies 15,161 15,279 15,453 16,155 16,480 17,576 17,763
Impervious

surfaces 15,633 16,459 18,236 20,866 23,053 25,503 27,078

Bare areas 169,257 177,547 180,439 180,693 182,884 183,373 190,025
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describe the changes in grassland and bare areas. 

According to Figures 2 and 3, as well as Table 1, the main land cover types in the east 
of Northeast China were forest and cropland, accounting for approximately 37% and 34% 
of the total area, respectively, and were mainly distributed in Heilongjiang, Jilin, and Liao-
ning Provinces. The forest has been shrinking in the past 30 years; the maximum area 
variation was 25,449 km2, with its proportion dropping from 37% in 1990 to 35% in 2015. 
The area of cropland first increased by 7954 km2 from 1990 to 1995, but decreased by 28,071 
km2 from 1995 to 2020. The dominance of forest and cropland did not change from 1990 
to 2020; the average area of forest and cropland was 512,713 km2 and 486,322 km2, respec-
tively. Grassland and bare areas were mainly distributed in Inner Mongolia Province, ac-
counting for 16% and 13%, respectively. The variation in the grassland area was small, at 
just 12,708 km2, and the bare areas increased by 20,768 km2 from 1990 to 2020. This geo-
graphical distribution is consistent with different land use patterns defined by human ac-
tivities in Northeast China. Meanwhile, the areas of shrubland, wetland, water bodies, 
and impervious surfaces have been increasing. Among them, the impervious surface 
changed the most, increasing by 11,445 km2. 

A single land cover dynamic degree can not only reflect the change rate of each land 
type but also indicate the intensity of regional land cover change. A positive value repre-
sents the increase in land cover resources, while a negative value represents a decrease in 
land cover resources. A comprehensive land cover dynamic degree can also reflect the 
overall intensity of land cover change in two adjacent years. Except for the last row, the 
other rows represent a single land cover dynamic degree. The results are shown in Table 
2. 

  

Figure 3. Change trends in cropland, forest, grassland, and bare areas from 1990 to 2020. The Y1 axis
(black) was used to describe the changes in forest and cropland areas. The Y2 axis (red) was used to
describe the changes in grassland and bare areas.

According to Figures 2 and 3, as well as Table 1, the main land cover types in the
east of Northeast China were forest and cropland, accounting for approximately 37% and
34% of the total area, respectively, and were mainly distributed in Heilongjiang, Jilin, and
Liaoning Provinces. The forest has been shrinking in the past 30 years; the maximum
area variation was 25,449 km2, with its proportion dropping from 37% in 1990 to 35% in
2015. The area of cropland first increased by 7954 km2 from 1990 to 1995, but decreased by
28,071 km2 from 1995 to 2020. The dominance of forest and cropland did not change from
1990 to 2020; the average area of forest and cropland was 512,713 km2 and 486,322 km2,
respectively. Grassland and bare areas were mainly distributed in Inner Mongolia Province,
accounting for 16% and 13%, respectively. The variation in the grassland area was small,
at just 12,708 km2, and the bare areas increased by 20,768 km2 from 1990 to 2020. This
geographical distribution is consistent with different land use patterns defined by human
activities in Northeast China. Meanwhile, the areas of shrubland, wetland, water bodies,
and impervious surfaces have been increasing. Among them, the impervious surface
changed the most, increasing by 11,445 km2.

A single land cover dynamic degree can not only reflect the change rate of each
land type but also indicate the intensity of regional land cover change. A positive value
represents the increase in land cover resources, while a negative value represents a decrease
in land cover resources. A comprehensive land cover dynamic degree can also reflect the
overall intensity of land cover change in two adjacent years. Except for the last row, the
other rows represent a single land cover dynamic degree. The results are shown in Table 2.

Table 2. Land cover dynamics in Northeast China from 1990 to 2020.

