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Abstract: Urbanization and warming climate suggest that health impacts from extreme heat will
increase in cities, thus locating vulnerable populations is pivotal. However, heat vulnerability indices
(HVI) overwhelmingly interpret one model that may be inaccurate or methodologically flawed with-
out considering how results compare with other HVI. Accordingly, this analysis applied a multimodal
approach incorporating underrepresented health and adaptability measures to analyze heat vulnera-
bility more comprehensively and better identify vulnerable populations. The Southeast Florida HVI
(SFHVI) blends twenty-four physical exposure, sensitivity, and adaptive capacity indicators using
uncommon statistical weights removing overlap, then SFHVI scores were compared statistically and
qualitatively with ten models utilizing alternative methods. Urban areas with degraded physical
settings, socioeconomic conditions, health, and household resources were particularly vulnerable.
Rural and agricultural areas were also vulnerable reflecting socioeconomic conditions, health, and
community resources. Three alternative models produced vulnerability scores not statistically dif-
ferent than SFHVI. The other seven differed significantly despite geospatial consistency regarding
the most at-risk areas. Since inaccurate HVI can mislead decisionmakers inhibiting mitigation,
future studies should increasingly adopt multimodal approaches that enhance analysis compre-
hensiveness, illuminate methodological strengths and flaws, as well as reinforce conviction about
susceptible populations.

Keywords: extreme heat; composite index; vulnerability; urban health; UHI; Southeast Florida

1. Introduction

Extreme heat is a growing public health concern facing cities worldwide. This is, in
part, because urban heat islands (UHI) elevate temperatures compared to surrounding
land posing serious and immediate consequences for people residing in urban areas [1–4].
Coupled with urbanization and warming climate, future health risks will be amplified
unless vulnerable populations are accurately identified, and prudent strategies introduced.
Currently, about 83% of people in the United States reside in urban areas, and with contin-
ued growth, this should surpass 89% by 2050 [5]. Average urban temperatures are projected
to rise 1.9–4.4 ◦C by 2100 from global warming [6] and hotter background conditions will
increase heatwave frequency, duration, and intensity [7,8]. This is especially problematic
because studies show synergies between heatwaves and UHI [9,10]. Meanwhile, continued
urbanization will also cause higher UHI strength elevating temperatures. Collectively, this
suggests that extreme heat occurrence and population exposure in cities will likely increase
with severe health implications.

High ambient temperatures are detrimental to human health. Extreme heat inflicts
more deaths annually in the United States than other weather-related hazards (e.g., floods,
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tornados, hurricanes) [11]. In addition to triggering illnesses such as heat stroke, heat ex-
haustion, and dehydration, extreme heat increases hospitalizations and mortalities among
people with chronic illnesses [12–14]. Therefore, as the threat from extreme heat in urban
areas grows, reducing heat-related health impacts is imperative. To lessen these negative
effects, we must accurately assess population vulnerability across heterogenous urban
landscapes [15], then efficiently deploy community resources [3].

Gauging heat vulnerability is complex since vulnerability is influenced by an interac-
tion of three primary dimensions: physical exposure, sensitivity and adaptive
capacity [7,16,17]. Hence, it not only depends on the proximity and intensity of envi-
ronmental threats but also on community demographic, socioeconomic, and health con-
ditions [18,19] as well as social networks, resources, governance, and resident behaviors,
attitudes, and perceptions [7,16,20]. As these dimensions vary over space and time, illu-
minating what factors heighten vulnerability within specific populations is essential. Yet,
with multiple inputs, synergistic and counteractive dimensional relationships, and shifting
urban landscapes, accurately measuring heat vulnerability poses a significant challenge.

Urban heat exposure encompasses UHI and microclimate variation, which are multidi-
mensional and shaped by various factors: meteorological conditions [21–23]; land surface
characteristics [22–27]; urban form [23,28,29]; land use, land cover, and development
patterns [22,24,25,27,30,31]; human heat emissions [23,28,32]; geographic features [4,23].
For instance, areas with high building density and low vegetation are generally warmer dur-
ing the daytime [23,29] albeit an intricate combination of interrelated variables determines
urban temperatures rather than one or several predominant drivers [27]. Regarding sensitiv-
ity, research agrees some groups are comparatively vulnerable: poor and minority persons,
children and elderly, as well as those with chronic illnesses or disabilities [12,19,24,33]. At-
testing to dimensional interrelatedness, adaptive capacity, and the ability to cope with heat,
such as using air conditioning, is inextricably linked to socioeconomic conditions [2,17].

Southeast Florida (Figure 1) represents an important region to examine heat vulnera-
bility. This tropical region features an urban agglomeration—the Miami–Fort Lauderdale–
West Palm Beach Metropolitan Area—with a population over 6.1 million. It has hot, humid
summers and an average heat index that could rise as much as 4 ◦C by 2100 [34]; projected
population gains around 25% by mid-century under moderate growth [35] and geographic
constraints (Atlantic Ocean, Everglades) limiting horizontal urban expansion; as well as
substantial poor, elderly, and racially/ethnically diverse populations. Further conversion
from natural to and densification of built settings should elevate regional temperatures
resulting from innate land use land cover thermal differences [30,31,36,37].

