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Abstract: In recent years, unmanned aerial vehicles (UAVs) have been actively applied in the agri-
cultural sector. Several UAVs equipped with multispectral cameras have become available on the
consumer market. Multispectral data are informative and practical for evaluating the greenness
and growth status of vegetation as well as agricultural crops. The precise monitoring of rice paddy,
especially in the Asian region, is crucial for optimizing profitability, sustainability, and protection of
agro-ecological services. This paper reports and discusses our findings from experiments conducted
to test four different commercially available multispectral cameras (Micesense RedEdge-M, Sentera
Single NDVI, Mapir Survey3, and Bizworks Yubaflex), which can be mounted on a UAV in monitoring
rice paddy. The survey has conducted in the typical paddy field area located in the alluvial plain
in Tottori Prefecture, Japan. Six different vegetation indices (NDVI, BNDVI, GNDVI, VARI, NDRE
and MCARI) captured by UAVs were also compared and evaluated monitoring contribution at three
different rice cropping phases. The results showed that the spatial distribution of NDVI collected by
each camera is almost similar in paddy fields, but the absolute values of NDVI differed significantly
from each other. Among them, the Sentera camera showed the most reasonable NDVI values of each
growing phase, indicating 0.49 in the early reproductive phase, 0.62 in the late reproductive stage,
and 0.38 in the ripening phase. On the other hand, compared to the most commonly used NDVI,
VARI which can be calculated from only visible RGB bands, can be used as an easy and effective
index for rice paddy monitoring.

Keywords: unmanned aerial vehicle; multispectral camera; normalized differences vegetation index;
visible atmospherically resistant index; rice paddy monitoring

1. Introduction

The use of remote sensing in agriculture is expected to enable precise and intelligent
agriculture, such as fertilization management based on crop growth [1–7]. It also offers
the possibility to study a crop from an unusual point of view, observing some peculiarities
of field coverage hardly visible from the ground [8]. Satellite remote sensing is useful for
monitoring the status of the plant community at the time when the data are acquired. The
increasing spatial and temporal resolution of globally available satellite images, such as
those provided by Sentinel-2, creates new possibilities for generating accurate datasets
on various types of crop [9]. However, the observation timing depends on the satellite’s
return days and cloud cover condition with satellite remote sensing. Especially in monsoon
Asia, where it is a humid area and rice paddy rice cultivation is widely distributed, the
cloud cover is a constraint of the satellite remote sensing by the optical sensor. On the other
hand, the unmanned aerial vehicle (UAV) can freely observe the paddy fields according
to the rice paddy growing stage and acquire sufficient spatial resolution data. Nowadays,
some of UAVs are able to collect multispectral imagery at cm-level resolution and offer
great possibilities in the precision agriculture. UAVs allow us to perform many interesting
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and quantitative observations at better spatial and temporal resolution and lower costs.
Moreover, a field can be frequently surveyed to study ongoing phenomena and different
phonological developments. All information produced from UAV surveys helps farmers in
decision-making processes, improving agricultural production and optimizing the resource
utilization [10]. Therefore, it would be an excellent tool to effectively monitor physiological
and ecological information about various agricultural crops.

Precision agriculture is becoming a new keyword of modern agriculture, which can
take advantage of current data and machinery to make farming as precise, efficient, and
productive as possible. Under this circumstance, a multispectral camera mounted on
UAV has become available at a relatively low price. An excellent tool for monitoring
the growth of plants and crops is being prepared. The precise monitoring method of
paddy fields is highly expected for optimizing profitability, sustainability, and protection
of agro-ecological services [7–10]. So, the target of this study is to clarify the relationship
between the multispectral information taken by UAVs and the physiological and ecological
information of rice paddy. We also comprehensively compare the performance of four types
of multispectral or near infrared cameras mounted on UAVs. We believe that the results of
these comparative studies of relatively easy-to-available cameras will provide meaningful
information to potential UAV users in the future and contribute to the implementation of
efficient and practical smart agriculture. The specific objectives and elements of verification
are the following.

