International Journal of
Geo-Information

isprs

Article

Construction of a Real-Time Ship Trajectory Prediction Model
Based on Ship Automatic Identification System Data

Daping Xi !, Yuhao Feng %, Wenping Jiang 3, Nai Yang 10, Xini Hu 1*

check for
updates

Citation: Xi, D.; Feng, Y.; Jiang, W.;
Yang, N.; Hu, X.; Wang, C.
Construction of a Real-Time Ship
Trajectory Prediction Model Based on
Ship Automatic Identification System
Data. ISPRS Int. ]. Geo-Inf. 2023, 12,
502. https://doi.org/10.3390/
ijgi12120502

Academic Editors: Wolfgang Kainz
and Hartwig H. Hochmair

Received: 7 September 2023
Revised: 29 November 2023
Accepted: 6 December 2023
Published: 13 December 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Chuyuan Wang !

School of Geography and Information Engineering, China University of Geosciences, Wuhan 430000, China;
xidp@cug.edu.cn (D.X.); yangnai@cug.edu.cn (N.Y.); wcy1998@cug.edu.cn (C.W.)

Zhejiang Institute of Communications Co., Ltd., Hangzhou 310000, China; fengyh@zjic.com

School of Resource and Environmental Sciences, Wuhan University, Wuhan 430000, China;
andyjiang@whu.edu.cn

Correspondence: cug_sydneyhu@cug.edu.cn

Abstract: The extraction of ship behavior patterns from Automatic Identification System (AIS) data
and the subsequent prediction of travel routes play crucial roles in mitigating the risk of ship accidents.
This study focuses on the Wuhan section of the dendritic river system in the middle reaches of the
Yangtze River and the partial reticulated river system in the northern part of the Zhejiang Province as
its primary investigation areas. Considering the structure and attributes of AIS data, we introduce a
novel algorithm known as the Combination of DBSCAN and DTW (CDDTW) to identify regional
navigation characteristics of ships. Subsequently, we develop a real-time ship trajectory prediction
model (RSTPM) to facilitate real-time ship trajectory predictions. Experimental tests on two distinct
types of river sections are conducted to assess the model’s reliability. The results indicate that the
RSTPM exhibits superior prediction accuracy when compared to conventional trajectory prediction
models, achieving an approximate 20 m prediction accuracy for ship trajectories on inland waterways.
This showcases the advancements made by this model.

Keywords: AIS data; river sinuosity; trajectory clustering; anastomosing river; trajectory prediction

1. Introduction

In contrast to land transport, water transport lacks well-defined fixed routes, granting
ships a greater degree of freedom in their movement. Consequently, the management of
water transport is inherently more intricate. Ship collisions are an unfortunate occurrence
during waterborne navigation, often stemming from factors like equipment malfunctions
and human errors. Thus, real-time monitoring of the ship’s course becomes indispensable
for timely detection of anomalous behavior and the reduction of the risk of ship accidents.
To support the safety of ship navigation, the water traffic management authorities employ
a suite of modern information equipment, including the Automatic Identification System
(AIS) and Global Positioning System (GPS) [1].

AIS allows real-time monitoring of vessels within the base station’s coverage area by
receiving and processing information transmitted by shipboard AIS equipment, leveraging
unique AIS equipment codes for automatic ship identification. While AIS data discloses
the location of the most recent AIS message sent, it carries inherent transmission delays.
Additionally, there’s a time lag associated with data transmission, parsing, loading, and
display, hindering real-time ship position representation. Moreover, equipment failures
and signal interference can lead to the loss of AIS data. These challenges in the domain of
AIS data complicate the task of ensuring ship safety.

To address these issues, we present a real-time ship trajectory prediction model
(RSTPM) designed to enable real-time ship trajectory monitoring and prompt detection
of irregular behavior. This model offers valuable applications in ensuring the safety of
ship navigation.
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2. Related Work

According to the relevant research based on AIS data at home and abroad, we summa-
rize both the advantages and disadvantages of various ship trajectory prediction methods,
as indicated in Table 1.

Table 1. Classification of trajectory prediction methods and brief description of advantages

and disadvantages.

