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Abstract: Traffic forecasting has always been an important part of intelligent transportation systems.
At present, spatiotemporal graph neural networks are widely used to capture spatiotemporal depen-
dencies. However, most spatiotemporal graph neural networks use a single predefined matrix or a
single self-generated matrix. It is difficult to obtain deeper spatial information by only relying on
a single adjacency matrix. In this paper, we present a progressive multi-graph convolutional net-
work (PMGCN), which includes spatiotemporal attention, multi-graph convolution, and multi-scale
convolution modules. Specifically, we use a new spatiotemporal attention multi-graph convolution
that can extract extensive and comprehensive dynamic spatial dependence between nodes, in which
multiple graph convolutions adopt progressive connections and spatiotemporal attention dynami-
cally adjusts each item of the Chebyshev polynomial in graph convolutions. In addition, multi-scale
time convolution was added to obtain an extensive and comprehensive dynamic time dependence
from multiple receptive field features. We used real datasets to predict traffic speed and traffic flow,
and the results were compared with a variety of typical prediction models. PMGCN has the smallest
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error
(MAPE) results under different horizons (H = 15 min, 30 min, 60 min), which shows the superiority
of the proposed model.

Keywords: deep learning; traffic forecasting; graph convolution network; spatiotemporal dependencies

1. Introduction

Traffic forecasting has become an important task in intelligent transportation systems
in recent years [1]. Accurate traffic forecasting is of great significance for the management
and decision-making of intelligent transportation systems. In addition, the results of traffic
prediction can also be used in many aspects of the city, such as spatial location optimiza-
tion [2], measurement of traffic congestion [3], and so on. The most commonly used modes
of traffic forecasting include traffic flow forecasting and traffic speed forecasting. Indeed,
the complex and dynamic spatiotemporal dependencies of traffic data pose a challenge for
the accuracy of traffic forecasts, owing to their inherent non-Euclidean structure. On the
one hand, the spatial relationship between different regions is complex and may not only
depend on the distance between nodes; on the other hand, the time-dependent relationship
in the time dimension may not only be associated with fixed periodicity. Therefore, mining
deep spatiotemporal relationship characteristics can improve complete traffic forecasting.

Methods for solving traffic forecasting tasks include an initial statistical method and
traditional machine learning methods, such as ARIMA [4], SVR [5] and KNN [6,7]. Because
these methods only consider time dependence and ignore other relations such as spatial
dependence, their prediction accuracy is not high. At present, deep learning is primarily

ISPRS Int. J. Geo-Inf. 2023, 12, 241. https://doi.org/10.3390/ijgi12060241 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi12060241
https://doi.org/10.3390/ijgi12060241
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0003-2673-8217
https://doi.org/10.3390/ijgi12060241
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi12060241?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2023, 12, 241 2 of 22

used, which can better deal with complex nonlinear relationships and extract spatial
dependence. One such method is a grid-based method that first divides the study area into
regular grids, uses a convolutional neural network (CNN) to extract spatial features, and
uses a recurrent neural network (RNN) [8,9] to extract temporal features. Although CNN
methods can capture a part of the spatial dependencies to some extent, it is challenging to
extract spatial relations for a non-regular grid structure, such as traffic road networks.

Another method is to use a graph convolutional network (GCN) [10–12] to extract
the spatial features. It is very helpful for dealing with non-Euclidean structures and is
suitable for spatiotemporal correlation extraction of time series data of road networks.
A spatiotemporal graph convolutional network is usually designed to apply a GCN to
spatial relationship learning, and an RNN or one-dimensional CNN for time-dependent
extraction [13–15]. However, most current GCN methods use a single adjacency matrix to
reflect the complex spatial relationships between road networks, and such a method cannot
obtain a comprehensive dynamic spatial relationship. For example, when affected by traffic
events, the relationship between the same areas may change regularly over time, and only
the spatial correlation in the local vicinity is considered; therefore, the extracted spatial
relationship is not comprehensive. On this basis, some models add semantic information
of external factors such as weather and POI [16], but the external semantic information
is complex and rich and includes other factors (such as traffic congestion degree, road
type, road intersection, geographical topography, etc.), and the semantic information
about these external factors is also difficult to obtain. It is therefore not possible to take
into account all the external semantic information at present. Some models also build a
multi-graph architecture [17] to capture more comprehensive spatial dependencies, but the
graph structure used either remains unchanged in different periods or can only reflect one
internal aspect of the spatial structure relationship between nodes of the traffic network.
Therefore, it remains impossible to effectively extract a comprehensive spatial correlation
between nodes.

To overcome these shortcomings and achieve the extraction of dynamic and compre-
hensive spatiotemporal dependencies, we propose PMGCN, a progressive multigraph
convolutional network model. Specifically, the model builds a multigraph convolutional
network model based on multi-matrix spatiotemporal attention to learn spatial correlations
among traffic nodes, and uses the channel attention mechanism and multi-scale 1DCNN to
extract temporal correlations. In addition, a progressive connection relationship is designed
between multigraph convolutions, which can efficiently extract spatial dependencies at a
deep level, and at the same time, each spatial–temporal module is connected by a residual
connection. In the multi-matrix structure, we use improved multi-head attention to dy-
namically adjust the predefined distance matrix, similarity matrix, and adaptive generation
matrix, which can represent the relationship between spatial nodes more comprehensively.
At the same time, the use of spatiotemporal attention to capture the spatiotemporal de-
pendence can use the attention mechanism to highlight important spatiotemporal features,
and produce more accurate traffic forecasting. The main contributions of this study are
summarized as follows:

• We designed a model of a progressive multi-graph convolutional network containing
a multi-matrix spatiotemporal attention module, a multi-graph convolutional module,
and a multi-scale temporal convolutional module. This model can extract a more
comprehensive spatiotemporal dependency and capture dynamic changes between
nodes more accurately.

• We used a multi-matrix influence spatiotemporal attention by adaptively adjusting
the spatial weights of the input of each order of the Chebyshev polynomial, which
was used to dynamically extract the potential spatial correlation between traffic nodes.
The distance matrix, similarity matrix, and adaptive matrix adjust the spatial weights
from different angles. Among them, the adaptive matrix can be used to capture more
comprehensive implied relationships. The spatiotemporal attention influenced by
multiple matrices can enrich the ability of modeling spatiotemporal relationships,
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better capture spatiotemporal dependencies, and improve the prediction ability and
prediction accuracy of the model.

