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Abstract: As a kind of first aid healthcare service, emergency medical services (EMSs) present high
spatiotemporal sensitivity due to significant changes in the time-dependent urban environment.
Taking full advantage of big spatiotemporal data to realize multiperiod relocation optimization of
EMSs can reduce idle resources and improve service utilization efficiency and fairness. First, we es-
tablished the dynamic time-dependent accessibility and equality model to formulate the multiperiod
maximization objective of global equality. Second, we proposed a capacitated integer evolution
algorithm that relocates emergency medical vehicles to optimize the scheduling scheme. Based on
multiperiod mobile phone records and multiperiod online route planner data, the equality of EMSs
in the research metropolis, Nanjing, China, rose by 41.5% on average, which has an incentivizing
effect on alleviating the tension of prehospital service and minimizes accessibility disparities without
constructing more infrastructure. We also created maps to visualize the changes in equality patterns
over time. This relocation optimization approach can be regarded as a trade-off approach to dispatch
time-dependent sensitive services and provide a practical tool for healthcare decision-makers to
evaluate public healthcare systems and improve strategic urban service planning.

Keywords: emergency medical services; accessibility; equality; relocation optimization; health
services; spatiotemporal analysis

1. Background

In recent decades, economists and geographers have paid considerable attention to
geo-health topics associated with the human geographical living environment around
the world [1]. As a key component of healthcare services, emergency medical services
(EMSs)—including EMS stations and emergency medical vehicles (EMVs)—provide much-
needed prehospital emergency medical care to patients before they are transferred to a
hospital [2,3]. EMSs have a high spatiotemporal sensitivity among various health facili-
ties, one example being the golden eight minutes. In most cases, EMSs face a dilemma
characterized by insufficient resources and a large gap between response time and prime
time, which largely increases the difficulty and workload when the emergency department
implements policies [4].

One primary problem with the insufficient and unbalanced use of EMS resources is
that the current scheduling strategy fails to implement dynamic load balancing at each
EMS station in accordance with the actual dynamic demand [5,6]. The main reasons are
as follows.
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(1) Simulated urban data. In EMS location and relocation studies, simplifying assump-
tions are used in the modeling phase to assess the models analytically [7]. Limited
by the availability of data and the effectiveness of data processing methods, city
managers mainly employ population data based on statistical surveys or Euclidean
distance traffic data based on GIS software simulations when compiling EMS plan-
ning and dispatch strategies. To some extent, the generalized data representation
of urban space loses the actual activity features of urban residents. It is crucial to
conduct a quantitative evaluation of the realistic urban environment based on big
geospatial data.

(2) Static urban environment. Traditional research on the spatial accessibility of EMSs
lacks consideration of spatiotemporal dynamics and spatiotemporal heterogeneity,
which may lead to a problem regarding uncertain geographic context [8]. In the early
stages, EMS location studies assumed that the urban population distribution was static
and the urban traffic commuting state was consistent. Scholars first researched a series
of stationary models for EMV locations, met the requirements for maximum coverage
under limited EMV resources, and decreased the allocation and operating costs [9].
Dynamically estimating potential emergency demands based on big spatiotemporal
data is a critical prerequisite for rationally dispatching EMVs at each station and
shortening the response time.

(3) Equilibrium between equality and efficiency is challenging. The objective of EMSs
is to obtain emergency resources in the shortest time [6]. If the response time of EMSs
can be shortened, the survival rate of patients will be improved. Inequitable solutions
can be generated by classic shortest-time models due to imbalances in economic level
between cities and densely populated and low-populated areas [10]. Efficiency dispar-
ities exist, especially in medical facilities in developing countries [11]. One important
concept for people is equity and fairness, the “equalization of basic public services”,
which is mutually affected by and is related to the degree of satisfaction regarding
how people’s needs are met based on available resources [12].

The rapid development of big spatiotemporal data has led to great opportunities to
solve sustainable problems affecting cities and the environment [13]. With the develop-
ment of wireless positioning and communication technology, large-scale dynamic traffic
information can be collected for EMSs, making it possible to study the accessibility of
actual road traffic conditions. Mobile phone records [14], social media data (such as Twitter
data) [4], web map service data (such as online route planner data provided by Google
Maps API) [15], and trajectory data of ambulance trips [7] are widely used in the field
of EMS optimization. Therefore, the study of optimizing EMS relocation based on big
spatiotemporal data has great practical utility without raising investment in the scale of
EMS infrastructure.

This research attempts to reconcile the discrepancy between demand and availability
for EMSs in various time slots. We provide a framework for the multiperiod relocation opti-
mization of emergency medical services (MRO-EMS) based on big spatiotemporal data un-
der the limitations of the constrained capacity of EMVs. We preprocess the time-dependent
urban data based on multiperiod mobile phone records (M-MPR) and multiperiod online
route planner (M-ORP) data. The evaluation and optimization EMS model is established
to identify the spatiotemporal accessibility and equality of EMSs, and a relocating opti-
mization algorithm is implemented to schedule different emergency moments, thereby
improving prehospital emergency medical care and maximizing service resources. The
potential contributions of our research are as follows:

(1) Realistic urban spatiotemporal data. We adopted a novel approach for utilizing
route planner data from web maps and city-wide fine-grained urban population dis-
tributions over multiple periods to address the issues of EMS accessibility evaluation
and relocation. The EMS model was implemented in the megacity of Nanjing as a
case study, and spatiotemporal patterns were discussed.
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(2) Dynamic time-dependent urban environment. EMS demand varies over space and
time. Demand patterns change, and contingencies occur occasionally, which is why
healthcare emergency operations can be delayed [16]. The MRO-EMS method can
combine the demand status of the urban population with the traffic environment
over various periods, redeploy and relocate idle EMVs between stations, transfer
EMVs from potentially low-demand stations to high-demand stations, and realize
scheduling changes such that EMVs are not fixed to a specific station in a dynamic en-
vironment, ensuring that the call demand near high-demand stations can be promptly
responded to.