Even though some local and regional governments formally recognize extreme heat as
a public health threat, especially during summer when the regional heat index regularly
surpasses dangerous thresholds, few studies have explored heat vulnerability in the region.
Those that do typically focus on specific facets rather than heat vulnerability broadly. For
example, refs. [25,38] examined UHI characteristics that influence heat exposure while [39]
considered population sensitivity to locate at-risk elderly persons. Hence, little is presently
known about which areas are most susceptible to heat.

To identify at risk populations, studies employ composite indicators known as heat
vulnerability indices (HVI). Although HVI has grown considerably in number over the
past two decades, these tools have notable shortcomings that must be addressed. Many
HVI [40–47] prioritize physical exposure and sociodemographic variables while health and
adaptive capacity are underrepresented [20,48]. Neglecting either aspect misses crucial
information. Moreover, HVI performance has varied [48] which is problematic as tools
designed to inform decision-making. For instance, some studies determined constructed
HVI performed adequately [49] while others found inadequate performance [50].

This partly reflects modeler subjectivity because no universal framework exists creat-
ing inconsistencies across studies regarding HVI methodological aspects (e.g., data selection
and weighting). Another shortcoming stems from overreliance on one HVI that may be
flawed. With the exception of studies mostly evaluating different methodological ap-
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proaches [45–47,51], heat vulnerability analyses overwhelmingly interpret one HVI despite
exploring links to other models being an integral composite indicator component [52].
Considering multiple HVI enhances analysis comprehensiveness and provides a more
realistic picture of vulnerability [47,51]. Furthermore, when validation data is unavailable
like this analysis of Southeast Florida and most former heat vulnerability studies [48], it
can potentially bolster conviction about highly susceptible areas.
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Figure 1. The study area: Southeast Florida, featuring the Miami-Fort Lauderdale-West Palm Beach
Metropolitan Area.

Thus, we applied a novel multimodal approach comparing a primary HVI with ten
alternative models while incorporating health and adaptability measures to provide a
more thorough representation of heat vulnerability, illuminate methodological strengths
and weaknesses, and better identify at-risk populations. Research objectives are (1) fuse
twenty-four physical exposure, sensitivity, and adaptive capacity variables into a Southeast
Florida HVI (SFHVI) using uncommon statistical weights removing overlap, (2) generate
ten alternative models employing different methods at composite indicator construction
stages, and (3) statistically and qualitatively compare SFHVI results with the ten alternative
models. Accurately evaluating and mapping heat vulnerability can help direct mitigation
strategies and resources [3,15,53,54]. As urbanization increases and temperatures climb
throughout Southeast Florida, identifying vulnerable populations will enhance regional
livability and potentially translate into human lives being saved.

2. Materials and Methods
2.1. SFHVI Data

Including various relevant indicators enhances HVI comprehensiveness [20]. Hence,
UHI, heat vulnerability, environmental hazard, public health, and epidemiological articles
were reviewed to identify germane variables for inclusion (Table 1). Data were compiled at
the census tract (CT) level except for several chronic illnesses (asthma, chronic obstructive
pulmonary disease (COPD), and renal disease). These were converted from the zip code to
CT scale using zonal statistics in ArcMap 10.8 because of data instability issues the Florida
Department of Health recognizes that can introduce biases into HVI [55]. A similar concern
discouraged granular analysis at the census block group level. Several indicators were
combined when fundamental and unit of measurement similarities existed.
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Table 1. Twenty-four selected indicators comprising SFHVI.

Dimension Variable Source Year

Physical Exposure

Anthropogenic Heat
(W/m2)

Varquez et al. (2021) Global 1
km AHE Dataset 2010s

Building Density (%) Microsoft Nationwide Building
Footprints 2019–2020

Crowding (%) ACS 5-Year Estimates 2015–2019

Imperviousness (%) Multi-Resolution Land
Characteristics Consortium 2016

LST (◦C) USGS Earth Explorer 2014–2017

Tree Canopy (%) Multi-Resolution Land
Characteristics Consortium 2016

Water/Wetlands (%) National Land Cover Database 2016

Social Sensitivity

Age Dependent (%) ACS 5-Year Estimates 2015–2019
Education (%) ACS 5-Year Estimates 2015–2019

Health Insurance (%) ACS 5-Year Estimates 2015–2019
Race/Ethnicity (%) ACS 5-Year Estimates 2015–2019

Poverty (%) ACS 5-Year Estimates 2015–2019

Health Sensitivity

Asthma (Rate/100 k) FL Health Tracking Network 2015–2019
Cardiovascular

(Rate/100 k) FL Health CHARTS 2015–2019

COPD (Rate/100 k) FL Health Tracking Network 2015–2019
Diabetes (Rate/100 k) FL Health CHARTS 2015–2019

Disabilities (%) ACS 5-Year Estimates 2015–2019
Renal (Rate/100 k) FL Health CHARTS 2015–2019

Adaptive Capacity

Internet (%) ACS 5-Year Estimates 2015–2019

Libraries/Malls (km) Florida Geographic Data
Library/Google Earth 2015/2021

Medical Facilities
(km)