• We propose a progressive connection between GCN blocks, where each GCN block
removes the hidden information mined by the current GCN block, and the next
GCN block mines the hidden information not mined by the previous GCN block.
The sequence of multi-graph structure mining of hidden information is a distance
graph, similarity graph, adaptive graph, and step-by-step deep extraction of spatial
correlation between nodes. Among them, the adjacency graph focuses on the spatial
correlation between adjacent local regions, the similarity graph expands from the
physical distance between points from a global perspective, and the adaptive graph
in the multi-graph model can further extract some complex and irregular spatial
relationships affected by various factors.

• To validate the effectiveness of the proposed model, extensive experiments were
conducted using three real traffic datasets with two different traffic variables. The
results show that the proposed method outperforms the existing methods.

The rest of the paper is organized as follows: Section 2 reviews related research on
graph convolution, attention mechanisms, and traffic forecasting. Section 3 defines the prob-
lems addressed in this study. Section 4 introduces the proposed model in detail. Section 5
analyzes the experimental results and discusses the implications of the model’s main
components. Section 6 provides a comprehensive summary of the study and future work.

2. Related Work
2.1. Graph Convolutional Neural Networks

At present, with the continuing maturity of deep learning, many researchers have
transferred the traditional neural network model of Euclidean spatial data to the modeling
of graph data, and automatically learned and extracted the features of graph data in an
end-to-end manner, which plays a crucial role in dealing with the relationship between
graph nodes and obtaining spatial topology information. Among these models, the graph
convolutional neural network (GCN) is the most active and basic type in current research.
The graph convolutional network performs the role of aggregation. Specifically, it can
aggregate the characteristics of each node with its neighbors. It can be generally divided
into two categories. The first is the spectral-based graph convolutional neural network
proposed by Bruna et al. [18], who based their convolutional operation on the Laplacian
extension of the spectral domain to the graph. To simplify the computation, ChebNet [19]
uses the Chebyshev polynomial to approximate graph convolution. In a GCN [20], graph
convolution enables the embedding of node attributes. Another type of graph convolutional
neural network is based on the neighborhood aggregation space, which started earlier than
research based on the spectral domain. In 2009, Micheli et al. [21] aggregated information for
graph convolution, and Atwood et al. [10] introduced the concept of the diffusion process;
the graph convolution was similar to a diffusion process. Zhu et al. [22] incorporate external
features such as weather conditions and points of interest (POI) distribution into the GCN
to generate more accurate results. In addition, Zhang et al. [23] used a graph attention
network (GAT) to infer spatiotemporal relationships. These graph convolutional neural
network models play an important role in capturing structural dependencies.

2.2. Attention Mechanism

The attention mechanism has efficient and flexible dependencies; therefore, it is widely
used in various application fields. The attention mechanism works because it can focus
on the most important parts of all information, rather than paying the same amount of
attention to all information. Yan et al. [24] used an attention mechanism to aggregate local
and global information. Zhou et al. [25] established that a spatiotemporal attention mech-
anism can adaptively select the most relevant citywide passenger demand information.
Zheng et al. [26] also used a graph multi-attention network (GMAN) to extract correlations
that exist in space and time. Liu et al. [27] effectively learned the spatiotemporal represen-
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tation of traffic flow through an attention mechanism. Based on the series of developments
of attention mechanisms mentioned above, we adopt a modified multi-headed attention
mechanism for the dynamic extraction of traffic network features in this study.

2.3. Traffic Forecasting

Traffic forecasting has been extensively studied over the past few decades. In general,
the challenge in traffic forecasting is to better capture dynamic temporal correlations and
complex spatial dependencies. Methods such as ARIMA [28] were primarily used in the
early period of traffic prediction research. With the need to capture nonlinear characteristics
further, machine learning methods such as SVR [29] have shown better prediction effects.
At present, deep learning methods have been widely used in capturing spatiotemporal cor-
relations, such as CNN [30], LSTM [31], GCN [22], and GAN [32], combined with transfer
learning [33] and meta learning [34]. Deep learning methods have significantly improved
prediction accuracy. In this field, graph convolutional networks can make better use of
graphs for information propagation and aggregation when dealing with traffic networks
with complex topology. Therefore, graph convolutional networks are widely used in traffic
prediction. For example, Yu et al. [14] proposed a spatiotemporal graph convolutional
network (STGCN) that describes the traffic flow prediction problem with a graph to reduce
the prediction error. Guo et al. [35] proposed an ASTGCN model, in which an attention
mechanism was added to further improve the performance. Wang et al. [36] proposed the
STMAG model, which can capture dynamic spatial correlations and combine a dynamic
GCN with a location attention mechanism. Song et al. [37] proposed the spatiotemporal
synchronous convolutional network model (STSGCN), which ignores the heterogeneity
of data, and can effectively capture hidden spatiotemporal relationships. Zhang et al. [38]
constructed a dynamic graph convolution based on spatiotemporal data embedding and
proposed a new dynamic graph construction method to capture the correlation between
nodes. Most existing spatiotemporal graph neural networks first construct an adjacency
matrix determined by predefined measurements, and then learn from a predefined static
single matrix. However, predefined matrices may not be sufficient to accurately describe
the spatial relationships. To capture spatiotemporal accuracy, it is proposed to construct
the adjacency matrix using learnable parameters. The adjacency matrix can change con-
stantly, but the information extracted by a single adaptively generated adjacency matrix is
one-sided. Currently, there are still some challenges in the comprehensive and dynamic
extraction of spatial correlations.