Classification System 1990–1995 1995–2000 2000–2005 2005–2010 2010–2015 2015–2020

Cropland 0.33% −0.06% −0.03% −0.23% −0.37% −0.49%
Forest −0.30% −0.49% −0.12% −0.07% 0.00% 0.05%

Grassland −0.84% 0.73% 0.00% 0.16% 0.27% −0.06%
Shrubland −1.90% 206.32% 4.84% 3.67% 2.78% 13.25%
Wetland 1.00% 4.28% 0.34% 2.46% 5.92% 5.23%

Water bodies 0.16% 0.23% 0.91% 0.40% 1.33% 0.21%
Impervious surfaces 1.06% 2.16% 2.88% 2.10% 2.13% 1.24%

Bare areas 0.98% 0.33% 0.03% 0.24% 0.05% 0.73%
Comprehensive
dynamic degree 0.24% 0.20% 0.05% 0.10% 0.13% 0.17%
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According to Table 2, the land cover dynamic degree of cropland was negative, de-
creasing by 1.18% from 1995 to 2020, indicating that the corresponding area was decreasing
continuously in this period. The intensity of cropland reduction also increased with the
advancing of time, and the single dynamic degree was as high as 0.49% in 2020. This
phenomenon may be related to the accelerated urbanization process in Northeast China in
recent years. The forest dynamic degree decreased by 0.98% from 1990 to 2010, stabilized
from 2010 to 2015, and increased by 0.05% from 2015 to 2020, indicating that the intensity of
forest resource change first increased and then decreased, and that the forest in Northeast
China had a certain improvement trend after 2010. The single dynamic degree of other
land cover was mostly positive, indicating that the corresponding land cover resources are
constantly increasing. As a whole, the change intensity from 1990 to 2000 was the highest,
with a comprehensive dynamic degree greater than 0.20%. Since 2000, the comprehensive
dynamic degree decreased to 0.05% and then increased to 0.17%. The results showed that
the intensity of land cover change first decreased and then increased, which may be related
to the drastic fluctuation in cropland area caused by human activities in the black soil
region.

We also calculated the changes in different types of land cover in the black and typical
black soil regions, as shown in Tables 3 and 4. By analyzing the change in land cover in
these two regions, soil and water erosion in the black soil region of Northeast China can be
understood to a certain extent.

Table 3. Change in land cover in the black soil region from 1990 to 2020 (km2).

Classification
System 1990 1995 2000 2005 2010 2015 2020

Cropland 238,282 239,426 238,862 236,084 232,975 228,328 224,562
Forest 59,656 58,207 55,592 55,904 56,070 55,851 56,372

Grassland 129,156 122,578 121,341 122,123 122,199 124,138 120,561
Shrubland 23 13 71 106 111 106 167
Wetland 2389 2417 2802 2924 3395 4292 5400

Water bodies 7487 7490 7332 8002 8191 9107 9224
Impervious surfaces 7440 7763 8459 9530 10,307 11,228 11,847

Bare areas 112,091 118,630 122,065 121,851 123,276 123,474 128,388

Table 4. Change in land cover in the typical black soil region from 1990 to 2020 (km2).

Classification
System 1990 1995 2000 2005 2010 2015 2020

Cropland 214,825 216,152 215,876 214,572 212,044 207,788 204,600
Forest 34,118 33,046 30,397 30,347 30,415 31,515 31,593

Grassland 68,128 66,179 65,333 62,655 62,764 64,050 62,596
Shrubland 17 10 30 49 27 14 33
Wetland 859 793 1213 1376 1479 2326 3415

Water bodies 4803 4704 4597 5399 5773 6377 6446
Impervious surfaces 7023 7306 7909 8872 9548 10,336 10,869

Bare areas 3249 4832 7667 9752 10,972 10,617 13,467

According to Tables 3 and 4, the area of cropland, forest, and grassland has been
decreasing, and the area of shrubland, wetland, water bodies, impervious surfaces, and
bare areas has been increasing. The average area of forest over the last thirty years was
only 56,807 km2 and 31,633 km2 in the black and typical black soil regions, respectively,
and cropland covered 234,074 km2 and 212,265 km2, respectively. Cropland was dominant
and forest was less so, but the area of cropland in both regions decreased by 14,864 km2

and 11,552 km2 from 1990 to 2020, respectively. At the same time, the area of bare areas
increased by 16,297 km2 and 10,218 km2, respectively. The phenomenon may also be related
to urbanization and land loss. In addition, the average area of grassland and bare areas in
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the black soil region was 58,628 km2 and 112,745 km2 more than that in the typical black
soil region, respectively. This phenomenon is also related to the different patterns of land
use (mainly grassland grazing) in Inner Mongolia, which can be seen in Figure 2.

3.2. Transfer Matrix of Land Cover

A raster calculator was used to extract the transfer matrix of land cover from 1990 to
2000, 2000 to 2010, and 2010 to 2020. Here, we calculated the land cover transfer matrix on
a ten-year basis. We can obtain the temporal and spatial changes in different types of land
cover and understand the overall status of regional ecosystem service functions from land
cover change (Tables 5 and 6). In Table 6, the upper and lower rows represent the transfer
matrix of land cover from 2000 to 2010 and 2010 to 2020, respectively.