Homeland Infrastructure
Foundation-Level Data 2018–2020

Parks (%) FL Health Tracking Network 2016–2017
Phone (%) ACS 5-Year Estimates 2015–2019

Swimming Pools (#) Florida Geographic Data
Library 2018

2.1.1. Physical Exposure Indicators

Multiple variables represent physical exposure. Land surface temperature (LST) was
used for thermal data consistent with prior HVI [40,42,43,46], so LST was calculated from
six nearly cloud free Landsat 8 image pairs—Supplementary file (Row 015/Path 041;
Row 015/Path 042) acquired on 17 October 2014; 24 January 2016; 25 February 2016; 22
October 2016; 26 November 2017; 12 December 2017, with a formula proposed by [56].
Landsat was chosen for its high spatial resolution (30 m) making it adept capturing thermal
heterogeneity coupled with the presence of small (<0.5 km2) CTs. Integrating data from
two Landsat images was necessary due to the large study area size. Fmask [57] identified
cloudy LST pixels for removal.

However, LST alone is insufficient to depict UHI exposure [58] and physical neigh-
borhood attributes also influence heat vulnerability [24]. Thus, additional variables were
included: imperviousness, tree canopy cover, building footprint ratio, anthropogenic heat
emissions, household overcrowding, and water/wetlands. While household overcrowding
(when a dwelling exceeds one occupant per room) compounds heat health risks [59], the
latter was included due to regional waterbody and wetland prevalence.

2.1.2. Sensitivity Indicators

Common indicators representing social sensitivity—poverty, age (above 65 and be-
low 5 years), race/ethnicity (racial minorities and Hispanics), and education (high school
degree)—as well as a not often applied indicator, health insurance, were utilized. Non-
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white and Hispanic persons [24,33,41] as well as those with less education [24,41] are
particularly vulnerable to heat. As Southeast Florida has large Black and Hispanic pop-
ulations and lower high school completion than state and national rates, indicators for
these aspects were included. Meanwhile, not having insurance and high healthcare costs
discourages people from seeking medical help [60]. Personal health also influences sensi-
tivity. Epidemiological research found extreme heat increased asthma [61], cardiovascular
disease [62], and renal disease [63] hospitalizations. Similarly, studies determined peo-
ple with diabetes [14], chronic obstructive pulmonary disease (COPD) [13], and disabili-
ties [33,64] were at heightened risk for heat-related mortality.

2.1.3. Adaptive Capacity Indicators

Although commonly overlooked in urban heat vulnerability research, adaptive ca-
pacity is an integral aspect since it entails how people respond to dangerous heat. Higher
household and community resource access generally reduces heat vulnerability including
phone, Internet, medical facilities, swimming pools, libraries/malls, and parks (percent of
population within a 0.8 km/10 min walk). The Internet is useful for accessing information
about weather (e.g., daily temperature, heat advisories) and cool facility location [65] while
phones facilitate automated heat warnings [66]. People seek reprieve from extreme heat
in community cool spaces such as shopping malls, libraries, swimming pools, and public
parks [67]. Hospital, urgent care, and emergency medical services access also influences
vulnerability [68].

2.1.4. Data Preparation

Physical exposure and several adaptive capacity indicators (libraries/malls, medical
facilities, and swimming pools) required conversion to the CT level in ArcMap 10.8. Aver-
age LST, imperviousness, tree canopy, and anthropogenic heat emissions were determined.
Building footprint density along with water/wetlands ratios were calculated. Distances
between CT urban centroids and the closest libraries/malls as well as medical facilities
were measured; urban centroids were used to avoid biases from CT size and shape varia-
tion in addition to the existence of natural spaces. And lastly, the number of swimming
pools per CT was counted. Following data compilation, the twenty-four indicators were
assigned a direction of influence—increasing or decreasing vulnerability—based on a priori
rationale, existing literature, and logical inferences. CT with no population or households
were omitted, reducing the dataset to 1196 CT. Mean values were used for missing data
since a fractional number of missing values does not require sophisticated imputation
techniques [52].

2.2. Methods
2.2.1. Composite Indicator Construction

SFHVI was assembled consistent with the Handbook on Constructing Composite Indi-
cators: Methodology and User Guide [52]. Composite indicators have notable benefits such
as the ability to summarize complicated realities and guide decision making, interpretabil-
ity compared to numerous individual variables, enabling input variable reduction without
sacrificing underlying information, and allowing complex dimensional comparisons [52].
Accordingly, heat vulnerability assessments commonly utilize composite indicators when
gauging population risk.

After univariate analysis, indicators were transformed closer to a Gaussian distribu-
tion using an inverse normal approach because skewness and outliers which were present
can alter statistical tools (PCA), normalization, and index performance [52,69]. Data were
then normalized (z-scores), adjusting for cardinality so that higher values denoted higher
vulnerability, rendering data measured on different scales comparable. Z-scores were
chosen to preserve data structure as other common methods like min-max can force indica-
tors to fall within a relatively small interval influencing composite indicator outputs [52].
Spearman’s rho affirmed high indicator correlation. Thus, statistical weights were derived
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from principal component analysis (PCA) that essentially removed indicator overlap [52]
since equal weighting, the most common HVI approach [48], introduces biases from double
counting when variables correlate highly [52,70].