Categories Method Categories Advantages Disadvantages
Exponential smoothing Predictions can be made with a Only short-term forecasts can
Simulation model (ESM) [2] small amount of data be made
Method Curvature velocity Simple model and good Only short-term forecasts can
method [3] real-time be made
Kalman filter [4] Linear, unbiased, high accuracy Rehe_s on raw. data and cannot
predict over time
Autoregressive moving Simple model and Requires large amounts of data
average model (ARIMA) [5]  wide application and low accuracy
Statistical Hidden Markov model Good state prediction of the Poor robustness and complex
Methods (HMM) [6] process parameter settings

Gaussian mixture model

(GMM) [7]

High accuracy in short
range prediction

Vulnerable to data complexity
and low utility

Bayesian Networks [8]

Efficient and easy to train

Vulnerable to prior probabilities
and input variables

Machine Learning

K-nearest neighbor
(KNN) [9]

Easy to implement, no
parameter estimation required

Accuracy suffers when sample
size is unbalanced

Support vector machine
(SVM) [10,11]

Applicable to linear and
nonlinear problems

Only for dichotomous problems

Artificial neural network
(ANN) [12]

High accuracy and error
tolerance to noise

Requires large number of initial
parameters and long
training time

Extreme learning machine
(ELM) [13]

No iterations for hidden layers,
fast learning

May cause overfitting problems

Backpropagation
(BP) [14,15]

Ability to learn and generalize
on your own

May fall into local extremes
leading to training failure

Deep Learning

Long short-term memory
(LSTM) [16-19]

The deficiency of long-term
dependence in recurrent neural
network (RNN) is

effectively improved.

The internal structure is
relatively complex and
time-consuming to calculate

GRU [20]

Simple model, better training
speed than LSTM

Cannot completely solve the
gradient disappearance problem

GAN [21]

Can produce clearer and more
realistic samples

Not suitable for handling
discrete data, such as text

Convolutional neural
network (CNN) [22]

Feature extraction can be
performed automatically

Training results easily converge
to local minima

Deep neural network
(DNN) [23]

Very good nonlinear
fitting ability

Difficult to train, requires a large
amount of data

Other

Hybrid model [24-27]

Combines the advantages of
multiple models

May result in an increase in
calculated costs

2.1. Ship Trajectory Prediction Based on Simulation Methods

Simulation methods involve creating physical models to simulate real ship behavior.
This method is rarely used alone in ship trajectory prediction; it is generally combined with
other methods to form a hybrid method for prediction.

The ESM is used to predict the location, course, and speed of the ship; meanwhile,
the actual collision scene of the ship is analyzed. This method has been shown to achieve
the prediction of ships’ behavior [2]. Mazzarella proposed a Bayesian algorithm based on
particle filters that uses KNN to match the current trajectory sequence of the ship, enabling
the prediction of ship trajectories when traffic route data are available [3].
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2.2. Ship Trajectory Prediction Based on Statistical Methods

The statistical-based approach assumes that the historical trajectory of a ship and the
predicted trajectory have a certain similarity, and the prediction is achieved by fitting the
ship trajectory.

Ju et al. [4] proposed a multi-layer architecture interactive-aware Kalman neural net-
work to solve the problem of mutual interaction in the transportation system. A differential
ARIMA model was used to predict ship trajectories from ship AIS data, which is applicable
to the detection of ship collision avoidance [5]. The trajectory sequence is transformed into
column vectors through wavelet transform, which are then used as the input for HMM.
This is an algorithm (HMM-WA) that increases the accuracy of ship trajectory prediction [6].
Rong et al. [8] presented a model based on Gaussian processes and uncertain acceleration,
designed to achieve real-time monitoring of ships during navigation.

2.3. Ship Trajectory Prediction Based on Machine Learning

Unsupervised learning mainly focuses on the clustering and dimensionality reduction
of data, while supervised learning has a broader range of applications. For example,
KNN and SVM can predict ship trajectories by learning the motion characteristics of
ship trajectories.

Duca et al. [9] proposed a model for trajectory prediction based on a KNN classifier,
considering five characteristics of ships: longitude, latitude, heading, speed, and type. The
model’s prediction accuracy was verified. Liu et al. [10] developed an online multioutput
model based on a selection mechanism. The model can achieve high prediction accuracy
with small samples. Additionally, an SVR-based trajectory prediction model was proposed,
but the sample data and parameters required for the model cannot be changed during
model training [11]. Gan et al. [12] used the clustered ship trajectory and other known
factors, such as ship speed, to establish an ANN model for predicting the ship’s trajectory.