Table 5. Transfer matrix of land cover from 1990 to 2000 (km2).

Land Cover ID
2000

10 20 30 40 50 60 80 90

1990

10 436,540 14,167 25,217 44 2081 2028 2230 5395
20 27,682 484,057 18,346 24 436 269 60 37
30 23,764 11,645 148,680 111 482 172 188 39,864
40 7 0 8 5 0 1 0 20
50 1360 211 342 0 2101 242 7 410
60 1801 121 116 1 313 12,683 34 91
80 0 0 0 0 0 0 15,633 0
90 3043 12 30,654 245 541 58 83 134,621

Classification system and its land cover ID: cropland (10), forest (20), grassland (30), shrubland (40), wetland (50),
water bodies (60), tundra (70), impervious surfaces (80), and bare areas (90).

Table 6. Transfer matrix of land cover from 2000 to 2010 and 2010 to 2020 (km2).

Land Cover ID
2010–2020

10 20 30 40 50 60 80 90

2000–2010

10 444,480
430,329

11,808
11,842

23,189
24,440

21
100

2128
4869

2566
2146

4146
3277

5860
10,704

20 13,473
9795

480,771
480,478

15,236
14,424

56
279

292
199

282
208

76
111

28
58

30 22,495
19,775

12,467
13,840

161,856
168,679

63
70

495
690

292
117

299
298

25,397
21,695

40 23
11

8
28

11
8

359
547

0
5

0
1

0
1

28
32

50 1735
1304

358
326

389
244

3
4

2659
3898

332
611

23
44

457
369

60 1354
994

106
110

90
31

3
2

580
656

12,960
14,543

134
114

227
30

80 9
9

0
0

1
1

0
0

0
2

0
0

18,225
23,041

0
0

90 4149
4738

33
29

24,395
19,656

127
194

647
800

49
137

151
192

150,888
157,136

According to Tables 5 and 6, the average area of cropland, forest, grassland, and bare
areas from 1990 to 2000, 2000 to 2010, and 2010 to 2020 that remained unchanged was
437,116 km2, 481,768 km2, 159,738 km2, and 147,548 km2. The area of cropland converted
into forest and grassland was 14,167 km2 and 25,217 km2, respectively, and the area of
forest and grassland converted into cropland was 27,682 km2 and 23,764 km2, respectively
(Table 5). Meanwhile, the area conversion of forest and grassland was 18,346 km2 and
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11,645 km2, respectively. It can be seen that cropland, forest, and grassland were converted
into each other. Moreover, grassland and bare areas were also converted into each other;
the area conversion of them was 39,864 km2 and 30,654 km2.

Table 6 also shows the same conversion rules of land cover. Between 2000 and 2010,
the area of cropland converted into forest and grassland was 11,808 km2 and 23,189 km2,
respectively. The area of forest converted into cropland and grassland was 13,473 km2 and
15,236 km2, respectively, and the area of grassland converted into cropland and forest was
22,495 km2 and 12,467 km2, respectively. The area conversion of grassland and bare areas
was 25,397 km2 and 24,395 km2, respectively. Between 2010 and 2020, the conversion area
between cropland and forest was 11,842 km2 and 9795 km2, respectively, and the conversion
area between cropland and grassland was 24,440 km2 and 19,775 km2, respectively. The area
of forest and grassland converted into each other is 14,424 km2 and 13,840 km2, respectively.
Meanwhile, the area conversion of grassland and bare areas was 21,695 km2 and 19,656 km2,
respectively. It should be noted that the area converted from cropland into bare areas was
as high as 10,704 km2 from 2010 to 2020. Such a large transformation from cropland into
bare areas has not happened before. To sum up, the mutual conversion between cropland,
forest, grassland, and bare areas was the most frequent from 1990 to 2020. We can better
understand the curve changes in different land covers in Figure 3 through such rules and
develop strategies as well as means to minimize the impact of human activities on land
cover.

3.3. Prediction of Land Cover

The GM (1,1) model was used to predict the area of different types of land cover from
1990 to 2025 (Table 7), and the original data used in the prediction process are shown in
Table 1. We can clearly understand the differences between the predicted and actual values
in Tables 1 and 7 and can also obtain the change in land cover by 2025 from historical data.

Table 7. The predicted results of land cover from 1990 to 2025 (km2).