PCA was conducted in SPSS Statistics. Components were determined by Kaiser criterion,
component eigenvalues exceeding one [71]; component grouping comprehensibility [72],
indicators loading on the same component sharing a concept; indicator component loadings
exceeding 0.500. Varimax rotation (100 rotations) and Kaiser criterion (100 iterations) were
used ensuring indicators did not load highly on several components [52]. PCA weights
were derived from the component loading matrix post rotation taking squared factor
loadings as a ratio of component eigenvalues multiplied by the proportion of variance
explained by a component with final weights scaled to 1 consistent with [52]. Assigned PCA
weights eliminated multicollinearity rather than denoting relative influence determining
vulnerability. Linear aggregation combined PCA components into a comprehensive SFHVI
score because other aggregation techniques (e.g., geometric) are not compatible with
negative values [70]. Outputs were scaled 1–100 producing final SFHVI scores, where
100 reflected the most vulnerable CT regionwide.

2.2.2. Hot Spot Analysis (Getis-Ord Gi*)

Getis-Ord Gi* statistics were produced in ArcMap 10.8 for SFHVI and its subdimen-
sions (PCA components). This tool considers CT scores within the context of neighbors
identifying areas of high/low vulnerability clusters by proportionally comparing the local
sum of a CT and neighbors to the collective sum [73]. A contiguity (queen) neighbor-
hood approach was chosen to accommodate CT shape/size variation and unbalanced
distribution across the Southeast Florida landscape.

2.2.3. SFHVI Performance Assessment

Assessing HVI performance can illuminate methodological strengths and weaknesses
as well as support or contradict results. Fine-scale validation data were too few and
unstable (e.g., heat related mortality) or unavailable (e.g., heat-related hospitalizations)
for Southeast Florida so model validation was unfeasible using these common metrics
consistent with most prior urban heat vulnerability studies [48]. Alternatively, this analysis
explored how SFHVI scores compared with other HVI because examining links to other
indicators is a key methodological component [52] that is nearly always overlooked. Hence,
this study statistically and qualitatively compared SFHVI scores with ten alternative models
employing different methods (Table 2). Specifically, alternative decisions regarding data
transformation, standardization, weighting, subdimension scaling, and subdimension
aggregation were considered. Figure 2 overviews the methodological workflow.

Table 2. SFHVI and alternative model methodological overview.

Model Transformed Standardization Weighting Scaled Aggregation

SFHVI Yes Z-score PCA No Linear
Alternative 1 Yes Z-score Equal (none) No Linear
Alternative 2 Yes Z-score Equal (none) Yes Linear
Alternative 3 Yes Z-score PCA Yes Linear
Alternative 4 Yes Min-Max Equal (none) No Linear
Alternative 5 Yes Min-Max PCA No Linear
Alternative 6 Yes Min-Max Equal (none) Yes Linear
Alternative 7 Yes Min-Max PCA Yes Linear
Alternative 8 No Z-score Equal (none) No Linear
Alternative 9 No Z-score PCA No Linear
Alternative 10 Yes Z-score PCA Yes Geometric
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Ranked inverse normal transformation, which determines percentile ranks on which
inverse normal transformation is applied, was chosen because common methods (e.g., log,
square/cube root) failed to eliminate skewness/outliers. Conversely, two models utilized
raw data like many prior HVI. While z-scores preserve data structure, the other most
common standardization method, min-max [52], was also employed. The former measures
the number of standard deviations an observation is from a variable mean whereas min-max
converts data onto a consistent scale (0–1).

Equal (no) weights, where variables are theoretically assigned the same influence,
are regularly used despite multicollinearity elevating the influence of highly correlating
variables [52,70]. Thus, PCA-derived weights were also applied removing overlap [52].
Using raw subdimension scores preserves integrity while scaling facilitates comparison
and aligns with hierarchically imposing subindex weights common amongst HVI. Scaling
was also required for geometric aggregation, which is incompatible with z-scores due
to negative values [52,70]. Linear aggregation assuming full compensability is primarily
used for integrating HVI dimensions despite alternatives existing that assume partial (e.g.,
geometric) or full compensability. Therefore, geometric aggregation offering diminishing
returns was likewise utilized, an uncommon HVI method.

First, alternative vulnerability scores were calculated reflecting the different method-
ological decisions. SFHVI and corresponding scores were then randomly sampled and
processed through paired sample t tests determining if vulnerability score differences be-
tween paired observations were significantly different than zero. Additionally, alternative
model scores were mapped for visual comparison examining whether there was geospatial
agreement with SFHVI.

3. Results
3.1. PCA Assigned SFHVI Subdimensions

PCA grouped indicators into five components (C1–C5) with a 68.93% cumulative
variance (Table 3), suggesting these explained 68.93% of the total data variance. PCA
components denoted the following: C1, household characteristics and resources; C2, heat
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exposure; C3, health variables compiled at the CT scale and age-dependent persons; C4,
community resource access; C5, health variables compiled at the zip code scale.