Since the advent of deep learning, it has demonstrated excellent performance in many
tasks, including the prediction of ship trajectories. The advantage of LSTM over BP neural
networks lies in its ability to process and analyze time series and sequence data. The
gate structure in LSTM’s internal network enables it to mine trends and correlations in
sequence data, resulting in a better prediction effect when applied to time series data, such
as traffic and location. Moreover, LSTM’s prediction accuracy is better than that of BP
neural networks [16-18,28], making it applicable to long-term prediction. Gao et al. [29]
studied a bi-directional LSTM (Bi-LSTM) network, aiming to enhance the memory ability of
historical data and the correlation between future time series data. Liu et al. [19] integrated
convolutional transformations into a Bi-LSTM based on an attention mechanism in order to
achieve long-term prediction. In another study, ship trajectory sequence features extracted
by CNN are input into the LSTM model for prediction [22]. In addition to LSTM, GRU,
CNN, and GAN, there are also DNN-based frameworks for predicting the trajectory of
merchant ships (such as tankers and container ships). However, the DNN module is prone
to overfitting and may not achieve high accuracy during training [23].

2.4. Ship Trajectory Prediction Based on the Hybrid Method

The hybrid method focuses on combining the advantages of various methods to
enhance the efficiency of trajectory prediction tasks. Murray & Perera [24] proposed an
algorithm that combines GMM, KNN, and bilinear automatic coding to build the prediction
model. Scholler et al. [26] first used kernel density estimation to convert historical AIS data
into probabilistic heat maps and then used a convolutional autoencoder for further coding.
They constructed a model based on GAN and LSTM to achieve ship trajectory prediction.
Additionally, Suo et al. [27] constructed a hybrid model based on DBSCAN and GRU to
achieve real-time prediction.

Moreover, the clustering methods of ship trajectory are roughly divided into distance-
based [30-33], density-based [34-36], and statistical-based [37,38] methods. Most studies
have achieved efficient clustering of ship trajectories by combining the advantages of
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various clustering methods [30,31,35-37,39]. In this study, a new approach to cluster ship
trajectory, called the combination of DBSCAN and DTW (CDDTW), is proposed, which
combines the optimized DBSCAN algorithm (based on density) and the improved DTW
algorithm (based on distance) to cluster ship historical trajectories. The proposed method
also extracts the regional navigation characteristics of ship trajectory based on the clustering
results. An RSTPM based on an LSTM is constructed.

3. Method

To enhance the driving security of inland waterway ships, the RPSTM is proposed to
provide real-time prediction of ship positions. We conducted tests on two types of river
sections to verify the reliability of the RPSTM. Figure 1 shows the technical road plan for
the study.

Real-time vessel trajectory prediction

Trajectory clustering(CDDTW)

Real-time Receipt of data

Track start and ead clustering Predictive Modeling

| Extraction of track start and end | (RSTPM)

Trajectory preprocessing

| Ship position data broadcast by AIS system |

LM | Receipt of real-time AIS data from ships |

Track Prediction

trajectory belongs

Data normalization |

Drift point filtering

Trajectory similarity clustering

i

Abnormal data processing ! points ]
H Real-time ship |

. | ai  predicti Data service providers parse AIS data
Latitude and longitade logic error_ |1 Chosierng ofsrt o cnd o tr a{ieclmr; Ted.;mn
H using DBSCAN model construction l
H
H . dess e
Repetitive point cleaning i 1 | Input layer | | Message Queue Push AIS Data |

i Trajectories with the same start and
H end points are clustered into one class l
!
H
H
H

Historical
AIS data

Extracting feature trajectories of class
clusters

Stopping point extraction

Calculate the DTW distance of the
feature trajectory

| Cluster merging | l !
Linear interpolation with e
I Output ayer =+ Real-time ship trajectory prediction model
| Clustering results | I
Trajectory data after processing

I ¥
v J. Model Training | Data inverse normalization |
| = -

Data normalization l

Vessel trajectory prediction results

Dense layer |

Figure 1. Technical roadmap for the RSTPM.