Land Cover ID 10 20 30 40 50 60 80 90

1990 487,702 530,912 224,906 42 4673 15,161 15,633 169,257
1995 500,079 516,704 218,447 128 4431 15,111 16,781 177,269
2000 494,397 513,874 220,574 297 5466 15,622 18,543 179,326
2005 488,780 511,058 222,722 478 6571 16,151 20,491 181,406
2010 483,226 508,258 224,890 670 7749 16,698 22,642 183,511
2015 477,736 505,474 227,080 876 9005 17,264 25,019 185,640
2020 472,308 502,705 229,291 1095 10,345 17,848 27,647 187,794
2025 466,942 499,950 231,524 1329 11,775 18,453 30,549 189,973

According to Tables 1 and 7, the maximum residuals between the predicted and
actual values of cropland, forest, grassland, shrubland, wetland, water bodies, impervious
surfaces, and bare areas were −5353 km2, 6241 km2, −2990 km2, −156 km2, −948 km2,
312 km2, −569 km2, and −2267 km2, respectively, from 1990 to 2020. Meanwhile, except
for shrubland, the maximum relative errors of the other types of land cover were the same
as the years of the maximum residuals. The maximum relative errors of cropland, forest,
grassland, water bodies, impervious surfaces, and bare areas were controlled within 2%.
The reason for this phenomenon was that the area of shrubland suddenly increased from
38 km2 to 430 km2 between 1995 and 2000 in Table 1. The area of shrubland was also the
smallest in 1995, and a higher compensation value was introduced into the predicted value
to meet the fitting requirements of the GM (1,1) model. Therefore, the maximum relative
error between the predicted and actual values of shrubland appeared in 1995 rather than
2015. The predicted values of cropland, forest, grassland, shrubland, wetland, water bodies,
impervious surfaces, and bare areas were 466,942 km2, 499,950 km2, 231,524 km2, 1329 km2,
11,775 km2, 18,453 km2, 30,549 km2, and 189,973 km2 by 2025 (Table 7).
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In addition, the posteriori error ratio, root mean square error, infinitesimal error
probability, and class ratio dispersion were computed to verify the accuracy of the GM (1,1)
model, as shown in Table 8.

Table 8. Prediction accuracy of the GM (1,1) model.

Land Cover ID 10 20 30 40 50 60 80 90

Posteriori error ratio 0.142 0.147 0.206 0.066 0.071 0.031 0.009 0.052
Class ratio dispersion 0.009 0.006 0.016 0.249 0.081 0.018 0.018 0.012

Root mean square error (km2) 3877 3867 1901 104 614 187 421 1434
Infinitesimal error probability 1 1 0.714 1 1 1 1 1

Ratings Good Good Good Eligible Good Good Good Good

As can be seen from Table 8, all of the ratings predicted by the GM (1,1) model were
good except for those for shrubland, which was eligible. Generally, if the posteriori error
ratio and class ratio dispersion are less than 0.35 and 0.2, respectively, the accuracy level of
the GM (1,1) model is good. If the infinitesimal error probability is between 0.7 and 1, the
accuracy level is qualified. It can be found that basically all of the indicators were within
the range of the requirements. The root mean square error of cropland, forest, grassland,
shrubland, wetland, water bodies, impervious surfaces, and bare areas were 3877 km2,
3867 km2, 1901 km2, 104 km2, 614 km2, 187 km2, 421 km2, and 1434 km2, which was
acceptable in the case of a large area. The forecast results can also provide some reference
for policymakers and managers in the comprehensive management of regional surface
conditions.

4. Discussion

Dynamic monitoring and spatiotemporal analyses of land cover have always been
key issues in the study of the impact of human activities on ecological environmental
protection [97–99]. Firstly, the spatiotemporal changes in land cover in the black soil region
of Northeast China in the last thirty years were obtained by using remote sensing and
GIS techniques [100–102]. The dynamic degree of land cover was used to quantify the
impact of human activities on land cover. Secondly, a transfer matrix was used to reveal
the dynamic conversion of land cover from 1990 to 2000, 2000 to 2010, and 2010 to 2020,
and the GM (1,1) model was used to forecast the change in land cover by 2025 based on
historical data. Finally, we evaluated the accuracy of the predicted values and the GM (1,1)
model.