(1) Confirmation of the relationship between the growth parameters of rice paddy and
the vegetation index: Temporal observations using UAV-based multispectral cameras
are conducted on a rice paddy, and then clarify the relationship between the observed
data, physiological and ecological information.

(2) Recommendation of monitoring the growth process of rice paddy: By identifying
the optimum index for monitoring the growth process of paddy rice, we propose a
reasonable method for rice paddy growth monitoring.

2. Materials and Methods
2.1. Study Site

The target site of this study is a paddy field in the low flat alluvial plain located in
Tottori City, Tottori Prefecture (135◦29′13′′ E, 35◦07′24′′ N, altitude: 6 m). Although the
average annual temperature in this area is 15.2 degrees Celsius, the average temperature in
early June, the season of transplanting rice paddy, is 23.5 degrees Celsius. Then the rice
paddy’s heading stage reaches 27.5 degrees Celsius in early August. The annual rainfall is
1930 mm, but the rainy season begins immediately after planting from early June to late July.
The average monthly rainfall from July to July is about 290 mm. Rice paddy cultivation in
this area is a single crop in which rice is planted in late May and harvested in late September.
In recent years, much abandoned cultivated land has appeared in agricultural areas in
Japan, where broad and homogeneous paddy fields are disappearing, and this target area is
no exception. As shown in Figure 1, the surrounding grass and bush are abandoned paddy
fields. In the present study, we focus on performing an intensive analysis on a single paddy
farm (parcel) because paddy cultivation is carried out in extremely intensive land use, and
the growth conditions and varieties of rice often differ from field to field. The farming style
is also small-scale management, and we believe that it is important to accumulate data in
units of one field (parcel) and standardize methods for crop growth monitoring, which
is expected in smart agriculture for paddy cultivation in Asian regions. In addition, by
widening the target range, we are afraid that other land cover and farming styles will be
mixed, which will affect the acquisition of pure pixel values.
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Figure 1. Study Site.

2.2. Multispectral UAV Images Acquisition

The growing process of typical rice paddy is generally divided into three phases:
vegetative, reproductive, and ripening. Based on previous comprehensive study-reviews,
it has become clear that the specific temporal dynamics of vegetation greenness shows
the maximum value at the heading stage at the end of the reproductive phase of rice
paddy [11–14]. Therefore, observing the growth time around this heading stage for rice
paddy growth monitoring and yield prediction is essential. In this study, UAV surveys were
conducted three times good enough to match each growth stage of rice paddy condition
(Figure 2). The temporal images were taken on 8 July, 5 August, and 2 September. Each
corresponds to the late vegetative phase/early reproductive phase, late reproductive phase,
and ripening phase. All images for each phase were taken around 10:00–11:00 am to ensure
sufficient solar altitude. The weather at the time of observation was sunny all three times.
We consider that the flight altitude varies depending on the regional locality, weather
condition, and target (object) to be analyzed. In this research, the optimum altitude was
examined by trial and error by changing the flight altitude to 30 m, 50, and 100 m. As a
result, at low altitudes, the ears of rice were largely affected by the wind, and the shadows
appeared large, making it unsuitable for analysis. Because of this, the final flight altitude
was set to 100 m with an overlap of 80% in our study.
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The aerial surveys were carried out using four different cameras mounted on 3 dif-
ferent UAVs, as shown in Figure 3. Those are readily available in the Asian consumer
market. Among them, MICASENSE RedEdge-M (hereinafter called Micasense) is the only
multispectral camera that has five discrete spectral bands: Blue (475 nm), Green (8560 nm),
Red (668 nm), Near IR (840 nm), and Red Edge (717 nm) equipped with the downwelling
light sensor (DLS) capable of correcting light changes during a flight. The other three
cameras, SENTERA Single NDVI sensor (hereinafter called as Sentera), MAPIR Survey3
(hereinafter called as Survey3), and BIZWORKS Yubaflex (hereinafter called as Yubaflex),
use near-infrared filters. The device, referred to as NDVI sensors, is measuring visible red
and NIR light to derive the NDVI value. Of these, it has been reported that the red band of
Yubaflex is somewhat sensitive to near-infrared, and the difference in radiance between red
and near-infrared is slight, so the NDVI value becomes small [15,16].
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2.3. Image Processing and Index Analysis