Table 3. PCA component loading matrix and derived indicator weights.

C1 C2 C3 C4 C5 Weight
Education 0.834 0.278 0.077 0.150 0.144 0.055

Poverty 0.802 0.138 0.096 −0.141 0.201 0.051
Health Insurance 0.779 0.204 −0.186 −0.057 0.176 0.048
Race/Ethnicity 0.760 0.360 −0.225 0.114 −0.022 0.046

Crowding 0.758 0.210 −0.223 −0.078 0.032 0.045
Internet 0.709 0.125 0.177 −0.225 0.076 0.040
Phone 0.527 −0.006 0.119 −0.289 0.043 0.022

Building Density 0.009 0.882 0.015 −0.243 −0.016 0.061
Water/Wetlands 0.192 0.771 0.044 0.046 0.214 0.047

LST 0.478 0.767 0.065 −0.066 0.132 0.046
Imperviousness 0.285 0.723 0.067 −0.411 0.117 0.041

Anthropogenic Heat 0.347 0.647 −0.058 −0.468 −0.059 0.033
Tree Canopy 0.319 0.506 0.083 −0.384 −0.200 0.020

Cardiovascular −0.073 0.061 0.874 −0.037 0.165 0.060
Age Dependent −0.302 −0.022 0.834 −0.044 −0.049 0.055

Disabilities 0.115 −0.024 0.825 0.013 0.178 0.054
Diabetes 0.420 0.154 0.633 0.095 0.193 0.032

Libraries/Malls −0.099 −0.248 −0.020 0.661 0.039 0.034
Swimming Pools 0.345 0.334 −0.093 0.586 0.079 0.027
Medical Facilities −0.089 −0.335 −0.066 0.579 −0.121 0.026

Parks −0.196 −0.210 0.211 0.571 −0.188 0.026
COPD 0.191 0.136 0.344 −0.127 0.823 0.053

Asthma 0.451 0.036 −0.006 0.001 0.770 0.047
Renal −0.071 0.071 0.505 −0.028 0.644 0.033

Eigenvalue Total 7.745 3.622 2.6 1.403 1.173 -
% Total Variance 32.273 15.091 10.835 5.845 4.887 -

Grey denotes designated PCA components.

As Figure 3 displays, highest C1 scores were predominantly in urban Miami Dade
County (MDC), Broward County (BC), and Palm Beach County (PBC), such as greater
Miami, Fort Lauderdale, and Riviera Beach. These areas are impoverished, ethnically and
racially diverse, with fewer household resources. Rural and agricultural areas in MDC and
PBC likewise scored high in C1. Highest C2 scores were in the same MDC, and to a lesser
extent, BC urban areas where physical settings are conducive to heat—e.g., tightly packed
houses; industrial, commercial, and institutional land uses; sparse natural features (e.g.,
vegetation, wetlands); extensive impervious surfaces.

Highest C3 scores were in urban pockets of BC, PBC, and to a lesser degree MDC,
as well as coastal (Manalapan) and suburban (west Delray Beach) pockets of PBC, the
latter likely resulting from a large presence of elderly retirees with high chronic illness and
disability rates. C4 scores were highest in MDC and PBC rural, agricultural, as well as
less developed areas along the urban agglomeration western fringe (Loxahatchee, Boynton
Beach, and Weston) where the population density is lower and community resources fewer.
Meanwhile, the highest C5 scores were primarily in urban as well as rural and agricultural
CT in MDC and PBC (Homestead, Belle Glade) somewhat consistent with C3. Variation
attests to the diverse Southeast Florida landscape comprising an urban agglomeration that
is essentially engulfed by vast natural and agricultural areas.

3.2. SFHVI Spatial Variation

Figure 4 displays SFHVI results. The most vulnerable CTs regionwide were in urban
MDC: Hialeah, Hialeah Gardens, and Miami neighborhoods like Little Havana, East Little
Havana, and Allapattah. Although fewer and less pronounced, urban BC had highly
vulnerable areas too, mostly in Fort Lauderdale and Pompano Beach, as well as several CTs
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in PBC within Riviera Beach and West Palm Beach. Other urban areas with moderate-high
SFHVI scores included Opa-Locka, West Miami, Miami Gardens, and North Miami in
MDC; Lauderhill Lakes, Lauderhill, and West Park in BC in addition to Lake Worth Beach
in PBC. High heat exposure, household characteristics and resources, health variables
compiled at the CT scale and age-dependent persons, as well as health variables compiled
at the zip code scale dimension scores primarily drive vulnerability in these urban areas.
Conversely, the most susceptible urban CTs had relatively higher community resource
access, somewhat curbing vulnerability despite a few exceptions.
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SFHVI identified some rural and agricultural areas as moderate-high (Belle Glade
and Pahokee in PBC) to highly (Florida City in MDC) vulnerable. While counterintuitive
since physical settings are not conducive to heat with fewer built surfaces, structures, or
human heat emissions, vulnerability in these places is largely influenced by low household
characteristics and resources, health variables compiled at the CT scale and age dependent
persons, community resource access, and health variables compiled at the zip code scale
dimension scores. On the other hand, the least vulnerable CTs were situated along the
urban agglomeration western fringe (Royal Palm Beach, Wellington, Parkland, Weston),
northern tip (Jupiter, Palm Beach Gardens, and Juno Beach), and coastal areas (Pinecrest,
Palmetto Bay, Biscayne Bay, Palm Beach) that are often less developed and more affluent.