3. Preliminaries
3.1. Problem Formulation

Traffic prediction tasks can be expressed as a typical spatiotemporal sequence pre-
diction problem that aims to predict future traffic data (traffic flow, traffic speed, etc.)
from observed historical traffic data. Given a historically observed traffic signal for P
time-steps traffic signals, denoted as X =

{
xt1 , xt2 , . . . , xtp

}
∈ RP × N × C, our goal is

to predict the next H time step traffic signals X =
{

xt1 , xt2 , . . . , xtp
}
∈ RP × N × CY ={

xtp+1 , xtp+2 , . . . , xtp+h
}
∈ RH × N × C. In addition, we define the concepts involved in the

traffic forecasting problem as follows:

Definition 1. The traffic network is regarded as a weighted undirected graph G = (V, E, A),
where V represents all the graph nodes, indicating N observed sensors in the traffic network;
E represents all the edges, indicating the connectivity among the observed sensors; and
A ∈ RN × N (weighted adjacency matrix) is a mathematical representation of the traffic
network graph, indicating the correlation degree among the observed sensors.
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3.2. Adjacency Matrices Construction

The first step in building a usable adjacency matrix is to analyze and mine traffic data
to obtain the correlation between traffic nodes from different perspectives. We established
three adjacency matrices: the distance adjacency matrix AADJ , similarity adjacency matrix
ASIM, and adaptive adjacency matrix AADA. First, the most basic measure of the spatial
relationship of road networks relies on the distance between road networks, then a distance
adjacency matrix AADJ is constructed based on the distance between road networks. In
addition, traffic data are time series data, and the similarity of node time series can be
used to characterize the similarity between nodes. In general, nodes with high degrees
of similarity may exhibit similar traffic trends. In this paper, the Fast-DTW [39] approach
was used to gauge the similarity of the time series of different nodes, and construct the
similarity adjacency matrix ASIM. In general, the similarity of traffic patterns is not charac-
terized by a single measurement but is also influenced by irregular accidental events and a
variety of humanities and environments. Therefore, an adaptive matrix without any prior
knowledge can extract hidden relationships at a deeper level. The adaptive matrix AADA

was constructed. The three matrices adjust the improved spatial attention mechanism to
obtain more accurate and comprehensive spatiotemporal attention.

3.2.1. Distance Adjacency Matrix

The main method used to construct the adjacency matrix is to calculate the distance
of the pairwise road network between the nodes, as shown in Equation (1). A threshold
Gaussian kernel was used to build the distance adjacency matrix, as in Equation (2).

AADJ =



Aadj
11 · · · Aadj

1N
...

...
· · · Aadj

ij · · ·
...

...
Aadj

1N · · · Aadj
NN


(1)

AADJ
ij =

exp
(
−D(i,j)2

v2

)
, exp

(
−D(i,j)2

v2

)
≥ ε

0 , Otherwise
(2)

where D(i, j) denotes the distance between node i and node j. ε denotes the threshold of
the sparsity of the command matrix AADJ and ν is the standard deviation of the distance.
Aij denotes the relationship weight between node i and node j.

3.2.2. Similar Adjacency Matrix

The similarity measures of time series can be divided into three categories: Euclidean
distance based on time steps, dynamic time warps based on trend appearance based on
shape images, and Gaussian mixture model (GMM) [40] based on change images. Dynamic
time warping (DTW) is a typical time series similarity measurement algorithm. The DTW
algorithm provides elastic alignment of two time series to find the best alignment and
calculate the distance, but its time and space complexity is O (n2). Therefore, this study
uses the fast dynamic time warping (Fast-DTW) method to calculate the similarity of time
series and calculate the distance between time points of two time series. It finds an accurate
approximation of the optimal wrap path between the two sequences. We used Fast-DTW
to measure the similarity of nodes i and j in two time series Xi and X j in Equation (3).
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ASIM =



Asim
11 · · · Asim

1N
...

...
· · · Asim

ij · · ·
...

...
Asim

1N · · · Asim
NN


(3)

Given two time series Xi =
(
xi

1, xi
2, · · · , xi

n
)

and X j =
(

xj
1, xj

2, · · · , xj
m

)
, the state

transition is:

D(i, j) = min(D(i− 1, j− 1), D(i− 1, j), D(i, j− 1)) + d(i, j) (4)

where d(i, j) denotes the distance between Xi and X j. After several iterations, d(i, j)
1
2 is the

similarity between time series Xi and X j.
DTW is a dynamic programming-based algorithm whose core is to solve the warping

curve, that is, the matching of sequence points Xi and X j. The warping path φ can be
expressed as follows (5):

φ = (w1, w2, · · · , wλ), max(n, m) ≤ λ ≤ n + m (5)

The w determines the match between Xi and X j, where λ is the item number in w and
follows the property that max(n, m) ≤ λ ≤ n + m. This path minimizes the total distance
between Xi and X j. Finally, the DTW distance formula between two sequences Xi and X j

mentioned in TFGAN [41] is calculated as follows (6):

DTW
(

Xi, X j
)
= min

w

[
1
λ

√
∑λ

λ=1wλ

]
(6)

3.2.3. Adaptive Adjacency Matrix

The adaptive adjacency matrix is an adjacency matrix without prior knowledge, which
needs to be constructed using the node-embedding method, and is constructed according
to Formula (7).

Aada = So f tMax
(

ReLU
(

E1ET
2

))
(7)

where E1, E2 ∈ RN × C represents the parameters generated by the random initialization.
The So f tMax function is applied to normalize the adaptive adjacency matrices.

4. Methodology

This section first presents the framework of the proposed model and then introduces
the details of each component in a stepwise manner.

4.1. Model Framework

Overall model framework: (1) The framework of the proposed model is illustrated
in Figure 1. (2) The model consisted of multiple stacked spatiotemporal blocks. The
spatiotemporal block mainly includes two parts: the spatiotemporal attention module
and spatiotemporal convolution module. The residual connection is used between spa-
tiotemporal blocks. Panel (a) shows the overall structure of PMGCN. Panels (b) and (c)
show the details of the spatiotemporal block, where panel (b) describes the spatiotemporal
attention (STA) module in the spatiotemporal block, which includes the temporal attention
(TA) module and spatial attention (SA) module, and panel (c) outlines the spatiotemporal
convolution (STC) module in the spatiotemporal block. The STC module includes two
parts: a multi-graph convolutional layer and a multi-resolution channel attention tem-
poral convolution. (3) The spatiotemporal correlation matrix A (AADJ , ASIM, AADA) is
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constructed based on the distance proximity between traffic nodes and the similarity of the
traffic node time series, as well as the continuous self-adaptation through training.

Figure 1. The proposed PMGCN architecture. (a) Overall structure of PMGCN; (b) Spatial–temporal
attention(STA); (c) Spatial–temporal convolution (STC).
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The spatiotemporal correlation matrix with correlation information between nodes
was used in the SA, and the spatiotemporal attention was further adjusted. Three spa-
tiotemporal correlation graphs were constructed using three spatiotemporal correlation
matrices and applied to multi-graph convolution to obtain dependence information using
dynamic space.