Ortho images were created using Pix4Dmapper. Because of comparing the images
taken from different UAV platforms, each ortho image needed to be geometrically rectified.
The verification points were measured so as to surround the target paddy field on the ortho
image, compared with the coordinates of 20 ground control points measured by the RTK
method, and the residual error at the verification points was calculated. As the rectified
ortho images of the four types of camera have a horizontal accuracy of 3 to 5 cm and a
height accuracy of 5 to 10 cm, these values were assessed as having sufficient position
accuracy in this study, and for the comparison of vegetation index acquired by different
cameras, a size 1 m fishnet was used on over the paddy field, then the average values were
calculated for the following analysis.

The vegetation index can be calculated by multispectral data operation and set into
a single value on an image. Diversity of vegetation indices offers a lot of redundancy in
UAV-based analysis of vegetation/greenness activity [17–19]. Table 1 shows the list of
vegetation indices that can be generated from a UAV-based multispectral camera using the
index calculator of Pix4Dmapper. In this study, normalized difference vegetation index
(NDVI), the most widely used and best-known vegetation index, was primarily used as
a standard indicator for comparing the multispectral image taken by four different types
of cameras in terms of growing process of rice paddy. The comparison was made by
examining the spatial distribution of the mapped NDVI values by visual interpretation and
also examining the averaged statistical values (mean value, standard deviation, and range)
for each 1 m fishnet in each growth stage of rice paddy.
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Table 1. Vegetation Indices calculated from UAV-based Multispectral camera referred from Pix4D
Documentation (2020).

INDEX DESCRIPTION FORMULA

BNDVI—Blue Normalized Difference
Vegetation Index

NDVI index without red channel
availability, for areas sensitive to

chlorophyll content.
(NIR − BLUE)/(NIR + BLUE)

GNDVI—Green Normalized Difference
Vegetation index

NDVI index without red channel
availability, for areas sensitive to

chlorophyll content.
(NIR − GREEN)/(NIR + GREEN)

MCARI—Modified Chlorophyll
Absorption in Reflective Index

Index used to measure chlorophyll
concentration including variations in the

Leaf Area Index.

1.2 * (2.5 * (NIR − RED) − 1.3 * (NIR −
GREEN)/(normalized to the maximum
value of RED, GREEN and NIR bands).

NDRE—Normalized Difference
Vegetation Index

Index sensitive to chlorophyll content in
leaves against soil background effect.

This index can only be formulated when
the red edge band is available.

(NIR − REDEDGE)/(NIR + REDEDGE)

NDVI—Normalized Different
Vegetation Index

Generic index used for leaf coverage and
plant health. (NIR − RED)/(NIR + RED)

VARI—Visible Atmospherically
Resistant Index RGB index for leaf coverage. (GREEN − RED)/(GREEN +

RED − BLUE)

3. Results
3.1. Comparison of Multispectral Cameras

Figure 4 shows the NDVI maps on 5 August, which is in the heading stage when
the greenness activity of rice paddy is highest and compares the results of four different
cameras. The highest NDVI value measured is 0.89 for Micasense, 0.59 for Sentera, 0.35 for
Survey3, and 0.29 for Yubaflex. The latter two models of cameras show low NDVI values.
Regarding this matter, the manufacturers have explained that the difference in radiance
between visible red and near-infrared is small, so the NDVI value tends to be low. Although
there are differences in absolute values of NDVI as shown above, some correlation has
been observed between the values of each camera. Figure 5 illustrates the correlation of the
NDVI values obtained by the Micasense camera with the other three cameras. Micasense
was considered a reference because it is the only camera with a multispectral lens, which
has a downwelling light sensor (DLS) on board and acquires images with radiometric
correction. Therefore, the correlations were fairly good, and the determination coefficient
(R2) ranged from 0.65 to 0.74.