3.3. Getis-Ord Gi* Results

Getis-Ord Gi* results (Figure 5) mostly agreed with the urban areas exhibiting high
SFHVI scores identified above with a pronounced cluster covering greater Miami, two
smaller clusters in BC (Fort Lauderdale, Pompano Beach), and two even smaller clusters in
PBC (Lake Worth Beach, Riviera Beach/West Palm Beach). SFHVI subdimension Getis-Ord
Gi* results (Figure 6) similarly reinforced previously discussed spatial patterns.
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3.4. SFHVI Performance Assessment

SFHVI scores were statistically compared with ten alternative models (Table 4). Of
the ten, three exhibited vulnerability scores not significantly different than SFHVI (95%
confidence): Alternative 3 (t = 1.665; p = 0.100), Alternative 5 (t = 1.916; p = 0.059), and
Alternative 7 (t = 1.914; p = 0.059). These models had mean differences of −0.95, −0.44, and
−1.15, respectively. Thus, SFHVI scores were typically higher than corresponding scores
for the three similar models, which may be favorable to SFHVI producing lower scores
because underrepresenting risk could foster false security hindering preventative efforts.
While alternative model score differences with SFHVI were sometimes not pronounced (<2),
certain models exhibited considerable differences such as Alternative 9 (>5) and Alternative
10 (>8) attesting to the impact of chosen HVI methodology.
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Table 4. Paired sample t test results comparing SFHVI scores with alternative models.

Model Mean t Two-Sided p

SFHVI 50.24 - -
Alternative 1 48.92 5.454 <0.001
Alternative 2 47.89 3.394 0.001
Alternative 3 49.29 1.665 0.100
Alternative 4 48.14 6.124 <0.001
Alternative 5 49.80 1.916 0.059
Alternative 6 47.81 3.292 0.001
Alternative 7 49.09 1.914 0.059
Alternative 8 48.29 2.631 0.010
Alternative 9 45.09 7.973 <0.001

Alternative 10 58.75 10.495 <0.001
Bold indicates statistically significant at alpha = 0.05.

Seven alternative models produced vulnerability score means significantly differing
from SFHVI (95% confidence). Methods using raw data (Alternative 8 and 9) or geometric
aggregation (Alternative 10) yielded statistically different vulnerability scores. The former
may reflect skewness or outliers of raw data impacting model outputs. The latter may
reflect diminishing returns of geometric aggregation altering vulnerability scores since fully
compensable linear aggregation allows high/low values to completely offset low/high
values in other dimensions [52,70]. However, the similarity of Alternative 5 suggests
switching between z-scores/min-max standardization may not markedly alter HVI outputs.

Removing indicator correlation with PCA-derived weights produced significantly
different vulnerability scores than not addressing overlap (Alternative 1). Double counting
could be present when not addressing correlation due to the large number of indicators
employed and existing statistical associations. Quantitative performance assessment re-
sults emphasize the importance of data transformation consistent with statistical tool
assumptions, exploring alternative aggregation techniques like geometric aggregation and
addressing correlation for indices comprising many variables. Comparing SFHVI scores
with alternative models demonstrates the oftentimes substantial impact that utilizing
different methods has on assigned vulnerability scores.

Nevertheless, there was typically spatial agreement between SFHVI and alternative
models regarding the most at-risk areas when applying a consistent vulnerability score
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classification range (Figures 7 and 8). Highly urban CTs in places like Miami, Hialeah, Fort
Lauderdale, Pompano Beach, and Riviera Beach were consistently the most vulnerable.
Rural and agricultural CTs scored moderate-highly vulnerable across tested models also.
Therefore, mitigation initiatives in these areas are likely warranted due to agreement across
models. On the other hand, there was oftentimes agreement about the least vulnerable
areas too: along the urban agglomeration western fringe, northern tip, and Atlantic Coast.
Even so, some spatial differences were evident, particularly for CTs scoring somewhere
along the middle of the vulnerability spectrum, demonstrating the impact that different
methods can have on heat vulnerability maps.
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4. Discussion

SFHVI identified urban CTs with increased heat exposure (e.g., high LST and anthro-
pogenic heat emissions, built settings conducive to heat, and sparse natural features) as
the most vulnerable, which partly reflects greater population density and the presence of
industrial and commercial land uses. These were situated in historically impoverished,
racially, and ethnically diverse areas with fewer household resources (e.g., internet ac-
cess), lower education, and insurance, where overcrowding is more common as these
factors often closely associate. While previous urban heat vulnerability analyses found
similar conclusions [24,33,74], integrating multiple indicators representing personal health
as well as household and community resources provides additional information about
what influences vulnerability within highly susceptible urban areas.