4.2. Spatiotemporal Block Model

Our PMGCN model is stacked with multiple spatiotemporal blocks, each of which
includes spatiotemporal attention and spatiotemporal convolution modules, as shown in
Figure 1. The spatiotemporal attention is used to capture the local dynamic changes between
nodes and can provide the attention mechanism score for the multi-graph convolution layer
in the spatiotemporal convolution module, making the spatial extraction more flexible and
dynamic. In the spatiotemporal convolution module, multi-graph convolution extracts
the spatial correlation, and multi-resolution one-dimensional convolution extracts the
temporal dependence. Compared with a single graph and single resolution, the purpose of
using multi-graph and multi-resolution is to extract a more comprehensive spatiotemporal
dependence, and the operation efficiency of a one-dimensional convolution network is
higher. Each part of the model structure is described in detail below.

4.2.1. Spatiotemporal Attention

As shown in Figure 1b, spatiotemporal attention comprises two parts: temporal and
spatial attention. In this work, the road network is a network with multiple intercon-
nected nodes, in which three types of adjacency matrices can provide accurate estimates
of dependencies between nodes from different perspectives. However, the relationship
between nodes is not static, and it is necessary to capture dynamic changes between nodes
to obtain deep dynamic spatiotemporal dependencies. To this end, a spatiotemporal atten-
tion module that sequentially combines temporal and spatial attention was designed for
our model.

Time attention: In the prediction of time series data, it is necessary to obtain not only
the near correlation but also the remote correlation as much as possible. Multi-head self-
attention allows the modeling of the correlation of elements in a sequence regardless of their
distance and can have an effective global receptive field, providing a parallel mechanism.
This mechanism can be used to effectively capture the complex dynamics of time series data,
obtain long-range correlations, and achieve accurate long-term predictions. In addition, in
considering the whole model, we also adopted the idea of residual attention [42] to enable
the model to integrate shallow temporal dependence and deep temporal dependence.
The temporal attention modules in adjacent ST blocks are connected to strengthen the
temporal attention connection between the different ST blocks. This connection method can
also alleviate the vanishing gradient problem, and can more effectively use the dynamic
time dependence inside the traffic data. The multi-head attention definition and formula
for the H-head are as follows (8): Q, K, VεRc(l−1) × T × d are projected H times with H
different matrices and stitched together to obtain OεRc(l−1) × T × N × dh . O concatenates
the multi-head outputs of temporal attention and inputs them to the fully connected layer
to obtain temporal attention O′εRc(l−1) × T × N . Finally, the residue between O′ and the
input XεRc(l−1) × T × N is performed, and the final output YεRc(l−1) × T × N is inputted
into the spatial attention module through a normalization layer. The formulae are as
follows (9)–(11):

Attention
(

Q(l), K(l), V(l)
)
= So f tMax

(
A(l)

)
V(l), A(l) =

Q(l)k(l)
T

√
dh

+ A(l−1) (8)

O(h) = Attention
(

QW(h)
q , KW(h)

q , VW(h)
q

)
(9)
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O′ =
[
O(1), O(2), · · · , O(H)

]
(10)

Y1 = LayerNorm(Linear(Reshape(O′) + X )) (11)

where Q(l), K(l), V(l), and dh represent the query, keys, values, and dimensions, respectively.
W(h)

q εRd × dh , then O, represents the result of concatenating the multi-head outputs of
temporal attention. O′ is the output of the temporal attention of O passing through the
fully connected layer, and Y1 is the final value passed into the spatial attention.

Spatial attention: The construction of the temporal attention module enabled us
to obtain a feature representation with global dynamic time dependence. The spatial
dependence is calculated from the output of the temporal attention module to obtain the
feature expression of the dynamic spatial dependence Finally, the feature representation
of the spatiotemporal attention dependence is obtained. In this study, we extend the
self-attentive mechanism mentioned in the DSTAGNN [43], where multiple matrices are
used to adjust the attention scores separately to obtain multiple spatial attentions. In
simple terms, in contrast to the traditional self-attention mechanism, the weight coefficients
calculated from the two branches of the input embedding vector (Q, K) were used to adjust
the three adjacency matrices. The adjacency matrix with learning correlation adjusts the
output attention of the final spatial module through parameter correction. As shown
in Figure 1b, self-attention is not generated directly from the output Y1 of the temporal
attention module. Instead, Y1 is first transposed, and then the time dimension M is
mapped to a high-dimensional space d using one-dimensional convolution, and the feature
dimension c(l − 1) is aggregated to obtain a two-dimensional matrix Y′εRN × dE . Then, YE
is obtained through the embedding layer, and YE is used to calculate the weight coefficient.
The new spatial attention formula with H heads is given in Equations (12) and (13).

P(h) = So f tMax


(

YEW ′(h)q

)(
YEW ′(h)k

)T

√
dh

+ W(h)
m � A

 (12)

p =
[

p(1), p(2), · · · , p(H)
]

(13)

where W ′(h)k εRdE × dh and W ′(h)q εRdE × dh are learnable parameters, � is the Hadamard

product, W(h)
m εRN × N is used to correct A to tune the attention of each head p(h)εRN × N ,

and the output p denotes the attention tensor, which is a combination of the outputs of
each head. A is the general term of the represented matrix. There are three different
matrices, and each matrix corresponds to a different attention score p obtained from(

AADJ → PADJ , ASIM → PSIM, AADA → PADA). Details of the spatial attention module
are shown in Figure 2.

Figure 2. Spatial attention module details.
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4.2.2. Spatiotemporal Convolution

As shown in Figure 1c, the spatiotemporal convolution module in the PMGCN con-
tains multi-graph convolution and multi-resolution one-dimensional convolution modules.
During traffic forecasting, the state of a road network node at the next moment is in-
fluenced by the historical state of that node as well as the state of other nodes around
it. Therefore, the relationship between nodes is both local and global, and capturing
the potential spatiotemporal correlation and dependence under multiple relationships
is a complex problem. To solve this problem, we adopted an interpretable multi-graph
framework and a progressive connection method to capture spatial dependencies, a multi-
scale 1DCNN, and a lightweight channel attention mechanism to comprehensively extract
temporal dependencies.