3.1. AIS Data Preprocessing

AIS data is a type of spatiotemporal trajectory data that records the location, navigation
status, and other behavioral characteristics of the ship. During the reception of the original
AIS data, some of the AIS data may be lost due to communication signal issues. Therefore,
we preprocess the AIS data to eliminate redundancy and improve data quality. The steps
for preprocessing the AIS trajectory data are as follows: (1) Filtering the noise data. The
dynamic information in the AIS data is automatically obtained through the GPS module.
Due to weather, air, and signal interference, there will be noise data such as position
anomaly and heading anomaly in the data broadcasted by the AIS equipment. (2) Detecting
the stay point of the ship. The position data of ships is constantly generated during the
navigation process; however, the data generated when the ship is anchored is unnecessary
for the prediction of navigation. Therefore, we extract and delete these data. For example,
if the ship stays in a place for more than 30 min, we filter out the location data for that
time period. (3) Extracting the ship’s navigation trajectory from AIS data. (4) Using two
approaches to solve the missing data. The static data can be checked with the ship database
of the management department. For the dynamic data, such as position, speed, etc., we use
linear interpolation and re-sampling to make the positioning time interval of the adjacent
two points in the trajectory consistent. Under this processing, the trajectory data become
denser. (5) Normalizing the data to ensure that the subsequent neural network training
has lower complexity and faster solution speed. The variation of ship AIS data volume in
different areas is shown in Table 2.



ISPRS Int. ]. Geo-Inf. 2023, 12, 502 50f22

Table 2. Variation of ship AIS data volume in different areas.

Number of AIS Number of AIS

Studv Area Number of Raw Data after Data after
y Data Step (1) Step (4)
Processing Processing
The Wuhan section of the
dendritic river system in the 8,538,423 1,767,305 4,428,680

Yangtze River’s middle reaches

The partial reticulated river
system in the northern part of 1,850,761 217,770 1,302,994
the Zhejiang Province

3.2. Ship Trajectory Clustering

In this part, we optimize the DBSCAN and DTW algorithms for better ship trajectory
clustering. Aiming at the problem of slow neighborhood query in the DBSCAN algorithm,
the Ball-Tree algorithm is introduced to optimize the query efficiency. Meanwhile, a cross-
point matching method is proposed to optimize the matching path to solve the multi-point
matching problem in the DTW algorithm. The workflow of the CDDTW algorithm is as
follows: First, the optimized DBSCAN is used to cluster the navigation trajectory through
the ship’s starting points and ending points. Second, the improved DTW algorithm is
used to calculate the trajectory similarity distance in each cluster. In this step, trajectories
with large similarity distance will be reclassified into different clusters This approach can
effectively detect situations where the starting point and ending point of the trajectory are
the same, while the route is quite different, thereby improving the clustering results. Third,
the feature trajectory is extracted from each cluster (the feature trajectory: the trajectory
with the smallest total distance between itself and all other trajectories in the cluster).
Finally, we use the improved DTW algorithm to obtain the similarity distance between
the feature trajectories. This step aims to avoid the situation where similar trajectories are
divided into different clusters due to the opposite starting points and end points. After
these steps, we get a final set of different feature trajectories.

3.2.1. The CDDTW Trajectory Clustering Algorithm

We introduce the Ball-Tree algorithm into the DBSCAN algorithm to accelerate the
query speed of neighborhood points. In the process, a segmentation threshold N is in-
troduced to construct the Ball-Tree, which stops the segmentation of the node when the
number of samples contained in the subtree node is less than or equal to N. The seg-
mentation outcomes of the samples for different values of N are shown in Figure 2. The
comparison of calculation time before and after algorithm optimization is shown in Table 3.

10 10

ﬁ (&

o o
[¢] 2 4 6 8 10 0 2 4 6 8 10

B
IS

N
N

Figure 2. Segmentation results of Ball-Tree with different segmentation thresholds (N = 3, left)
(N =2, right).
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Table 3. The clustering time comparison of the algorithm under different numbers of sample points
(unit: s).