(3) Toward maximum equality objective. An improved equality model considering
dynamic time dependence is proposed based on the model to analyze spatiotemporal
data. The dynamic relocation algorithm of EMVs between EMS stations is a viable,
practical, and relatively straightforward operation that is anticipated to provide
considerable effects given the fundamental fact of the lack of service.

The remainder of this paper is structured as follows. Sections 2 and 3 introduce related
work and the methodology, respectively. Section 4 briefly introduces the study area and
data. The experiments and results are shown in Section 5. Finally, we end this study with a
brief discussion and conclusion in Section 6.

2. Related Work

EMS location models can be categorized into three classes: static class, probabilistic
class, and dynamic class [17]. The first class focuses on earlier emergency location cov-
erage models; the probabilistic class defines the EMV unavailability ratio; the last class
focuses on depicting the means of reassigning vehicles dynamically. In the early stages,
scholars researched a series of stationary models for EMV locations, met the requirements
for maximum coverage under limited EMS resources, and decreased the allocation and
operating costs. Such models include the location set covering model, maximal covering
location problem, tandem equipment allocation model, backup coverage problem, and
double standard model. Based on the static model, scholars introduced the concept of
probability coverage and coverage at different times [18]. However, all the cases described
view EMS location as a static problem, meaning EMVs have immovable location sites and
fixed numbers across the timeline. The perceived quality of EMSs would be degraded as a
result [1,19].

To remedy the shortcomings of static models, researchers devised dynamic EMS
localization. For example, the fleet’s location can be adjusted in real time if some EMVs
become occupied [20,21]. Considerable attention has been devoted to the development
of approaches to solve both multiperiod and dynamic relocation problems. New studies
continue to appear regularly, such as TIMEXCLP [22], DDSMt [23], DACL [24], mDSM [25],
MPBDCM [26], and time-dependent MEXCLP [27] (TIMEXCLP refers to the maximal
expected coverage location model with time variation; DDSMt refers to the dynamic
double standard model; DACL refers to the dynamic available coverage location model;
MPBDCM stands for the multiperiod backup double covering model; mDSM represents
the multiperiod double standard model). However, the existing research relies mainly on
simulated, simplified data of the urban environment to realize the optimal solution rather
than big geodata following the urban real-time-dependent environment. Additionally, the
relocation of EMVs is a requirement for real-time management of the dynamic allocation
model, which is bound to bring about high costs and heavy workloads for EMV staff [4].

Geospatial big data represent opportunities for scientific research and provide new
transformation paradigms for different disciplines, especially at the intersection of a wide
range of disciplines, such as humanities, physical sciences, and engineering [28]. Abundant
information, such as real-time traffic conditions and real-time population distribution, is
increasingly accessible due to diverse information and communication technology (ICT)
connections [29]. Fortunately, faster heuristics and enhanced computer technologies enable
EMV location issues to be solved in real time, and enable a new EMV deployment strategy
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to be computed at any time using real-time data [19]. Van Barneveld, et al. [30] developed
a novel perception of optimizing the redistribution of EMVs using trace-driven simulations
based on a real dataset from EMV providers in the Netherlands. Enayati, et al. [31] took
advantage of a discrete-event simulator developed for a large real dataset to estimate
the capability of the timely approach compared with that of two benchmarks. Nilsang,
Yuangyai, Cheng and Janjarassuk [4] was devoted to the study of a covering model based
on social media analysis that was designed to establish a system for EMV relocation by
taking into account real-time data from a social media application (Twitter) involved in
communication and managing emergencies. Carvalho, et al. [32] utilized real EMS data
from Lisbon, Portugal, to conduct experiments to expand the system’s coverage as much as
feasibly possible by taking advantage of a time-preparedness measure that allows relocation
to any base. Kochetov and Shamray [33] developed a model that simulates the whole work
process of the EMS of Vladivostok, in which both the stochasticity of the problem and
the changes in road network loads cannot be ignored. Jánošíková, Jankovič, Kvet and
Zajacová [7] proposed a mathematical relocation programming model to reduce the average
response time of EMVs, which was assessed using real historical data from the Slovak
Republic. Hajiali, Teimoury, Rabiee and Delen [16] established a model-driven decision
support system that divided and prioritized demand into four categories and updated
them continuously based on the current location of idle EMVs.

3. Methods
3.1. Outline of the Proposed Approach

The main challenge in this research is determining how many EMVs should be re-
located to each EMS station at different periods. The proposed MRO-EMS framework
is based on big spatiotemporal data (Figure 1). We obtained fine-grained urban popula-
tion and dynamic traffic data at multiple periods (Section 4.2) based on big spatiotempo-
ral data in the initial stage. Simultaneously, we defined accessibility and equality mod-
els (Sections 3.2 and 3.3) aiming at maximum dynamic time-dependent equality. In the
optimization stage, we constructed the capacitated integer evolution algorithm (CIEA)
(Section 3.4), which has three leading operators: decision variables, relocation plan, and
optimization objective. In the output stage, we established EMV relocation schemes for
various scenarios and performed multisequential analyses of the results.