Next, we examined the temporal changes in NDVI acquired by each camera as shown
in Figure 6. The trend of rice field NDVI increases during the reproductive phase and
indicates its maximum value at the time of heading stage, and then it falls slowly during
the ripening phase. The changes of NDVI from the reproductive stage to the ripening
stage showed a very similar trend in Micasense, Sentera, and Yubaflex. Still, in Survey3,
the difference between the maximum and the minimum value is very small, and the
growing phase of rice paddy is relatively difficult to track. The most extensive NDVI values
between the three periods were identified on Sentera images, indicating 0.49 in the early
reproductive phase, 0.62 in the late reproductive stage, and 0.38 in the ripening step.
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3.2. Comparison of Various Vegetation Indices

Figure 7 illustrates six different VIs maps at the late reproductive phase (heading stage)
of rice paddy, and each VI is shown as an average value on the 1 m size fishnet. Table 2
also shows the correlation coefficient of VIs for each of the three phases of rice paddy. In
this study, a comparison was carried out based on images taken by the Micasense, which
only can acquire five-band multispectral data. Comparing the other five VIs with NDVI as
standard, GNDVI and BNDVI are very similar to NDVI.
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Table 2. Correlation matrix of six vegetation indices of paddy field in 8 July 2020 (early reproductive
phase) (a), 5 August 2020 (late reproductive stage) (b), and 2 September 2020 (ripening phase) (c).

NDVI BNDVI GNDVI VARI NDRE MCARI

NDVI 1 0.98 0.93 0.95 0.88 0.8
BNDVI 0.98 1 0.95 0.89 0.91 0.78
GNDVI 0.93 0.95 1 0.75 0.96 0.66

VARI 0.95 0.89 0.78 1 0.72 0.86
NDRE 0.88 0.91 0.98 0.72 1 0.62

MCARI 0.8 0.78 0.66 0.89 0.62 1

(a)

NDVI BNDVI GNDVI VARI NDRE MCARI

NDVI 1 0.99 0.92 0.93 0.73 0.57
BNDVI 0.99 1 0.91 0.90 0.69 0.58
GNDVI 0.92 0.91 1 0.78 0.91 0.32

VARI 0.93 0.90 0.78 1 0.59 0.69
NDRE 0.73 0.69 0.91 0.59 1 0.02

MCARI 0.57 0.58 0.32 0.69 0.02 1

(b)

NDVI BNDVI GNDVI VARI NDRE MCARI

NDVI 1 0.89 0.72 0.78 0.73 0.5
BNDVI 0.84 1 0.89 0.38 0.77 0.24
GNDVI 0.72 0.87 1 0.13 0.91 0.01

VARI 0.78 0.38 0.13 1 0.24 0.69
NDRE 0.73 0.77 0.91 0.24 1 0.01

MCARI 0.5 0.24 0.01 0.69 0.01 1

(c)

As shown on Table 2, The correlation coefficient is 0.92 or more in the reproductive
phase and 0.72 or more even in the ripening stage, where the correlation between VIs is not
clear. GNDVI and BNDVI measure visible green and blue spectral instead of the visible red
spectrum. The former is helpful for measuring rates of photosynthesis and assessing the
moisture content and nitrogen concentration in plant leaves. The latter is effective for areas
sensitive to chlorophyll content [20–22]. The regression model for the NDRE and MCRI
were not significant and therefore left out of the discussion in this study.

On the other hand, we focused on this study’s visual atmospheric resistance index
(VARI). The VARI is designed to emphasize vegetation in the spectrum’s visible portion
(RGB) while mitigating illumination differences and atmospheric effects [20–23]. Although
this VI does not use NIR information, a clear correlation is observed with NDVI. Its corre-
lation coefficient is 0.894 for the early reproductive phase, 0.713 for the late reproductive
stage, and 0.605 for the ripening phase of rice paddy (Figure 8). Furthermore, the temporal
changes of VARI are very similar to NDVI, and it can be said to accurately capture the
phenological shift in rice paddy (Figure 9).
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4. Discussion

The primary aim of this study to discuss a comparison between images derived from
four different multispectral cameras. The comparison was based on the NDVI values and
the effects they may have on phenology according to the growth stages [10]. Then, based
on the images acquired by Micasense, we calculated five different VIs in addition to NDVI
and examined the appropriate VI for the phenology analysis of rice paddy.