In this article, Northeast China included Heilongjiang, Jilin, Liaoning, and parts of
Inner Mongolia Province (Figure 1), which was consistent with the vector boundary used by
Liu [87]; however, many scholars ignored the five League cities in eastern Inner Mongolia
when they analyzed the changes in land cover in Northeast China, which led to differences
in analyzing land cover [82]. Our study area is one of only three large black soil regions in
the world, and the forest is mainly distributed in the Greater Khingan Mountains, the Lesser
Khingan Mountains, and the Changbai Mountains. The cropland is mainly distributed in
the Sanjiang, Songnen, and Mengdong black soil region. Despite the fertile soil, large-scale
agricultural development largely took place from 1900 [79]; therefore, the analysis of land
cover in Northeast China started from 1990 in this paper. The results suggested that forest
area has been decreasing in the past 30 years; the maximum area variation was 25,449 km2,
with its proportion dropping from 37% in 1990 to 35% in 2015 (Table 1). Zhao et al. found
that the forest area decreased significantly from 1989 to 2006 [75], which was consistent
with the results we obtained. It can be found that the change curve of forest area also
declined significantly from 1990 to 2005 and became stable from 2005 (Figure 3). Deng
et al. found that the forest area decreased by 21,100 km2 in Northeast China from 1988 to
2005 (4.99 × 105 km2 in 2005) [80], and our results showed a loss of 23,687 km2 of forest
area (5.07 × 105 km2 in 2005) (Table 1). To some extent, the results were very similar
when ignoring the range of different study areas. At the same time, Zhao et al. found
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that the expansion of cropland was the major change during 1986–2000 [75], which was
consistent with the change trend in cropland that we obtain from 1990 to 2000 (Figure 3).
Considering the accuracy evaluation of land cover maps from 1990 to 2020, it was necessary
to discuss the quality of the data used in this paper. The overall accuracy of the local
adaptive random forest classification model in 2015 under the first-class system (forest,
cropland, permanent ice and snow, bare areas, water bodies, impervious surfaces, grassland,
shrubland, wetland, and tundra) was 81.4%, and the kappa coefficient was 0.77. The above
land cover classification was also the ranking of classification accuracy; the classification
accuracy of the ground class, with relatively simple spectral characteristics and a greater
area proportion, was higher. However, under the LCCS classification system (sixteen land
cover classifications), the overall accuracy was 71.4% and the kappa coefficient was 0.686.
An overall accuracy of 68.7% and a kappa coefficient of 0.662 were achieved for the LCCS
level-2 system (twenty-four land cover classifications). The reason for this phenomenon
was that the LCCS system contained more similar land classes, forest was divided into
evergreen broad-leaved forest, deciduous broad-leaved forest, evergreen coniferous forest,
deciduous coniferous forest, and mixed forest, and there was often more serious confusion
among similar land classes [89,90]. The dynamic monitoring and analysis of land cover in
this paper can also provide some references for surface change in the black soil region of
China [103,104].

From the perspective of research methods, we used the dynamic degree of land cover,
spatial analysis, a transfer matrix, and the GM (1,1) model. Among them, the dynamic
degree can reflect the rate of land cover change and also indicate the intensity of the
regional change in land cover. Spatial analysis is the quantitative study of geospatial
phenomena, and it is the core of remote sensing and GIS. By using spatial analysis, we
can describe the evolutionary process and spatiotemporal association of land cover ade-
quately [105,106]. Meanwhile, the transfer matrix can define the important processes of
changes in land cover [107]; we can obtain the temporal and spatial changes in different
land cover types and understand the overall status of regional ecosystem service functions
from land cover change. In addition, the use of long time series data also provides opportu-
nities for the prediction of land cover in the future, such as the dynamics of land system
(DLS) model [65], land change evaluation model [66], CA-Markov model [68,108,109], and
GM (1,1) model [70]. Deng et al. simulated the spatial changes in forest area in northeast
China from 2000 to 2020 using the DLS model based on an analysis of the period between
1988 and 2000 [65]. Devi et al. forecasted the scenarios of land cover between 2045, 2073,
and 2100 using land change evaluation (MOLUSCE) modules in QGIS [66]. Nath et al.
predicted land cover in 2025, 2030, and 2040 by using the CA-Markov model based on 2007
and 2018 data [41]. Li et al. used the LCM model to predict the land cover in 2030 based on
historical data from 1980 to 2018 [110]. Singh et al. also used a land change modeler (LCM)
module to obtain future urban growth in 2030 based on datasets from 2010 and 2020 [111];
however, the above methods also had some limitations. The DLS model required multiple
simulations to determine the optimal model parameters. The land change evaluation model
and CA-Markov model were not suitable for medium- and long-term forecasting. Most
of the work produced maps of land cover in sparser time series; there were only a few
historical data used for modeling and predicting the future. Therefore, GM (1,1) was widely
used because it took into account all historical data when the original sequence data were
limited. The prediction GM (1,1) model is a first-order single-variable differential equation
model. It generates new data series by accumulating obvious trends in one data series. The
cumulative method is then used for reverse calculation to recover the original data series
and achieve the purpose of prediction [112,113]. This approach also has its limitations:
more accurate results can be obtained when the annual land cover area change is not a
sudden and small leap, or presents an exponential change. The results are best when only
the latter phase of land cover is predicted, and the continuous prediction of multiple stages
will result in a large deviation in the results. As described in Section 3.3, the maximum
relative error of shrubland between the prediction results and actual values is the largest,
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and the corresponding model is evaluated as eligible, which is the worst result of all. The
reason is that the area of shrubland was the smallest in 1995, and more compensation
values were introduced into the predicted values to meet the fitting requirements of the
GM (1,1) model.