Number of Sampling Points

Algorithm
100 500 1000 3000 5000
DBSCAN 0.205 0.940 3.352 28.84 81.8
DBSCAN + 0.142 0.201 0.298 0.801 1.533
Ball-Tree

The clustering results of the DBSCAN algorithm are mainly affected by two parameters:
one is the scanning radius of the neighborhood E, called R, and the other is the minimum
number of points in the neighborhood E, called MinP. The values of R and MinP interact
with each other. This is because, with the increase of R, the surrounding noise points will
be continuously absorbed into the cluster, causing the number of noise points to gradually
decrease. Consequently, the number of clusters will also decrease synchronously. In the
above process, the noise and clusters will first decrease sharply, then decrease steadily, and
finally tend to level off. Therefore, there will be a transitional region in the process. This
interval is the best value range of MinP and R.

Taking the AIS data of the partial reticular river system in Zhejiang as an example,
with the change of MinP and R, the variation of noise points and the number of clusters are
shown in Figure 3. The chart shows that when MinP is 3, 4 or 5, the number of clusters is
smaller than in other situations, and there is an obvious transitional region However, when
MinP is 6, the number of clusters rebounds with the increase of R. In our ship trajectory
prediction task, we should cluster similar trajectories as much as possible to reduce the
number of clusters and thus increase the training data in each cluster for the prediction
model. Therefore, we set the MinP to 5 and the R to 0.001.

minP =3 minP =4
%
number of clusters 0 number of clusters
. . i ; %0
number of noise points & number of noise points
175
2 3
v 150 € wxs 200 g
2 3 bl 3
g § 2 g
=4 125 = 2 ]
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= 100 O, o <]
7] @ 2 2
£ s E 5
o
3 B O 2 0 g
S 2 El
0 s
10 o
5
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trangtion regidny 0 ‘5”“5"“"“ 1 0
0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.002 0.004 0006 0008 o010
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minP =5 minP =6
5.8 number of clusters number of clusters
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Figure 3. The influence of two clustering parameters on the number of clusters and the number of
noise points.
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The DTW algorithm [40] is a classical time series distance measurement method. When
using DTW to calculate the shortest distance, it is necessary to form a distance matrix of
two time series, and then accumulate the elements passing from the lower left corner to the
upper right corner of the distance matrix to minimize the sum of the accumulated distances.
Since the DTW algorithm requires monotonicity when matching, this means that any point
in the two sequences cannot be skipped. It will cause one point in a sequence to need to
match multiple points in another sequence, posing a problem in reducing the similarity
between two time series. To solve this problem, we propose a cross-point matching method
to avoid the situation of one point matching multiple points, while ensuring that the
matching path aligns with the diagonal as much as possible, as shown in Figure 4. Here,
the DTW distance between the two trajectory sequences is shown in Formula (1), where M
and N are the lengths of the two sequence points, and dis (m, n) is the Euclidean distance
between the sequence point m and the sequence point n.

0 M=0and N=0
M=0 or N=0
DTW(m,n) = DTW(m—1,n—1) 1)
dis(m,n) +min¢ DTW(m—2,n—1)  otherwise
DTW(m—1,n—2)

(m-2)n-1 (m.n)

- CEr 8
4

(m-1,n-1) (m,n-1) (mi1,n-2)

(m+1,n) m,n)

Figure 4. Improvement of the algorithm.

Figure 5 shows two different ship navigation trajectories. The original DTW algorithm
and the improved DTW algorithm are used to calculate the similarity distance matrix
grayscale between the two trajectories. The similarity distance matrix grayscale and
matching path are shown in Figure 6. The blue line in the distance matrix grayscale
is the optimal matching path.

30.78 -
30.75 -
30.77 -
30.74 - 076 -
30.73 1 30.75 7
30.74
30.72 -
30.73 -
30.71 - 30.72 -
T T T T T T T T T
120.40 12042  120.44  120.46 120.38 120.40 120.42 120.44 120.46

Figure 5. Two different ship sailing tracks.
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DTW CODTW

0 5 10 15 20 25 30

Figure 6. Gray similarity distance matrix and matching path of two trajectories before and after the
improvement of the DTW algorithm.