Regarding the comparison of multispectral cameras, it was possible to grasp the
phenology changes by NDVI analysis using any commercially available multispectral
cameras and confirmed that the absolute value of NDVI differs greatly depending on the
specifications of each camera [13]. As shown on Figure 4, the spatial pattern of each NDVI
inside the paddy field seems to be distributed with a similar trend, but the NDVI values
derived from each camera image are significantly different. This is because a specification of
the sensor’s definition for visible R and near-infrared may differ in terms of the bandwidth
used to calculate the NDVI. The difference in the spectral bandwidth of each camera
significantly influences the importance of NDVI. Still, some cameras did not clarify detailed
bandwidth information, especially those using the NIR filter. Because of this, by comparing
the NDVI values obtained with the existing satellite sensor, we examined the NDVI values
acquired by each camera and their temporal changes. The NDVI observed by Micasense
showed an extremely high value of around 0.9 in the paddy field at the heading stage
and for rice paddy at the heading stage and a high value of about 0.8 even at the ripening
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phase, that is, the range of NDVI fluctuation was relatively small. According to the camera
specifications published by the manufacturer (Table 3), the red band of Micasense is in a
somewhat more extended wavelength range than that of Sentera, and its bandwidth is
narrow. Since the NIR band wavelength is almost the same for both cameras, it is highly
possible that the difference in visible red reflectance has an effect on the NDVI value.

Table 3. Spectral wavelength band specification of each camera.

Spectral Band Micasense Sentera Survey 3 Yubaflex

Blue 475 nm
Band width: 20 nm - - -

Green 560 nm
Band width: 20 nm - 550 nm 520~600 nm

Red 668 nm
Band width: 10 nm

625 nm
Band width: 100 nm 660 nm 600~780 nm

Red Edge 717 nm
Band width: 10 nm - - -

Near Infra-red 840 nm
Band width: 40 nm

850 nm
Band width: 40 nm 850 nm 780~1000 nm

To compare the different VIs in terms of rice production monitoring, the data used
were taken by Micasense, and Pix4Dmapper processed the images. Because, in Micasense
with a narrow multispectral bandwidth for each of the five bands, the data are highly
sensitive and convenient for comparing Vis [22]. In addition, the radiometric collection
essential for analyzing temporary changes can be easily performed using the calibration
model of Pix4D mapper [22]. In this study, we want to focus on the efficacy of VARI as
one of the RGB-based vegetation index to derive the growing phase from rice cultivation.
The spatial distribution pattern of VARI values in paddy fields is very similar to NDVI,
and it is highly correlated at each growth stage. VARI is used initially to estimate the
fraction of vegetation with minimal sensitivity to atmospheric effects [23,24]. The addition
of blue-band data in the equation is to minimize atmospheric effects [25]. It can detect
changes due to biomass accumulation and is sensitive to the amount of chlorophyll in the
leaves. Significantly, RGB-based VARI may be used for growth monitoring in paddy rice as
well as NDVI.

5. Conclusions

The overall results showed that the spatial distribution of NDVI collected by each
camera is almost similar in paddy fields, but the absolute values of NDVI differ significantly
from each other. Among them, the Sentera camera showed the most reasonable NDVI
values and temporal change patterns during each rice growing stage. On the other hand,
compared to the most commonly used NDVI, VARI which can be calculated from only
visible RGB bands, can be used as an easy and effective index for rice paddy monitoring.
In this study, the availability of time-series data acquired by consumer level UAVs was
demonstrated, and further dissemination at the practical level of agriculture is expected in
the future. Rice is the most important agricultural crop in the monsoon Asia region, and also
securing a stable supply of rice has great implications for global food security. Monitoring
of rice cultivation in the paddy area shown in this research is one of the important issues of
smart agriculture in Asia, and we believe that accumulation of similar data in other Asian
regions is urgently needed.
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