3.2. Dynamic Time-Dependent Accessibility Model

Accessibility is the research foundation of service equality and spatial optimization [34],
and can be measured in two main ways: location-based and individual-based [35]. Tradi-
tional location-based accessibility methods include the two-step floating catchment area
method (2SFCA), the gravity model, the three-step floating catchment area method (3SFCA),
the Huff model, and other models [36]. In recent years, accessibility research has developed
from static to multiperiod spatial evaluation, showing time-series dependence. Typical
research methods include dynamic accessibility models based on M-MPR and M-ORP
data [14], while spatial accessibility focuses on traffic congestion [37]. Wang [36] integrated
various accessibility evaluation methods into a unified form so that the advantages of
the 2SFCA and the gravity model can be combined in a unified mathematical paradigm.
However, the general model with the distance decay function overestimates the potential
population demand when multiple providers can be used in a demand location without
considering the competitive potential. Combining the potential of competition among
providers, Wan, et al. [38] improved the 2SFCA and proposed the 3SFCA. It included
an initial step that increases the competitive weight (Gij) from the demand point to the
provider point within the search radius d0 before the 2SFCA process. The value of Gij is
determined by the following equation:

Gij =
Wij

∑k∈{Dist(i,k)<d0}Wkj
(1)
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where Wij and Wkj are the assigned Gaussian weights for location i to service site j and k,
respectively. Dist(i, k) is the travel cost from i to any service site k within the catchment,
and d0 is the catchment size. The detail computation of the Gaussian weights will be
discussed in paper [38].
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Based on 2SFCA and Equation (1), 3SFCA can be written as (Equations (2) and (3)):

Dj =
Ej

∑M
k=1 QkGij f

(
dkj

) (2)

Ai =
N

∑
j=1

DjGij f
(
dij
)

(3)
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where the distance decay function f
(
dij
)

in Equations (2) and (3) can be written as:

f
(
dij
)
=

{
dij
−β, dij ≤ d0

0, dij > d0
(4)

where

i—the index of demand point;
j—the index of supply point;
Ai—the spatial accessibility of demand point i;
Ej—the number of pediatricians indicating the service resource supply capacity of provider
point j;
Dj—the supply–demand ratio of service facility j;
Qk—the demand amount of demand point k, such as population number (unit: 10,000 people,
consistent with the dimensions in the previous data description);
f
(
dij
)
—generalized distance decay function;

dij

(
dkj

)
—the traffic impedance between demand point i and supply point j;

M—the total number of demand points;
N—the total number of supply points;
d0—the travel time threshold; that is, the search radius;
β—the coefficient of travel friction, set to 1, with reference to Yao, et al. [39].

The 3SFCA model (Equations (2) and (3)) has not yet considered the variation of
time slots. After introducing the time slot t into the 3SFCA model, we improved and
proposed a dynamic time-dependent accessibility model for different time slots, as shown
in Equations (5) and (6):

Dt
j =

Et
j

∑M
k=1 Qt

kGt
ij f
(

dt
kj

) (5)

At
i =

N

∑
j=1

Dt
j G

t
ij f
(

dt
ij

)
(6)

where

t—represents different time slot, t ∈ (0, T];
At

i—the spatial accessibility of demand i at time slot t;
Et

j—the number of pediatricians indicating the service resource supply capacity of provider
j at time slot t;
Dt

j—the supply–demand ratio of service facility j at time slot t;
Qt

k
(
Qt

i
)
—the demand amount of demand k at time slot t;

dt
ij

(
dt

kj

)
—the traffic impedance between demand point i and supply point j at time slot t.

3.3. Dynamic Time-Dependent Equality Model

The concepts and metrics of spatial equality in the context of health care are covered
in-depth in a recent review [10,40]. Health equality is described in a Robert Wood Johnson
Foundation study as where “everyone has a fair and reasonable chance to be as healthy
as possible”. In our research, the definition emphasizes equitable accessibility rather than
outcomes or service consumption, which can be calculated in terms of the maximum devia-
tion, standard deviation, and coefficient of variance [41]. Wang and Tang [42] proposed
an optimization model to minimize the difference in accessibility from demand points
to provider locations, thereby realizing the maximization of equality—in other words,
minimizing inequality. The objective fitness can be expressed as:

min
M

∑
i=1

(IE i)
2 (7)
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IEi = Ai − a (8)

a =
M

∑
i=1

Qi
Q

Ai =
E
Q

(9)

where

a—the global average value of accessibility;
IEi—the inequality value of demand i that has a positive and negative difference. The
higher the positive value is, the higher the level of accessibility beyond the global average
and the richer the accessibility.
E—the total service (provider) supply capacity;
Q—the total demand amount.

However, the existing model cannot meet the requirements of multiperiod evaluation,
so we improved the model and obtained a new maximum dynamic time-dependent equality
fitness within T (Equation (10)), the main optimization problem of our article. Additionally,
as a penalty variable, the cardinal sign function sgn(∆t) is introduced to make sure that
after optimization is better than before optimization, and to prevent fractional failure as
shown in Equations (12) and (13):

objective : max
∂ ∗∑T

t=1 sgn(∆t)

∑T
t=1 ∑M

i=1
(

At
i − at

)2 (10)

at =
M

∑
i=1

Qt
i

Qt At
i =

Et

Qt (11)

where : ∆t =
M

∑
i=1

(
At

i − at)2 −
M

∑
i=1

(
At′

i − at′
)2

, t ∈ [1, T] (12)

sgn(∆t) =

{
1, ∆t ≥ 0
0, ∆t < 0

(13)

subject to : Et is an invariant constant at time slot t (14)

Et = ∑N
j=1 Et

j , ∀ t ∈ [1, T] (15)

Et
j ∈ [bottom, top], ∀ j ∈ [1, N] (16)

Et
j is an integer, (17)

where

∂—a constant that is set to 500 in this research (Through visualization experiments, this
value can scale the dimensionless equality value to the visualized value interval);
bottom—the lower (bottom) limit at provider j;
top—the upper (top) limit at provider j;
Qt—the total demand amount at time slot t;
Et—the total service (provider) resource capacity at time slot t;
t′—the original initial moment, representing the status quo before optimization;
At′

i —the accessibility value of demand i at initial moment t′;
at—the global average value of accessibility at time slot t;
at′—the global average value of accessibility at initial moment t′;
∆t—the variation of the inequality value after the after optimization at time slot t.