3.2.2. Evaluation of the CDDTW Trajectory Clustering Algorithm

1. Evaluation indicators

The clustering result of ship trajectories can be judged by comparing the distance
within the cluster after clustering. This requires calculating the average distance from the
characteristic trajectory of the cluster to all other trajectories of the cluster within the same
cluster [41]. Formula (2) is expressed as

1w e 1
S(Ci) = =) i o dis(Ti, L)), )
where S(C;) is the average distance within the cluster, C; is the cluster,i={1,2,3,...... ,

m, m is the total amount of clusters, n is the total number of trajectories of cluster C;, Ti is
the characteristic trajectory of cluster C;, Lj is the trajectory other than the characteristic
trajectory in cluster Lj, j=1{1, 2, 3,...... , m}, and dis (Ti, Lj) is the distance between
the trajectories Ti and Lj. S(C;) is a relative value, which is related to the length of the
trajectories within the cluster.

Some clusters are obtained in accordance with different trajectory clustering algo-
rithms. Comparing the intra-cluster distance of the same cluster, the smaller the distance,
the more compact the cluster.

2. Comparison of experimental results

We compare the clustering effect of four algorithms on ship trajectories. As shown in
Table 4, we used Formula (2) to calculate the intra-cluster distance of the clusters obtained
by the four algorithms. The cluster obtained through CDDTW has a smaller intra-cluster
distance in most cases, which means these clusters are more compact. The table indicates
that the clusters obtained through the CDDTW algorithm are closer.

Table 4. Comparison of intra-cluster distance of the same class clusters under different

clustering algorithms.
Intra-Cluster Distance
Algorithm
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

DTW 437 798 632 750 339 568 466
CDDTW 415 469 458 322 343 542 430
HDBSCAN 462 543 463 512 351 497 393
OPTICS 431 586 538 487 387 572 449
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3.3. Construction of the RSTPM Based on LSTM

On the basis of the clustering results obtained in Section 3.2, different types of trajectory
clusters should be trained separately to obtain their respective prediction models, which
can improve the accuracy of prediction [24]. The RSTPM is constructed based on LSTM.
Figure 7 shows the structure of the model.

LSTM layer
Input layer

Dropout layer  Denge layer Output layer

Figure 7. Structure of the RSTPM.

The navigation state of the ship at the first T continuous time is used by the RSTPM
to predict the behavior of the ship at the future moment t. Although the model can only
predict the navigation state of one moment at a time, we use the time window sliding
method to forecast the state of the ship at multiple moments in the subsequent time. The
Formula (3) for the single prediction of ships is

S(t+1) = F({S(H),S(t—1),...,8(t—T+1)}), 3)

S(t) = {LON, LAT, SOG,COG}, 4)

where S(t) represents the state of the ship at the current moment, S(f + 1) represents the
state of the ship at the next moment, f is the prediction model, and T is the step size,
indicating that T historical data points form a set for the prediction of the ship’s state at
the next moment, where LON, LAT, SOG, COG represent longitude, latitude, speed, and
heading, respectively. The state S(t) of the ship at each moment includes four characteristics:
longitude, latitude, heading, and speed. Only Formula (3) needs to be looped when
predicting the future multiple states of the ship, at which point Formula (3) becomes
Formula (5):

S(t+2) = f{S(t+1),5(t),...,S(t—T+2)}. ®)

Formula (5) shows that the data of the input model begin to include the previous
prediction results because the prediction time exceeds t 4+ 1. Therefore, the prediction
accuracy will keep declining as the prediction time grows.

We obtain real-time AIS data as the input of the model in two ways to realize the
real-time prediction. One is to access data from AIS data service providers, and the other is
to build an AIS data receiving system, then push the parsed AIS data continuously through
the message queue. Next, the characteristic area to which the ship belongs is calculated in
accordance with the current position data of the ship. Finally, the RSTPM can implement
the prediction of ship trajectories in real-time. Within the scope of the study area, the model
will continue to receive updated ship locations, and these data will be applied to cluster
analysis to continuously optimize the prediction model.
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4. Adaptability Evaluation of the RSTPM in Different River Types

We mainly study the applicability of the RSTPM on two different types of rivers. The
first study area is the Wuhan section of the dendritic river system in the Yangtze River’s
middle reaches, which is a nonforked river section, as shown in Figure 8. The second study
area is a partially reticulated river system in the northern part of the Zhejiang Province,
where the Beijing-Hangzhou Canal intersects with the Dongzong Line. It is a multiforked
river section, as shown in Figure 9. For the nonforked reach, we mainly focus on the problem
of selecting model parameters and predicting accuracy under different river curvatures.
For multiforked river sections, we focus on the multisegment trajectory prediction problem
for ships navigating different bifurcated segments at channel bifurcations.