Multi-graph convolution module: When using graph convolution to obtain the spa-
tiotemporal correlation of traffic data, it is first necessary to construct a suitable graph.
Different types of correlations between transportation network nodes can be obtained from
different perspectives, and a graph can be constructed based on these correlations. Most
of the existing studies still use a single matrix graph to represent the relationships that
exist between nodes, which cannot capture the full range of spatiotemporal associations;
therefore, we use a multi-graph architecture in our model. These are defined as follows:

Distance graph: In a real transportation network, the distance between stations can
characterize the spatial relationship between nodes to a certain extent. In general, nodes
that are closer together may have more influence on each other than nodes that are further
apart. The traffic pattern changes may be similar between neighboring nodes (for example,
the traffic nodes in the suburban areas on the edge of the city are less correlated with
the traffic nodes in the congested areas in the center of the city, but the nodes close to
each other in the suburban areas are more correlated). On this basis, the distance graph
GCNADJ can be constructed, where the traffic road network nodes correspond to the points
in the distance graph, and the edge between two nodes corresponds to the spatial distance
between two road networks, and the formula is (2).

Similarity graph: In addition to using the basic distance relationship to characterize
the relationship between nodes, the historical data relationship of the nodes can also be
used. Under similar traffic conditions, there is a high probability of experiencing similar
traffic patterns. Thus, by measuring the historical data of traffic nodes, the similarity graph
GSIM is constructed by measuring the similarity between the sequences corresponding to
each node. In the similarity graph, the edges between the nodes represent the similarity of
traffic patterns between traffic nodes. The similarity matrix ASIM is given by Equation (3).
Then, the DTW algorithm is used to calculate the correlation as shown in Equations (4)–(6).
DTW calculates the shortest cumulative product distance between the historical data of
each node. The correlation between sequences showed an opposite trend to the distance
size. Using GSIM, the correlation between graph nodes can be modeled and extracted from
the aspect of similarity.

Adaptive graph: When extracting the relationship between traffic nodes, the traffic
mode of the nodes may be affected by various factors, such as geographical location,
environment, and culture. Therefore, it is impossible to rely only on a single measurement
angle; in this case, it is necessary to construct an adaptive graph GADA to represent the
complex relationship between nodes. This is different from other predefined graphs in that
it constantly learns from training. The adaptive graph is used for the final convolution
operation. Additional hidden spatial information can be mined using this information.
Each traffic node in the graph represents a node in the adaptive graph, and the edge
between two nodes represents the adaptive relationship. See calculation of Equation (7).

Graph convolutional network (GCN): Spatial graph convolution has a strong ability
to aggregate adjacent node information to obtain node features. We used graph convolution
based on the Chebyshev polynomial approximation to learn the node features of structure
perception. As shown in Figure 1c, we adopted three GCN modules, which correspond to
three different adjacency matrices: AADJ , ASIM, AADA. Each GCN models the potential



ISPRS Int. J. Geo-Inf. 2023, 12, 241 11 of 22

spatial correlation between nodes from a different perspective. Additionally, the attention
PADJ , PSIM, and PADA, corresponding to the GCNADJ , GCNSIM, and GCNADA of each
adjacency matrix in the space-time attention module, respectively, were used to dynamically
adjust each term of the Chebyshev polynomial. In terms of spatial dimension, more
meaningful and extensive features of the traffic network were extracted. In this study, the
extended Laplacian matrix of the Chebyshev polynomial was defined as L = 2, where A is
the adjacency matrix, D is the degree matrix and I is the identity matrix.

∼
L =

2
λmax

(D− A∗)− IN (14)

where A* is a general term for matrix, among which there are three matrices,
AADJ , ASIM, AADA. λ is the largest eigenvalue of L = (D− A∗).

In a single graph convolution, information on each node is derived from nodes in
its neighborhood. To incorporate the dynamic properties of the nodes, we aggregate the
information from the graph signal x = xd by using the kth order Chebyshev polynomial T,
at each time step as follows:

gθ ∗ Gx = gθ(L)x = ∑k−1
k=0θk

(
Tk

(∼
L
)
� pk

)
x (15)

gθεRk × c(l−1) × cl
represents approximate convolution kernels, ∗G is the convolution opera-

tion, which can learn vector θεRk which contains polynomial coefficients, and iteratively
update in training. P is the spatiotemporal attention matrix of the kth head. There are
three different spatiotemporal attention matrices P corresponding to three different graph
convolutional blocks

(
PADJ → GCN − adj, ASIM → GCN − sim, AADA → GCN − ada

)
.

For the multi-channel input xεRN × c(l−1) × T of this module, the features of each node have
c(l−1) channels, and gθ is the convolution kernel parameter [20]. Therefore, each node can
aggregate information from neighboring nodes of order 0 ∼ (k− 1)th.

Progressive connections: The traffic network is complex and affected by many factors.
Therefore, the integration of more information into a complex traffic network to extract
spatiotemporal dependence is a key issue that needs to be addressed. A multigraph
mechanism has emerged because a single graph cannot describe the association relationship
well. At present, many multi-graph frameworks are used to fuse multiple graphs into a
comprehensive graph for calculation [44,45] or to use a simple level number and parallel
convolution. These methods simply fuse multiple graphs or stack multiple GCN blocks,
which cannot mine the spatial dependence well and may cause the same spatial information
to be continuously extracted. Therefore, a multi-graph framework with interpretable
progressive connections was adopted in our model. The manner in which the multi-
graphs were connected is shown in Figure 3. The input to the first GCN block is x(l),
the corresponding attention and the graph matrix, where the input of the next block is
x(l) − G1out. The input of the third graph is x(l) − G1out − G2out, and the GCN in each
module takes a different graph matrix. The formula is as follows:

Gxk+1 = xl − G1out − G2out − · · · − Gkout (16)

where Gxk+1 represents the input of the kth graph convolution module.
In this study, three different graph structures are used, and they are connected in the

order of distance, similarity, and adaptive graphs. Among them, the connection between the
graph structure and graph structure uses a progressive connection method. The progressive
connection can be interpreted as a way to extract only the s remaining information in the
next graph structure that was not extracted in the previous graph structure; therefore, the
output of each graph structure represents the information extracted in the current graph
structure. The distance graph is used first because it contains the most basic information
such as connectivity and distance between nodes; then, the similarity graph is used after the
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basic description of the transportation network, and the correlation between nodes is mined
from the historical data of each node, from the perspective of the data sequence. Finally,
deeper hidden spatial information was obtained. To adapt to the complex changes in the
relationship between nodes at all times, an adaptive graph is used, which can continuously
learn the graph from the training of the model, and is used to capture the remaining hidden
relationships. Therefore, progressive connection is a method that can keep going deeper
and deeper to obtain more hidden space, avoiding extracting the same spatial information
between successive layers as much as possible.