Most scholars focused on the soil and environment in Northeast China [114–116],
and there were few studies on the change in land cover in recent years, which limited the
analysis of the changes in agricultural and forestry ecosystems caused by human activities
in Northeast China. This study can better analyze the spatiotemporal changes in land
cover and understand the internal conversion law of forest, farmland, grassland, and
other types of land cover in the past 30 years, and can also provide some experience for
further analyzing the spatial and temporal changes in land cover and its future prediction
in Northeast China. There are many methods to predict land cover, but each method
has its limitations in some aspects. How to combine deep learning and the CA-Markov
as well as GM (1,1) models to forecast and analyze the change in land cover is also a
challenge. In addition, it is essential to choose suitable comparative analysis regions and
more advanced means to further quantitatively analyze the effect of spectral as well as
biophysical/biochemical parameters, land disturbance, and climate change on land cover;
this will be the focus of subsequent research.

5. Conclusions

Based on remote sensing and GIS techniques, this paper analyzed and quantified the
spatial and temporal changes in land cover caused by human activities and policies in
Northeast China in the past three decades, and predicted the change in land cover in 2025.

The forest area has been decreasing in the past 30 years; the maximum area variation
was 25,449 km2, with its proportion dropping from 37% in 1990 to 35% in 2015. The area
of cropland first increased by 7954 km2 from 1990 to 1995, but decreased by 28,071 km2

from 1995 to 2020. The dominance of forest and cropland did not change from 1990 to 2020;
the average area of forest and cropland was 512,713 km2 and 486,322 km2, respectively.
Grassland and bare areas were mainly distributed in Inner Mongolia Province, accounting
for 16% and 13%, respectively. The variation in the grassland area was small, at just
12,708 km2, and the bare areas increased by 20,768 km2 from 1990 to 2020. Via comparison
with other studies, the temporal and spatial changes in land cover can not only help
to understand the surface conditions of different regions but also provide a basis for
comprehensive management in Northeast China.

The mutual conversion between cropland, forest, grassland, and bare areas was the
most frequent. The area of cropland converted into forest and grassland was 14,167 km2

and 25,217 km2, respectively, and the area of forest and grassland converted into cropland
was 27,682 km2 and 23,764 km2, respectively, from 1990 to 2000. Meanwhile, the area
conversion of forest and grassland was 18,346 km2 and 11,645 km2, respectively. Moreover,
grassland and bare areas were also converted into each other; the area conversion of them
was 39,864 km2 and 30,654 km2, respectively. A similar law of land cover change was also
presented from 2000 to 2020. It should be noted that the area converted from cropland into
bare areas was as high as 10,704 km2 from 2010 to 2020. The phenomenon may be related
to urbanization and land loss.

The maximum residuals between the predicted and actual values of cropland, for-
est, grassland, shrubland, wetland, water bodies, impervious surfaces, and bare areas
were −5353 km2, 6241 km2, −2990 km2, −156 km2, −948 km2, 312 km2, −569 km2,
and −2267 km2 from 1990 to 2020. The predicted values of cropland, forest, grassland,
shrubland, wetland, water bodies, impervious surfaces, and bare areas were 466,942 km2,
499,950 km2, 231,524 km2, 1329 km2, 11,775 km2, 18,453 km2, 30,549 km2, and 189,973 km2

in 2025. It was found that the predicted values (the maximum residual) and all of the
evaluation indices were within the acceptable range, and using as many years of land cover
data as possible to predict the next year can minimize abrupt changes in land cover. This
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study can also provide some experience for further analyzing the spatial and temporal
changes in land cover and its future prediction in Northeast China.
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