Study area in the Yangtze River’s middle reaches in Wuhan

30°40'0°N

30°200°N

Huangshi

30°0'0°N
~

o

Xiaming

114°0°0"E 114°20°0"E 114°40°0"E 115°0°0"E

Study area of Han River

—
0 125 25 50

Study area of Yangtze River

Figure 8. Nonforked section of the dendritic river system in the Yangtze River’s middle reaches
in Wuhan.

Study area in northern Zhejiang

"
BT} ruran Buddhit Temple

30°50'0°N

30°40'0°N

shan Town

Zhadquan Town, Tugdian To

120°10°0"E 120°20°0"E 120°30'0"E 120°40°0"E

0 5 10 20 Study Area

-~ Other rivers

Figure 9. Some multiforked river sections of reticulated river systems in northern Zhejiang Province.
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4.1. Nonforked River Sections

For nonforked river sections, we mainly focus on the impact of various river sinuosities
on the selection of model parameters and prediction accuracy. The river sinuosity is
calculated using Equation (6) [42] as:

L

where L is the length of the river section, and L' is the length of the connection line from
the beginning to the end of the river section. We then applied the CDDTW to cluster ship
trajectories on the waters of the first study area and obtained a total of 28 class clusters. We
selected six different types of clusters to explore, using the area where they were located as
the study area. The river segments in each study area should have different river sinuosities,
as shown in Figure 10.

Figure 10. Study area and numbering.

We take the second study area as an example to investigate the effects of batch size,
the amount of neuron nodes in the hidden layer in LSTM, and the step size of training
data on the final prediction accuracy of the RSTPM under different river sinuosities. The
parameter settings in the other areas are the same as in this area.

4.1.1. Effect of Batch Size on the Prediction Model

Taking the second study region as an example, we set different values for batch size
and trained them for 500 epochs. Mean squared error function is applied to calculate the
error between the predicted value and the true value. Figure 11 shows that the convergence
speed of the network on the training set is significantly higher than that with batch sizes
of 16 and 32 when using batch sizes of 64, 128, and 256. On the validation set, batch sizes
of 32 and 128 can achieve better results. Therefore, setting the batch size to 128 can better
balance the error in the training set and validation set.
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Figure 11. Mean squared error for different batch sizes in the training set and validation set.

4.1.2. Effect of the Amount of Hidden Layer Neuron Nodes in LSTM on the
Prediction Model

As shown in Figure 12, when the number of hidden layer neuron nodes of LSTM
is more than 108, the loss function on the training set no longer decreases significantly,
whereas the validation and test sets continue to decrease significantly. Considering that the
training time of the model becomes longer as the number of hidden layer neuron nodes
increases, the number of LSTM hidden layer neuron nodes is taken as 128 by combining
the error, accuracy, and training time of the model.
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Figure 12. Variation in mean squared error and accuracy for the model with the number of neurons.

4.1.3. Effect of Step Size on the Prediction Model

As shown in Figure 13, the mean squared error of the training set and test set reaches
its minimum value when the step size is 12, and the training set obtains the best accuracy,
reaching 99.9%. This level of accuracy fully satisfies the requirement of accuracy, so the
step size is set to 12 for the study area.
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For the next five different river segments, we used the same method to determine the
parameter selection of the prediction model under different river sinuosities. In accordance
with the above analysis, the value of batch size is taken as 128 in all situations. After exten-
sive experiments, the relationship between model parameters and accuracy for different
river sinuosities is shown in Table 5. As the river sinuosity increases, the model needs
fewer steps and more neurons to achieve higher accuracy.

Table 5. Parameter values of the RSTPM with different river bending coefficients.