3.4. Capacitated Integer Evolution Algorithm (CIEA)

The redeployment action of the EMS dispatching center assigns EMVs across stations
in each time period based on the scheduling scheme determined by the MRO-EMS method.
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The MRO-EMS method is a kind of combinatorial optimization problem that is NP-hard. A
variety of intelligent evolutionary algorithms are widely used in healthcare facility location
and relocation, including heuristic methods to solve the maximum dynamic coverage
location model [43], hypercube model, genetic algorithm applied to emergency station
location and EMV allocation plan [44,45], stochastic optimization model applied to EMV
redeployment [46], Markov model of EMS systems [3], genetic algorithm integrated with
EMS simulation model to select station location [47], and mixed-integer linear program-
ming models [19]. Considering that the standard genetic algorithm is an applicable and
effective continuous optimization algorithm, we improved the real number coding rule,
solution generation, genetic operators, and capacity constraints to satisfy the problem
regarding relocated emergency medical vehicles—a typical discrete integer combinatorial
optimization problem—and obtained the CIEA methods (Figure 2).
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First, the CIEA generates the initial population through a real number encoding mech-
anism and capacitated adjustment operator. Each solution in the population contains the
relocated number of EMVs in every EMS station at four time slots. Second, two chromo-
somes are selected by the roulette method to perform crossover, mutation, and capacitated
adjustment. Third, the newly generated solution replaces the solution of the parent popula-
tion, and the above operations are repeated. Finally, after a certain number of iterations,
the loop is terminated, and the optimal solution is output as the adopted solution. The
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optimization objective is to maximize the value of Equation (10), subject to the constraints
specified in Equations (14)–(17).

3.4.1. Real Number Encoding Mechanism

Real number encoding—the primary step of problem space mapping to the solution
space—overcomes the accuracy loss of the traditional binary coding mechanism. Each
chromosome solution contains M ∗ T gene positions to save real number encoding results.
Each gene position saves the number of EMVs in station j at time t. Figure 3a shows
a solution example that includes sub-solutions of different time slots based on the real
number encoding mechanism.
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Figure 3. The operators’ diagrams of CIEA. (a) a multiperiod solution example based on real number
encoding; (b) the chromosome generation example at 8:00, where bottom = 1, top = 10, y = 20, and the
number of EMS stations is 5; (c) the crossover operation; and (d) the mutation operation. To facilitate
the description, we consider the crossover operation and mutation operation process of chromosomes
at 8 o’clock.

3.4.2. Population Generation

Multiple solutions are combined into a solution space population. The steps to gener-
ate one solution are as follows (Figure 3b).

Step 1: Select station j represented by each gene, and obtain the upper (top) and lower
(bottom) limit on the number of EMVs that can be relocated at time t;
Step 2: Determine whether station j is the last station at the current time slot. If so, terminate
the CIEA operation and locate the generation of the chromosome at the next time slot;
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otherwise, the number of EMVs refers to a random number yi between bottom and top until
the chromosome at time t is generated;
Step 3: The chromosome generated by the above two steps may exceed the total capacity.
Therefore, the value of the chromosome at time t must be preliminarily adjusted. Assuming
that the number of EMVs available at time t is y and the number of EMVs is ysum, the
number of EMVs after adjustment at each position is yi ′ = yi × y/ysum;
Step 4: Check whether the value of each gene locus is within the bottom and top limits;
Step 5: Use the capacitated integer adjustment operator for further leveling such that the
number of individual EMVs satisfies the capacity constraint;
Step 6: Continue to generate the values of gene loci at the next time slot and go to Step 1.

3.4.3. Crossover Operation

Crossover is an essential part of the CIEA in this article. Assuming that the population
size is w and the number of crossings between two individuals is w/2, the crossing rules
are as follows (Figure 3c).

Step 1: Two chromosomes (i and j) are randomly selected from the population following
the roulette method.
Step 2: At each time slot, the number of positions where the chromosome crossover
operation occurs is n. Therefore, the number of crossover gene loci for each chromosome is
n × T. A cross gene loci sequence is randomly generated, denoted as {X1, X2 . . . XnT}, that
points to the {X1, X2 . . . , XnT} locations of i and j, respectively. Assuming that the numbers
of EMVs at the intersection of the two chromosomes are {i1, i2 . . . inT} and {j1, j2 . . . , jnT},
the numbers of EMVs after crossing are {i1′ , i2′ . . . , inT’} and {j1′ , j2′ . . . , jnT’}.
Step 3: Chromosome i crosses at gene loci nT, and the number of EMVs at that gene locus
is inT’ = (i1 + i2 + . . . + inT) × jnT/(j1 + j2 + . . . + jnT), jnT’ = (j1 + j2 + . . . + jnT) × inT/
(i1 + i2 + . . . + inT);
Step 4: Repeat the crossing operation until the number of crossings reaches w/2.

3.4.4. Mutation Operation

To ensure the diversity of chromosomes in the population, some of the chromosomes
must undergo mutation operations. The mutation rules are as follows (Figure 3d).