For instance, chronic illness prevalence (e.g., cardiovascular disease, diabetes, and
asthma) exacerbated vulnerability within the most at-risk urban CTs. This may reflect infe-
rior access to nutritious food, healthcare, and greenspaces as well as increased air pollution
from vehicles. Poor diet and low physical activity cause morbidity for diseases that heat ad-
versely impacts (e.g., cardiovascular and diabetes) [75], thus community gardens can lower
chronic illness rates [76] while modulating nearby temperatures [77] in highly vulnerable
urban areas. On the other hand, vulnerable urban CTs often had better community resource
access (e.g., parks, libraries/malls, and swimming pools) due to higher population demand,
which supports organizing a cool center network. However, this demands collaboration
between civil society, government, and the private sector in order to ensure maximum
population coverage, awareness, transportation, and user satisfaction.

As a regional analysis, this study also examined rural and agricultural locations that
usually scored moderate to moderate-highly vulnerable despite having low heat exposure.
Inferior health and community resource access largely drive vulnerability in rural and
agricultural areas. Nonetheless, initiatives in these places may look different than urban
CTs to address different conditions. For instance, targeting smoking may be advisable
because tobacco use is more prevalent in rural areas [78]. Moreover, promoting awareness,
issuing alerts, and conducting well-being checks for vulnerable persons may be practical
short-term strategies to enhance adaptive capacity in rural and agricultural areas with low
community resource access.

Neglecting health and adaptive capacity in heat vulnerability studies may produce
inaccurate results. Traditional HVI prioritizing physical environment, demographic, and
socioeconomic indicators like [43–45] would likely overpredict vulnerability in urban lo-
cations while underpredicting vulnerability in rural and agricultural locations. Despite
heat exposure, household characteristics and resources, and health typically elevating
susceptibility in urban CTs, these areas normally had better community resource access
curbing risk. Meanwhile, inferior health and community resource access both exacerbated
vulnerability within rural and agricultural CTs. Urban–rural community resource access
disparities emphasize the importance of including adaptability indicators when examin-
ing an urban area and its surroundings. Incorporating these integral aspects potentially
improved SFHVI accuracy.

Illuminating population health and adaptive capacity provides crucial insights for
reducing extreme heat impacts since warming temperatures will likely increase mortality for
people with chronic diseases [79] while adaptive capacity offers cost-effective, modifiable
alternatives to physical solutions [3]. Further, analyses can expand the pool of health and
adaptability indicators employed. Factors like obesity, smoking, and physical activity;
cooling behaviors, threat perceptions, and attitudes/beliefs; community, familial, and
neighbor support systems; as well as governance, existing and abstract mitigation plans
should be considered. Incorporating these overlooked variables and an array of relevant
others will enhance HVI comprehensiveness [20,48]. Analyses must also account for
homeless persons—a group almost always overlooked in HVI—because homeless people
have increased risk exposure to environmental threats [80].
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As conventional performance assessment was unavailable due to data constraints for
Southeast Florida, SFHVI was compared with ten models constructed using alternative
methods. Limited public health data availability has impeded urban heat vulnerability
research with only about 26% of studies validating results largely for this reason [48].
Comparing SFHVI with alternative vulnerability models demonstrates that subjective
choices at various methodological stages can substantially influence assigned vulnerability
scores and associated spatial distribution consistent with prior studies [45,46]. Using
raw/transformed data and linear/geometric aggregation produced significant vulnerability
score differences while other methodological choices like z-scores/min-max produced
relatively small, insignificant differences.

Results show weights derived from PCA removing indicator correlation, an uncom-
mon technique in HVI, produced vulnerability scores differing significantly from equal
weights not addressing correlation. Similarly, ref. [46] compared equal weights and stan-
dard PCA weights, the most common methods [48], finding vulnerability scores and
associated spatial patterns varied. This underscores a need to explore methodological
approach effectiveness more thoroughly at different HVI construction phases since most
used traditional methods when many alternatives exist. Ref. [54] articulated a similar need
specific to weighting. Moreover, HVI performance has varied [48], further supporting the
need to evaluate alternative methods.

Uncommon weighting techniques like subject expert opinions [53] or statistical weights
derived using health outcome data (e.g., heat-related mortality) may produce superior
performance compared with traditional methods. Additionally, multiplicative aggregation
should be rigorously explored since prior studies primarily use the additive principle when
combining index dimensions. Multiplicative aggregation better captures inter-dimensional
complexity [81] and has been applied in urban vulnerability studies focusing on other
environmental threats like flooding [82]. Understanding how methodological decisions
impact outputs and performance is crucial for enhancing HVI.

Despite sometimes notable vulnerability score differences between SFHVI and al-
ternative models, there was oftentimes geospatial agreement about the most susceptible
locations. However, there were geospatial inconsistencies as well. Although prior studies
constructed several indices mostly when evaluating methodological approaches [45–47,51],
analyses overwhelmingly interpret one HVI despite exploring how results compare with
other models being a fundamental composite indicator aspect [52]. This is especially prob-
lematic because subjective methodological decisions at various HVI construction stages
can substantially impact assigned vulnerability scores and associated spatial distribution
like this analysis of Southeast Florida demonstrates.