Y2 = Relu(Linear(G1ont ⊕ G2ont ⊕ · · · ⊕ Gkont )) (17)

where GkontεRN × c(l−1) × T represents the output of the kth graph convolution module and
Y2εRN × c(l−1) × T represents the output of the whole multi-graph convolution module,
which is then fed into the following multi-resolution temporal convolution module.

Multi-resolution convolution module: The time dependence between traffic nodes
also needs to be focused on. Traffic conditions differ at different times. Therefore, in our
model, after the multi-graph convolution module, we propose the addition of a multiscale
convolutional network that combines channel attention. The multi-resolution convolution
module combined with the channel attention mechanism mainly includes a multiscale
temporal convolution and channel attention mechanism. The structure is shown in (c).
One-dimensional CNNs with filters of different sizes and channel attentions are used in
the multi-scale temporal convolution module to extract temporal dependencies. Multi-
scale filters of different sizes allow the extraction of more comprehensive correlations. In
addition, a channel focus mechanism is introduced to model the dependencies of the output
channels and analyze the importance of the channels.

Figure 3. Multi-graph connection structure.

Multi-scale temporal convolution: The overall structure of the multi-resolution time
block is shown in Figure 1c. Compared with RNN and other models, the one-dimensional
CNN can greatly improve the training speed while effectively mining the temporal cor-
relation. Our model also introduces an “Inception” structure with a multi-resolution
convolutional neural network model, where the input data are filtered with three different
sizes to obtain features at different scales. The input and the results of different convolu-
tional calculations are concatenated together as the output, with three filters of 1 × 1, 1 × 3,
and 1 × 5. The calculation formula is given as follows:

Z(l) = φ1 ∗Y(l−1)
2 ⊕ φ2 ∗Y(l−1)

2 ⊕ φ3 ∗Y(l−1)
2 (18)

where Y(l−1)
2 εRc(l−1) × N × T is the input, ∗ is the convolutional operation, Z(l)εRc(l) × N × T

is the output, and φ1, φ2, and φ3 are filters of different sizes.
To improve the performance of deep convolutional neural networks, a lightweight

channel attention mechanism (ECA) [46] can obtain the correlation weights between chan-
nels. The ECA module is flexible to use, and in combination with inception, can further
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obtain the dependency values on multiple time scales and enhance the performance of the
convolutional neural network, thus obtaining better performance in temporal dependency
extraction. The calculation formula is provided as follows:

ZE = Linear(ReLU(ωZ (l)
)
) = ω

(
Z1, Z2, · · · , ZCl

)
(19)

Z(l)
out = Linear

(
ReLU

(
ZE ⊕Y(l−1)

2

))
(20)

where the output after the ECA module is ZE ∈ RCl × N × T , Z(l)
out ∈ RCl × N × T is obtained

after the activation function ReLU.

5. Experimental Studies
5.1. Experimental Data

In this section, the QingdaoGPS dataset is used to verify and analyze the performance
of the model. The study area and the corresponding trunk roads are shown in Figure 4.
In addition, PeMSD4 and PeMSD8 traffic flow datasets are used to further verify the
effectiveness of the model.

Figure 4. Location of the study area and the trunk roads of Qingdao.

• Trunk roads: We selected the main road network of Licang District, Shibei District,
Shinan District, and the southwestern part of Laoshan District of Qingdao. The
network consists of 340 trunk roads. We numbered each trunk road, from 1 to 340.

• Traffic speed dataset: Real GPS data from Qingdao were used. These datasets were
collected from the 340 main roads in Qingdao from 8 June 2020 to 26 July 2020. Table 1
presents the statistics in each row. The data contained taxi GPS records of the trunk
roads. We reshaped the data into a time series by aggregating the average speed of the
road network nodes every 5 min. In these datasets, each road network represents a
node in the graph.

• Traffic flow dataset: We used two real California traffic flow datasets. The PeMSD4
dataset includes 307 sensors, and the data were sampled from 1 January to 28 February
2018. The PeMSD8 dataset includes 170 sensors, and the data were sampled from
1 July to 31 August 2016. Detailed statistics are shown in Table 1.

The dataset was normalized using z-score normalization and split into training (60%),
validation (20%), and test (20%) sets.
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Table 1. Statistics of traffic datasets.

Datasets Sensors Time Interval Period Samples The Selected Period Time of the Day

Qingdao GPS 340 5 min 8 June 2020–26 July 2020 10584 06:00–24:00

PeMSD4 307 5 min 1 January 2018–28 February 2018 16992 00:00–24:00

PeMSD8 170 5 min 1 July 2016–31 August 2016 17856 00:00–24:00

5.2. Experimental Setting

For the experiments in this study, we set the learning rate to 0.0001, the number of
Chebyshev polynomials to 3, and the number of spatiotemporal attention heads to 3. The
convolution kernel is along the temporal dimension (s = 1 × 1, s = 1 × 3,
s = 1 × 5). All the graph convolution kernels used 32 convolution kernels. A stack of
four ST modules was used for the experiments. The loss function used was the Huber loss,
and the threshold parameter of the loss function was set to 1, while the batch size was
set to 8. The hyperparameter of sparsity p = 0.01. We trained our model using the Adam
optimizer. The prediction time was used to predict the traffic values for different future
time periods (H = 3, 6, 12) using historical one-hour time steps (p = 12 steps). Three evalu-
ation metrics were used to measure the performance of the model: mean absolute error
(MAE), root mean squared error (RMSE), and mean absolute percentage error (MAPE). The
evaluation criterion is that the lower the numerical result the better the model performance.
The final experimental results were averaged over several repetitions. The calculation
formula of the three evaluation indicators is as follows:

MAE =
1
n ∑n

i=1 |Y i − Ŷi
∣∣ (21)

MAPE =
1
n ∑n

i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣ (22)

RMSE =

√
1
n ∑n

i=1
(
|Y i − Ŷi

)2 (23)

where Yi is true value; Ŷi is predicted value; and n is number of data.