Step 1: One chromosome of i is randomly selected from the population following the
roulette method;
Step 2: The number of chromosome mutation locations at each time slot is n. Therefore, the
number of individual mutation locations is n × T. A sequence of variant positions is ran-
domly generated. Assuming that the number of EMVs at individual mutation locations is
{i1, i2 . . . , inT}, and that of the randomly generated mutation sequences is {m1, m2 . . . , mnT},
the numbers of EMVs after mutation are {i1′ , i2′ . . . , inT’}, inT’ = (i1 + i2 + . . . + inT) × mnT/
(m1 + m2 + . . . + mnT);
Step 3: Repeat steps 1 and 2 until the sum of the gene values at the mutation position is
equal to i1 + i2 + . . . + inT.

3.4.5. Capacitated Adjustment Operator

The new solution generated by random generation, crossover, and mutation generally
does not satisfy the limitation of the capacity scale; thus, it must be repaired. The challenge
of the repair process is to ensure that the total number of gene loci is equal to the capacity
limitation while also maintaining the number of single gene loci between the upper and
lower intervals. The capacitated adjustment operator is used to solve this challenge. The
effectiveness of the total capacity and the boundary conditions is commonly disregarded
in theoretical research, but determines the method’s usefulness in application scenarios.
The input parameters of the capacitated adjustment operator contain the upper and lower
limits of chromosome length and capacity and the chromosome sequence, and the output
result is the capacitated chromosome. The main body of the algorithm is divided into
three components: individual initialization, preliminary leveling, and slight leveling. The
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specific implementation and the pseudocode of the capacitated adjustment operator are
shown in Algorithm 1.

Algorithm 1. The structure of the capacitated adjustment operator.

Materials 2022, 15, 3745 3 of 24

Figure 1. (a) Geometry and dimensions of the axisymmetric dumbbell specimens used in the fatigue
experiments; (b) geometry of the Cracked Round Bar (CRB) specimen; (c) Section A-A of the CRB
specimen with the circumferential notch.

Similarly, cyclic tests were performed on notched circular dumbbell specimens, de-
noted as Crack Round Bars—CRB (Figure 1b). According to ISO 18489 [36], an initial
circumferential notch of approximately 1 mm depth (Figure 1c) was inserted at mid-height
using a razor blade (thickness = 0.1 mm, tip-radius < 5 µm) mounted on a lathe rotating
at 80 rpm. The specimens were cyclically loaded at maximum strains of 20, 30, and 50%,
using the same frequency and load ratio used for the unnotched samples. Furthermore,
the tests were monitored using a camera system CV-5701P by Keyence (Osaka, Japan) and
pictures were recorded at every cycle.

2.3. Fracture Surface Analysis

An optical microscope Zeiss Stemi 2000C (Carl Zeiss AG, Oberkochen, Germany) was
used for the fracture surface analysis.

2.4. X-ray Microtomography (µ-CT)

µ-CT scans of the dumbbell samples were acquired on a NSI X-25 inspection system
(North Star Imaging, High Wycombe, UK). The X-ray source was operated at 40 kV and
100 µA, granting a magnification factor of 3.88 and a voxel resolution of 19 µm. It should be
considered that the apparatus is capable of a nominal certified resolution of 2 µm [37]. The

4. Study Area and Data
4.1. Study Area

As the capital of Jiangsu Province, China, and the national gateway city for the
central and western regions of the Yangtze River Delta, Nanjing is a world-famous his-
torical and cultural city with an occupied area of 6587 km2 and a population of 8,335,000
(Figure 4). Nanjing’s medical and health system has been flourishing with relatively
abundant comprehensive medical resources and overall health services that rank be-
hind only Shanghai and Beijing in China. There are 241 public hospitals in Nanjing,
of which 22 are top-tier 3A hospitals. As of 2019, Nanjing has 65 EMS stations (http:
//nanjing.emss.cn/newpages/show?id=969, accessed on 1 October 2020) that contain
169 emergency EMVs, characterized by high density in the central urban area and low
density in the surrounding towns. Nanjing’s emergency network depends on hospitals
setting up several EMS stations with sufficient range to enable coordinated scheduling and
distributed care. Nevertheless, this approach prevents EMVs from returning to the incident
scene after the response is complete. The average emergency response time of Nanjing’s
emergency network is 16 min, which falls short of the national standard (less than 12 min)

http://nanjing.emss.cn/newpages/show?id=969
http://nanjing.emss.cn/newpages/show?id=969
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and is much longer than developed countries’ standards (less than 10 min) [48]. Given
the existing situation of first aid, it is urgent to conduct optimization research on EMV
relocation based on a time-varying environment in Nanjing. Therefore, we selected Nanjing
as the research area in joint consideration of its population, transportation infrastructure,
and medical services.
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Figure 4. The study area.

4.2. Data

An efficient data acquisition system for summarizing data sufficiently is necessary
when the EMVs are dynamically located [19]. Three types of data are collected from the
internet: M-ORP data, high spatiotemporal resolution population data based on M-MPR,
and EMS data to support EMV relocation optimization. A total of 870 community blocks
are separated into three areas: central urban area, inner suburban area, and outer suburban
area (The central urban area includes six districts: Gulou, Qinhuai, Qixia, Jianye, Yuhuatai,
and Xuanwu; the inner suburban area refers to locations adjacent to the central urban
area, including Jiangning and Pukou; the outer suburban area refers to areas far from
the central urban area, including Gaochun, Lishui, and Liuhe). The potential commuting
demand in downtown areas is high during the daytime and low at night [49,50], so we
selected four typical time periods—8:00, 13:00, 18:00, and 22:00—to represent four time
intervals: morning commuter peak, daytime commuter trough, evening commuter peak,
and nighttime commuter trough, which can effectively manifest the impact of travel time
and distance caused by commuter variation in the city. In a megacity such as Nanjing, the
mobility of millions of residents produces a varying pattern of the population distribution
over time.