The essence of HVI is identifying areas where strategies are needed to reduce health
risks from extreme heat. As tools intended to direct policy and decision-making, fu-
ture studies should refrain from only considering one HVI unless validation with heat-
related health outcome data reveals sufficient performance because inaccurate findings
may inadvertently mislead decisionmakers hindering mitigative efforts. Even then, com-
paring multiple HVI is advisable to gain a more comprehensive understanding of heat
vulnerability [47,51] and bolster conviction about susceptible populations. Condensing
information should facilitate interpretability for policymakers since interpreting multiple
HVI featuring similar/contrasting information may be challenging [51].

It is strongly recommended that future HVI adopt a multimodal approach like this
study of Southeast Florida—particularly if the goal is to inform mitigation and/or valida-
tion data is unavailable. When data permits, HVI must not only be compared with models
comprising the same variables constructed using varied methods but should expand to HVI
from prior analyses featuring a different blend of indicators. Ideally, these would include
high-performing HVI further generating conviction about results when there is agreement
between models. Exploring links to other HVI can likewise illuminate methodological
weaknesses enabling improvement. In that same vein, HVI should be regularly updated
with the newest data to capture changing community conditions. Collectively, this should
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enhance HVI performance and paint a more accurate picture for decisionmakers that better
informs mitigation.

5. Conclusions

Nearly all heat vulnerability analyses interpret one HVI without considering how
results compare to other models, making this study novel through its utilization of multiple
HVI for purposes other than primarily evaluating methods. Highly urban areas with rela-
tively degraded physical environments, socioeconomic conditions, health, and household
resources were exceedingly vulnerable despite having better community resource access.
Some rural and agricultural areas were also vulnerable despite lower heat exposure re-
flecting socioeconomic conditions, health, and community resources. Incorporating health
and adaptability increased SFHVI complexity, yet future studies must broaden the pool of
included variables.

Despite general spatial agreement regarding the most at-risk areas, only three alter-
native models produced statistically similar vulnerability scores to SFHVI while seven
differed significantly. Subjective methodological decisions can substantially impact as-
signed vulnerability scores and resulting spatial patterns. For instance, vulnerability scores
sometimes shifted upwards of 8, on average, on a 1–100 scale when applying different
methods. Other times, average vulnerability score differences were not pronounced (less
than 2). There was also noteworthy spatial variation across models, mostly for CTs falling
within the middle of the vulnerability spectrum.

Overall, results underscore the practicality of multimodal HVI. Future research should
employ multimodal approaches enhancing analysis comprehensiveness, especially if re-
sults are intended to direct heat mitigation initiatives or validation data is unavailable.
Since inaccurate HVI can misinform decisionmakers, comparing multiple models increases
confidence identifying vulnerable populations. Multimodal approaches offer a tentative
mechanism for performance assessment and comparing several HVI can highlight method-
ological flaws. Hence, multimodal HVI advance heat vulnerability assessment and should
be increasingly applied going forward.

In addition to those mentioned, this analysis had other limitations. Pertinent variables
were excluded like air conditioning, sea breeze, and humidity. Air conditioning decreases
heat mortality [83], coastal advection can cool urban temperatures [4], and humidity
elevates heat index. Studies in warm, humid coastal areas must incorporate these facets.
Moreover, LST was used over air temperatures excluding hot season data when heat-
related health outcomes peak due to extensive cloud cover. PCA-derived weights did not
reflect importance but removed multicollinearity, which differs from reality where some
factors are more influential determining vulnerability. The need for more precise weights
is evident. Most HVI in this study used transformed data removing skewness/outliers,
albeit transforming data can drastically alter values and statistical tool results influencing
vulnerability scores. Addressing noted shortcomings should improve HVI.

Increasingly accurate heat vulnerability assessment is vital to foster healthier, more
equitable cities. The vast majority of studies were conducted on census units, adminis-
trative areas, or grids [48], so granular analyses (e.g., neighborhood and city block) are
needed to enhance precision. This may require interviewing or surveying residents as
most relevant datasets reflect coarser scales (e.g., sociodemographic and health), which
would enable researchers to obtain overlooked information (e.g., cooling behaviors and
threat perceptions) also improving comprehensiveness. Granular studies could naturally
integrate fine-scale urban heat stress models like [29].

Additionally, research is needed to examine heat vulnerability spatiotemporal
characteristics—particularly, diurnal and nocturnal differences. While analyses almost
exclusively gauge daytime heat risk, a recent study found the ratio of susceptible urban
areas is higher at night [84]. Moreover, diurnal/nocturnal heat exposure patterns vary, and
some studies found stronger UHI during nighttime [30,85,86]. Therefore, understanding
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spatiotemporal variation may provide crucial insights for decisionmakers. These analyses
should include factors that change temporally (e.g., heat flux and air conditioning use).

Southeast Florida faces formidable environmental threats including extreme heat.
Alleviating health impacts for the more than 6.1 million people there is pivotal, which
involves granularly identifying vulnerable populations and key determinants to effectively
allocate resources. This will prove challenging in a region where urbanization and climate
change will continue altering the thermal landscape and shift neighborhood characteristics.
Thus, accurately locating at-risk populations will reduce health impacts and possibly save
lives as temperatures climb throughout Southeast Florida.
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