5.3. Baselines

We compared PMGCN with the following baselines, including both classical and
advanced approaches in deep learning:

• ARIMA: Autoregressive integrated moving average model [47];
• FC-LSTM: The model uses a recurrent neural network with fully connected LSTM

hidden units [48];
• STGCN: Spatiotemporal graph convolutional network, using graph convolution and

one-dimensional convolution [14];
• ASTGCN: Introduces a spatiotemporal attention mechanism into the model, an

attention-based spatiotemporal graph convolutional network model [35];
• STSGCN: Spatiotemporal synchronous graph convolutional network, which utilizes

local spatiotemporal subgraph modules to independently model local correlations,
proposes a novel convolution operation to capture both spatial and temporal correla-
tions [37];

• ASTGNN: Attention-based spatiotemporal graph neural networks, we design a trend-
aware self-attention to extract temporal dynamics and develop dynamic graph convo-
lutions [49];

• STGMN: Gated multi-graph attention spatiotemporal model, which uses multi-graph
convolution and one-dimensional convolution for spatiotemporal extraction [50].
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5.4. Main Results
5.4.1. Different Models Prediction Performance

The main experimental results of the PMGCN and the compared baseline models
on the traffic dataset are shown in Table 2. The experimental results at three different
horizons (15 min, 30 min, and 60 min) were used to represent the prediction performance
of the models for traffic speed modes. The experimental results in the table show that the
prediction effect of the traditional model ARIMA is significantly lower than that of other
deep learning models. First of all, in the deep learning baseline model, it is better to consider
both time and space dependencies than to consider only time dependencies (e.g., FC-LSTM).
Second, the results of using the graph convolution model to extract spatial dependencies
are good, because graph convolution is well suited to extract hidden relationships between
traffic nodes. In addition, using a spatiotemporal GCN model (e.g., STSGCN) is better
for prediction than using a simple GCN. Moreover, with the addition of an attention
mechanism (e.g., ASTGCN), good results are obtained in some aspects, and the use of a
multi-graph framework in STGMN can obtain relatively good results at different horizons.

Table 2. Comparison of traffic speed prediction results of Qingdao GPS dataset on different models.
The best result in each category is indicated in bold.

Datasets Horizon Metrics ARIMA FC-LSTM STGCN ASTGNN STSGCN ASTGCN STGMN PMGCN

Qingdao
GPS

H = 3
(15 min)

MAE 2.71 2.63 2.63 2.57 2.57 2.55 2.59 2.45
RMSE 3.73 3.63 3.64 3.55 3.55 3.52 3.55 3.41

MAPE (%) 14.38 13.83 13.92 13.74 13.73 13.73 13.76 12.97

H = 6
(30 min)

MAE 2.92 2.83 2.75 2.74 2.73 2.68 2.68 2.53
RMSE 4.03 3.91 3.81 3.76 3.77 3.70 3.66 3.51

MAPE (%) 15.68 15.07 14.71 14.84 14.76 14.65 14.24 13.59

H = 12
(60 min)

MAE 3.31 3.19 3.01 2.97 2.96 2.89 2.86 2.65
RMSE 4.56 4.39 4.15 4.09 4.09 3.98 3.89 3.68

MAPE (%) 17.91 17.29 16.43 16.40 16.33 15.98 15.36 14.61

Compared with the baseline models, we propose that the PMGCN model adopt a
new multi-graph architecture on the basis of the existing multi-graph architecture. It
can learn the hidden deep dependency relationship between traffic nodes from multiple
perspectives, such as spatial distance, node similarity and adaptive generation, and capture
the dynamic changes between nodes by using spatiotemporal attention. Therefore, the final
predictive performance PMGCN model is better than the baseline models. For instance,
for the 60 min traffic speed forecasting task of the Qingdao GPS dataset in Table 2, the
MAE values of ARIMA, FC-LSTM, STGCN, ASTGNN, STSGCN, ASTGCN, STGMN,
and PMGCN were 3.31, 3.19, 3.01, 2.97, 2.96, 2.89, 2.86, and 2.65, respectively. PMGCN
decreases the MAE in horizon 12 of Qingdao GPS by 20%, 17%, 12%, 11%, 10%, 8%, and
7% compared with the ARIMA, FC- LSTM, STGCN, ASTGNN, STSGCN, ASTGCN, and
STGMN models, respectively.

To further demonstrate the effectiveness of the PMGCN, we plotted the prediction
error results of all deep learning baseline models and PMGCN models at each step in
the Qingdao GPS dataset as a line graph as shown in Figure 5. As shown in Figure 5,
the PMGCN has the smallest prediction error at each step, while its curve is relatively
smooth compared to the other models. The FC-LSTM model has the worst prediction effect
among the baseline models. The prediction performances of the three baseline models
STGCN, ASTGNN, and STSGCN are similar, and their prediction performance decreases
significantly with a longer time step, which indicates the stability of the models in general.
The model with the closest prediction effect to that of the PMGCN is STGMN, which also
proves the effectiveness of the multi-graph convolution model. However, the prediction
effect of STGMN was poor at the beginning, and its prediction effect in the first step was
even lower than that of FC-LSTM.
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Figure 5. Comparison of each step error of all models on the Qingdao GPS dataset. (a) MAE of
different steps; (b) RMSE of different steps.

To further demonstrate the effectiveness of the PMGCN, we also conducted prediction
experiments using traffic flow datasets. The traffic flow prediction results of the PMGCN
and the baseline models are presented in Table 3. On the two PEMS04 and PEMS08
datasets, our PMGCN achieved the best results for most indicators. The main reason for
this comes from the aforementioned use of different GCN blocks to extract various complex
correlations, and the addition of a multi-resolution temporal convolution module for
temporal correlation extraction also greatly improves the operation efficiency compared to
other time extraction models. Compared with the FC-LSTM, STGCN, ASTGCN, STSGCN,
and STGMN models, PMGCN reduced the RMSE of PeMSD4 by 32%, 20%, 14%, 13%,
and 9%, respectively, at horizon 12. The RMSE of PeMSD8 was also reduced by 33%, 28%,
17%, 10%, and 7% at horizon 12, respectively. The main reason for this is that the PMGCN
establishes dependencies with neighboring and global nodes.