4.2.1. Multiperiod Online Route Planner (M-ORP) Data

The web mapping route planning API is a feasible travel impedance calculation
approach [51]. In this article, Amap Maps (Amap (www.amap.com, accessed on 1 October
2020) is one of the largest web map providers in mainland China, providing various LBS
services) is selected as the data source. The route planning service of Amap Maps offers
real-time navigation by producing tailor-made travel plans for users based on destination,
departure, and path policy settings combined with real-time traffic [52]. As illustrated in
Figure 5, we take each first aid station as the center to radiate to the surrounding areas, and
the distance that can be reached in 30 min of driving is used as the threshold value. The

www.amap.com
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central urban area presents a prominent network structure. Because the first-aid stations
in the central urban area are densely distributed and equipped with a relatively large
number of EMVs, they show robust connectivity with the community. In the suburbs and
outskirts, the first aid station is the center, and there are faults in the marginal zone. The
most obvious are the marginal zones in the west and east of Jiangning, south of Lishui,
Liuhe, and Gaochun. The examples in Figure 5b–e show considerable differences in traffic
congestion from the emergency station of ZhongDa Hospital to the potential emergency
site at different times, among which the morning and evening peaks are the most serious.
Moreover, when a traffic accident occurs, the congestion is intensified. Therefore, M-ORP
data must be used to characterize the dynamic changes in traffic commuting conditions.
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Figure 5. Diagram of M-ORP data. (a) each first aid station radiating to the surrounding areas within
a 30-min driving threshold during the morning commuter peak. (b–e) examples of M-ORP data
from ZhongDa Hospital to a potential emergency site at 8:00, 13:00, 18:00, and 22:00. (b–e) serve as a
notable visual representation of varying degrees of traffic congestion, thereby exerting an influence
on the overall duration of traffic.

4.2.2. Multiperiod Mobile Phone Records (M-MPR) Data

With the advancement of ICT in smart cities, large-scale transportation travel data
such as mobile phone data, floating car data, and bus IC card data provide new channels
for the description and understanding of urban areas and residents’ behavior, and are
increasingly applied in transportation planning and urban research [53,54]. This article
utilizes the mobile phone signaling data of Nanjing in a particular week in the second half
of 2018, which is relatively stable (as shown in Figure 6). The M-MPR data of Nanjing are
obtained once every hour.
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A person in need of EMSs must provide their current location, which is probably not
the location of their home [1]. In the real urban space, personal travel activities—for exam-
ple, employees on the way to a destination at a one-time slot and returning to their original
location at another time slot—show a certain degree of mobility. As shown in Figure 6,
the active population in Nanjing dynamically varies with time and place, a phenomenon
that is most apparent in the main urban area. Approximately 41% of inpatients go to the
hospital due to an emergency rather than a planned manner [55]. Therefore, the mobility of
the population distribution must be considered when studying the spatiotemporal layout
of EMSs. The total active population during the four time slots (8:00, 13:00, 18:00, and 22:00)
is 12.94 million, 11.01 million, 12.65 million, and 7.20 million, respectively, corresponding
to the actual active population in Nanjing.
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5. Results
5.1. Relocation Experiment

We designed 15 group control experiments with different parameter settings, including
iteration count, population size, crossover probability (CP), mutation probability (MP),
crossover count (CC), mutation count (MC), top, and bottom. The experimental results were
evaluated in terms of the average fitness and max fitness (Table 1). The objective fitness
value in Table 1 is dimensionless quantity, represented as Equation (10) and calculated by
the CIEA approach. The optimization search process of five group controls is illustrated
in Figure 7. The result of the D1 group max fitness is the largest, as high as 23.38, when
the bottom is not allowed to be 0, indicating that the crossover count and mutation count
are set to 4. In contrast, when the bottom is permitted to be 0, the E3 group result achieves
the maximum fitness. In the E3 group, the divest-and-exit strategy was allowed to be
adopted, and we observed significant improvement in the max fitness (42.41) and average
fitness (19.99), which indicated that some emergency stations were redundant or should be
relocated. Average fitness presented a convergence tendency, i.e., increasing initially and
then oscillating. The maximum fitness presented a stable tendency after rising, indicating
that the CIEA method showed better convergence and global search capability.

Table 1. Experimental parameter settings and results of the spatial evolution algorithm with integer
constraints. A total of five control groups (A–E) were established, with each control group undergoing
three experiments (1–3) employing the rigorous technique of variable control. The corresponding
control variables can be referenced in the table. The travel time threshold (Equation (4)) is set to 0.5 h,
and the β coefficient (Equation (4)) is set to 1.

Group Iteration
Count

Population
Size CP MP CC MC top bottom Average

Fitness Max Fitness

A1 250 200 0.8 0.2 8 8 15 1 10.54 19.47
A2 500 200 0.8 0.2 8 8 15 1 9.9 18.86
A3 1000 200 0.8 0.2 8 8 15 1 9.745 18.60
B1 250 400 0.8 0.2 8 8 15 1 10.14 20.45
B2 500 400 0.8 0.2 8 8 15 1 11.32 20.72
B3 1000 400 0.8 0.2 8 8 15 1 11.20 19.25
C1 500 200 0.9 0.1 8 8 15 1 11.87 21.61
C2 500 200 0.7 0.3 8 8 15 1 10.00 17.22
C3 500 200 0.6 0.4 8 8 15 1 7.31 17.24
D1 500 200 0.8 0.2 4 4 15 1 14.45 23.38
D2 500 200 0.8 0.2 12 12 15 1 8.81 16.82
D3 500 200 0.8 0.2 16 16 15 1 6.99 15.91
E1 500 200 0.8 0.2 8 8 20 1 11.72 21.15
E2 500 200 0.8 0.2 8 8 10 1 11.14 19.32
E3 500 200 0.8 0.2 8 8 10 0 19.99 42.41

5.2. Spatial Distribution Results of EMS after Optimization

We selected the E3 group in Table 1, which allows the divest-and-exit strategy as a
potential application scenario to lay out both the spatial distribution result and parallel
coordinate system diagram at different time slots (Figure 8). As shown in Figure 8, the
optimized dispatch volume of EMS stations in the central and inner suburban areas changed
dramatically at different times. However, a slight increase was seen in the overall dispatch
volume of EMS stations in the outer suburbs, and the existing partial stations were closed.
Based on the characteristics of the changes, the relocation pattern of different EMS stations
was divided into increasing patterns, fluctuating patterns, and descending patterns.
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(1) An increasing pattern means that the number of EMVs at each time slot increases sig-
nificantly after optimization of the EMS station, indicating that the original resources
of the EMS stations were insufficient. Only a few stations, such as Lishui and Qixia,
fit this growth pattern perfectly. Moreover, the districts showing a significant increase
at night include Pukou, Liuhe, and Jiangning, a trend that was directly related to the
districts’ large area, suburban location, and dense population.

(2) A fluctuating pattern refers to the number of EMVs fluctuating during each time slot
with the dynamic changes in population and traffic conditions, indicating that the
original resources of EMS stations roughly satisfied the demand. Furthermore, the
dynamics after time-dependent optimization effects are reflected. Figure 8 shows that
most of the sites, including Jianye, Pukou, Liuhe, and Xuanwu, fully conform to the
fluctuation pattern.
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(3) A descent pattern refers to the fact that the number of EMVs at each moment shows a
significant decline after optimization of the EMS station, indicating that the original
resource allocation of the EMS station easily satisfies the region’s demand. Some
stations in the central urban area, such as Qinhuai and Gulou, perfectly correspond to
the descending pattern (Figure 8).
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Figure 8. The parallel coordinate system diagrams after relocation optimization at four time slots.
(a) ID of EMS stations in Nanjing, (b) zoom map of downtown part, (c–m) relocation strategy of each
EMS station at four time slots after optimization in differ districts, refers to Gulou, Yuhuatai, Qinhuai,
Lishui, Liuhe, Pukou, Gaochun, Qixia, Jiangning, Jianye, Xuanwu.

5.3. Equality Comparison before and after Optimization

This section involves the contrast indicators of accessibility disparities before and after
optimization.

From the dimensions of temporal variation, the global equality values (The global
equality is the sum of the equality values of all blocks during one time slot in the re-
search area) before optimization were 5.924, 7.767, 8.138, and 15.595, implying that the
time-dependent effect of EMS equality was significant. The global equality values after
optimization were 8.943, 9.926, 13.078, and 57.187. Equality after optimization increased by
41.5% on average, and 33.7%, 21.7%, 37.7%, and 72.7% at different time slots. We calculated
the equality day–night ratio (Equality day–night ratio = night equality value/daytime
equality average) as 5.4 (before optimization) and 2.1 (after optimization).

From the dimension of spatial distribution (Figure 9), the central urban area (The
central urban area includes six districts, i.e., Gulou, Qinhuai, Qixia, Jianye, Yuhuatai,
and Xuanwu) is basically in the middle-value range before optimization, while the outer
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suburban area (The outer suburban area refers to locations far from the central urban area,
including Gaochun, Lishui, and Liuhe) is concentrated in the high- to very high-value
range. The most typical representative areas include the urban areas of Gaochun and Lishui,
which contradicts our stereotype. After optimization (Figure 10), the high-value regions
were significantly reduced, and the high-value area in the central urban area expanded,
typically during the evening commuter peak. The spatial distribution of the moderate- and
low-value regions also expanded. These phenomena indicated that idle and redundant
EMVs were dispatched to areas with lower equality, owing to the objective guides and
CIEA optimization.
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commuter trough).



ISPRS Int. J. Geo-Inf. 2023, 12, 269 19 of 24
ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 21 of 26 
 

 

 
Figure 10. Spatial distribution maps of equality at different time slots after optimization. Addition-
ally, the spatial distribution maps of equality after optimization include (a) 8:00, (b) 13:00, (c) 18:00, 
and (d) 22:00. 

6. Discussion and Conclusions 
6.1. Discussion 

EMSs significantly impact modern health systems, and the timeliness of the response 
to emergency calls is of great importance to patient health and recovery [10]. Developing 
new reliable models (possibly hybrid models, supported by new ICT solutions) has be-
come a primary test from which models can represent the inherent complexity [6]. 

The main contribution of this study is the presentation of the MRO-EMS approach 
based on multisource spatiotemporal big data. The proposed MRO-EMS framework in-
novatively integrates the equality objective function of time-dependent factors and the 

Figure 10. Spatial distribution maps of equality at different time slots after optimization. Additionally,
the spatial distribution maps of equality after optimization include (a) 8:00, (b) 13:00, (c) 18:00, and
(d) 22:00.

6. Discussion and Conclusions
6.1. Discussion

EMSs significantly impact modern health systems, and the timeliness of the response
to emergency calls is of great importance to patient health and recovery [10]. Developing
new reliable models (possibly hybrid models, supported by new ICT solutions) has become
a primary test from which models can represent the inherent complexity [6].