5.4.2. Analysis of Model Prediction Results

According to the prediction effects of different models, the effectiveness of PMGCN
model can be seen. In this section, we explore the results predicted by the PMGCN model.
Figures 6 and 7 show the real and predicted visualization results for 340 trunk roads on
non-working days and working days. We choose 6:00 a.m. to 12:00 p.m. as the study period,
according to human activities during those times. The time interval in this study was 5 min,
so there were 216 time slices in a day. By visualizing the results, we find that there is no
obvious morning and evening peak during non-working days. However, there are obvious
morning and evening peaks on weekdays, mainly concentrated in the 18–36 time slice and
the 135–153 time slice, that is, the morning peak occurs from about 7:30 a.m. to 9:00 a.m.,
and the evening peak occurs from about 5:15 p.m. to 6:45 p.m. In addition, it can be seen
from Figure 7 that the average speed of several trunk roads is significantly lower than those
of other trunk roads, such as 42–48, 67–68, 71–74, 98–99, 108–110, 114–117, 222–228, 308–310.
At the same time, there are several trunk roads with significantly higher average speed than
other trunk roads, such as 142–143, 197, 206–208, 322. For this reason, we chose the trunk
road numbered 71 and the trunk road numbered 110 for further visualization. According
to the MAE and RMSE of different models, three relatively good models can be obtained,
namely, ASTGCN, STGMN, and PMGCN. Figure 8 illustrates the prediction results of the
three models at the same node. The prediction effect of the STGMN model is closest to
that of the PMGCN model. It is better than PMGCN in some details, but PMGCN is more
stable and better judging from the overall trend, especially when there are major changes
(i.e., during spikes). Therefore, PMGCN can capture the dynamic changes of the speed
pattern more accurately, and it can also have more of an advantage in special road sections.
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Table 3. Comparison of traffic flow prediction results of PeMSD4 and PeMSD8 datasets on different
model. The best result in each category is indicated in bold.

Dataset Metrics

PeMSD4 PeMSD8

Horizon (15/30/60 min) Horizon (15/30/60 min)

H = 3 H = 6 H = 12 H = 3 H = 6 H = 12

FC-LSTM

MAE 21.46 25.37 34.00 17.32 20.67 28.21

RMSE 33.68 39.16 50.67 26.63 31.91 42.17

MAPE (%) 14.49 17.21 23.68 11.25 13.21 18.41

STGCN

MAE 21.56 23.86 27.87 21.32 22.56 26.32

RMSE 33.79 37.25 42.82 32.24 34.15 39.26

MAPE (%) 14.72 11.63 16.96 14.23 14.77 17.11

ASTGCN

MAE 19.70 21.55 26.00 16.44 18.42 22.50

RMSE 31.13 33.77 39.80 25.20 28.21 33.84

MAPE (%) 13.14 14.31 16.98 11.03 11.62 13.89

STSGCN

MAE 32.41 21.69 25.00 16.58 17.79 20.04

RMSE 20.12 34.74 39.42 25.56 27.74 31.15

MAPE (%) 13.53 14.43 16.69 10.90 11.57 12.84

STGMN

MAE 19.37 21.04 23.86 15.73 17.14 19.79

RMSE 31.01 33.58 37.68 24.14 26.48 30.37

MAPE (%) 12.70 13.69 15.66 9.63 10.46 12.07

PMGCN

MAE 18.27 19.24 21.38 13.88 15.85 17.85

RMSE 29.46 31.15 34.37 21.47 25.05 28.16

MAPE (%) 12.21 12.71 13.97 9.23 10.13 11.31

Figure 6. Average speed of 340 trunk roads on non-working days. (a) Real data on non-working
days; (b) Prediction data on non-working days.
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Figure 7. Average speed of 340 trunk roads on working days. (a) Real data on working days;
(b) Prediction data on working days.

Figure 8. Predicted and real traffic speeds for different models. (a) Road number #71; (b) Road
number #110.
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5.5. Ablation Study

The PMGCN model comprises different components, each of which plays a role in
extracting spatiotemporal dependencies. To verify the effectiveness of each component, we
conducted ablation experiments on the Qingdao GPS dataset and compared the following
PMGCN variants:

• PMGCN-only adj graph: We used the distance graph only in space-time blocks;
• PMGCN-only sim graph: We used the similarity graph only in spatiotemporal blocks;
• PMGCN-only ada graph: We only used the adaptive graph in spatiotemporal blocks;
• PMGCN-no progressive connection: Only pure stacking was used, without progres-

sive connection;
• PMGCN-no spatial attention: Lack of spatial attention layer dynamically adjusts each

term in the graph convolution.

The MAE and RMSE prediction errors of PMGCN and its variants for the Qingdao
GPS data are shown in Figure 9. It is obvious that the extraction of only one GCN module
is not as good as the prediction using multiple GCN modules. It can be seen from Figure 9
that the MAE of the PMGCN-only adj graph, PMGCN-only sim graph, and PMGCN-only
ada graph are roughly 2.667, 2.661, and 2.671, respectively, at horizon 12, while the PMGCN
is 2.650 at the unified horizon. Similarly, removing the spatial attention and no longer
dynamically adjusting each term in the graph convolution increases the RMSE from 3.687
to 3.729 for the PMGCN. In summary, the PMGCN outperformed other variables in terms
of prediction accuracy, indicating that the PMGCN can capture hidden and complex
correlations and produce accurate predictions.

Figure 9. Ablation results on Qingdao GPS. (a) MAE of different ablation models; (b) RMSE of
different ablation models.

6. Conclusions and Future Work

To improve the accuracy of traffic prediction, this study introduces an effective pro-
gressive spatiotemporal attention multi-graph convolutional network (PMGCN) model.
In contrast to existing traffic prediction models, PMGCN establishes various adjacency
matrices with multiple GCNs from different perspectives, such as the distance between
traffic nodes, the similarity of time series data, and adaptive generation, which is used to
extract the deep implicit correlation between traffic nodes. The attention score obtained
by the spatiotemporal attention module dynamically adjusts each term of the Chebyshev
polynomial in the graph convolution, which can capture the dynamics between traffic
nodes more accurately. In addition, a multi-resolution one-dimensional convolutional
network is used to extract the time-dependence between nodes, which is more efficient
than other time-dependence extraction models. The experimental results on real datasets in
this study show that PMGCN has a better performance than the relevant baseline model.

Our model has the following limitations: (1) More comprehensive external semantics
were not added; (2) The verification experiment only covered two modes of traffic speed
and traffic flow, which need to be further verified for applicability; (3) The impact on special
time periods (such as morning and evening peak hours) was not considered in detail.
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Future work will include selecting relevant semantic information and integrating it into the
model, studying the adaptability of other traffic modes and other cities, considering special
time periods for modeling and prediction performance evaluation. We need to further
explore and improve the deep learning model so that it can be applied to the wider field of
traffic forecasting.
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