The main contribution of this study is the presentation of the MRO-EMS approach
based on multisource spatiotemporal big data. The proposed MRO-EMS framework in-
novatively integrates the equality objective function of time-dependent factors and the
evolutionary operator of spatial characteristics. The research results exhibited applica-
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ble examples of utilizing big spatiotemporal data for the quantified fine optimization of
human–urban interactions, demonstrating promising advantages among various disci-
plines. The MRO-EMS approach focused on spatiotemporal equality, considering dynamic
time dependence in the real world. The spatial equality of EMS shows high spatiotemporal
sensitivity. As shown in the results, the equality of EMS in the research area increased
by 41.5% after optimization, which could have a significant positive and incentivizing
effect on alleviating the tension of prehospital medical facilities and promoting equality. By
redeploying idle EMVs between stations and moving EMVs from potential low-demand
stations to high-demand stations, the EMS dispatching center can couple the demand status
of the urban population and traffic environment over various periods, ensure that the call
demand near high-demand stations can be quickly responded to, and reduce the overall
response time.

To further represent the numerical distribution’s change, we generated a box plot
(Figure 11) to compare the global equality value variation before and after optimization.
Before optimization, the overall values are scattered, and the number of abnormally high
values is significant. After optimization, the overall values are clustered around the mean,
and the overall value decreases, reflecting the effects of the optimization approach. The
unfavorable part after optimization must be noted. The low-value area has increased
because the influence of the high-value, and very high-value areas on the objective function
is far greater than that of the low-value area, which reflects the insensitivity of the objective
function to the low-value area at a certain level.
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The demand, the number of available vehicles, and travel times are all presumed
to be changeable over time in the proposed models [10]. These two new data types use
time-dependent data conditions to develop the dynamic time-space accessibility of EMSs.
Realistic M-ORP data can dynamically characterize traffic congestion, presenting a key
factor affecting EMS. Moreover, the distribution of the active population characterized
by M-MPR data can reflect the distribution of the active population at different times in
the entire region, even in the presence of data expansion and insufficient sampling errors.
In a dynamic time-dependent environment, the CIEA is utilized to perform MRO-EMS,
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thereby achieving maximum global equality within a day for a typical EMS, i.e., an EMV.
Emergency demand is dynamic and time-varying; the dynamic EMV dispatch strategy
can optimize emergency response capabilities under limited EMS resources. This article’s
research framework also applies to other time-sensitive service facilities, such as the location
of stores, considering the time-dependent influence.

In terms of EMS organization types [56] (EMS organizations belong to two main
groups, Anglo-American and Franco-German, defined by Dick), Nanjing, China, belongs
to the Anglo-American group that is often not tied to the medical system and provides
only nursing care with the intention of responding to calls as quickly as possible, and
guaranteeing timely and safe transport of patients to appropriate medical facilities [10].

(1) EMSs in Nanjing show an aggregate developmental effect; that is, the Matthew
effect [57]. However, the distribution of the central city is also uneven. Currently, the
EMSs in the major city are concentrated, and the number of EMVs is considerable.
Some social groups are concentrated in specific areas in the inner city and form
localized contexts in which access to medical facilities and socio-institutional factors
intersect and combine to create unequal accessibility. When a strong demand for
rescue services close to these EMS stations exists, it is simple to create a shortage that
can only be filled by stations located farther away, leading to a longer response time
that has a detrimental effect on the overall average response time. As a result, we
should monitor how these EMS stations operate from the perspective of the EMV
dispatching center, construct more intense auxiliary stations to dispatch more vehicles
on time, and increase the emergency network’s resiliency.

(2) Echoing the triple jeopardy of social, environmental, and health inequalities [58], some
rural-to-urban migrants may experience health-related disadvantages. This effect
becomes significant after considering the spatial accessibility to medical facilities and
spatial heterogeneity, suggesting the coupling of institutional and spatial factors over
space, which is consistent with the findings of previous studies [59]. The current
EMS is concentrated in areas where large hospitals are located, thereby making it
possible to quickly solve the first aid station office space problem. After relocation
optimization, EMVs should be dispatched to different districts of the central city.

(3) In addition, the reason some stations are not dispatched with EMVs and are closed
in the potential application scenarios (Section 5.2) is that the selected EMS sta-
tion locations may not be optimal; the same phenomenon has been observed in
Amsterdam [27].

6.2. Conclusions

This research focuses on the operational decision-making process by solving the
problem regarding dispatching and relocation of EMVs, and attempts to reconcile the
discrepancy between the demand and provision of EMSs at various periods. We provided
the MRO-EMS framework based on big spatiotemporal data under a restricted number of
EMVs and limited scheduling scope. Additionally, we performed an empirical evaluation
of real-world M-MPR and M-ORP data collected in Nanjing City, China, demonstrating
the applicability of the MRO-EMS approach in large metropolitan areas. In addition, this
framework can be extended to various service facilities, especially service facilities with
strong time-dependent sensitivity.

Although this study reveals essential discoveries, there are also limitations. Therefore,
several aspects of our further qualitative research work can be improved. First, the spatial
unit is the street block, which is insufficient for high research accuracy of variable-scale
research units, especially for the results of high time threshold sensitivity. Second, the
model can be expanded to incorporate more realistic factors in EMV dispatch, such as
fault handling, secondary dispatch, EMV heterogeneity, emergency station capacity limita-
tions, and epidemic outbreaks such as SARS and COVID-19. Last, equality of accessibility
is an essential objective, but service facility spatial allocation or relocation are complex
multi-objective optimization problems. Therefore, we will design a multi-objective op-
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timization framework to provide Pareto noninferior urban planning and management
decision-making solutions.
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