Study A
Model Parameters wyare
1 2 3 4 5 6

RlV.eI.' bending 1.017 1.269 1.287 1.343 1.746 2.493
coefficient (m/m)
Number of hidden 88 108 128 108 168 188
layer neurons (pcs)

Training data 14 12 12 12 10 8

step (step)

Predicted average 35 20 40 20 57 24

accuracy (m)

4.2. Multifork River Section

Predicting ship trajectories on multifork river sections is more difficult compared
to nonfork river sections. Although most ships follow a consistent trajectory, some may
choose different routes at channel bifurcations. Therefore, in addition to predicting the
ship’s position, we need to consider whether there will be multiple sailing routes after the
ship travels to the bifurcation of the channel. The study area is shown in Figure 14, and
the clustering results of ship trajectories are shown in Figure 15. The left side of the figure
shows the clustering results with nine class clusters; the two obscured clusters in the left
figure are shown on the right side.

On the basis of the river segments where the nine types of ship trajectory class clusters
are located in Figure 14, the river segment sinuosities are calculated using Equation (6). We
also select the RSTPM parameters for different segments based on the results in Table 6.
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Table 6. Bending coefficients of river sections belonging to different clusters and the parameter values

of RSTPM.
Clust
Model Parameters uster
1 2 3 4 5 6 7 8 9

River bending coefficient (m/m) 1.078 4.509 1.368 1.342 1.930 1.156 1.384 1.152 1.038

Number of hidden layer 128 188 108 108 168 168 108 108 128

neurons (pcs)

Training data step (step) 14 8 12 12 10 10 12 12 14

Predicted average accuracy (m) 14 52 16 15 30 14 21 24 16

5. Experiments on the RSTPM
5.1. Analysis of Results in the Nonfork River Section

Taking the second one in Figure 10 as the study area, we selected a trajectory from the
test set that was considered normal. The specific prediction results are shown in Figure 16,
revealing an average prediction error of 18.4 m that does not exceed 60 m. Our prediction
accuracy is significantly higher compared to the average prediction error of 60.3 m [16] and
the average prediction error of 123 m [43] in other studies.

WMS | - 413819268 D.D‘._Ermr between predicted value and true value
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Ship trajectory point Ship trajectory point

Figure 16. Normal trajectory prediction results and prediction error.

The two models of RSTPM and GRU for predicting 30 min on the test trajectory
(MMSI:413819268) are shown in Figure 17. From the two figures, the distance error of the
model gradually increases as the prediction time increases, while the error becomes lower
in some positions as time increases.
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Figure 17. Prediction of trajectory within 30 min periods in different positions.

For predicting the trajectory of the ship (MMSI:413819268) across the whole trajectory,
we made multiple predictions from the first position to the last position of the ship, and
each prediction spanned 30 min. Figure 18 shows the average prediction error within
30 min across the entire trajectory. It demonstrates that the RSTPM outperforms the GRU
model in terms of mean and maximum values, and that the mean prediction error of the
RSTPM does not exceed 100 m within 12 min.

To confirm the model’s stability, four trajectories were arbitrarily chosen from the test
set for further testing. Table 7 shows the prediction errors for two different models. It
indicates that the prediction distance error of the RSTPM is better than that of the GRU
model, and the maximum value of prediction error of the RSTPM is less than 90 m. The
average prediction error of heading and speed of the RSTPM is also less than that of
the GRU model. The maximum prediction error for the former speed does not exceed
0.8 knots, while the maximum prediction error for heading is approximately 12°. There-
fore, it indicates that the RSTPM is superior to the general trajectory prediction model
and can better meet the demand of traffic supervision when the ship travels on the
waterway surface.
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Figure 18. The average prediction error and the maximum error for the 30 min period across the
entire trajectory.

Table 7. Comparison of prediction errors for different trajectories.

MMSI Models Distance Error (km) Speed Error (km) Heading Error (Degree)
Max Mean Max Mean Max Mean
GRU 0.0922 0.0269 0.331 0.069 6.210 1.130
413827414 RSTPM 0.0884 0.0204 0.360 0.063 5.664 1.022
3812757 GRU 0.0734 0.0285 0.526 0.082 11,524 1.261
RSTPM 0.0758 0.0208 0.537 0.073 12.157 1121
GRU 0.0692 0.0266 0.997 0.078 7.214 1.267
413812608 RSTPM 0.0758 0.0211 0.793 0.072 7.234 1.188
GRU 0.0877 0.0266 0.531 0.069 9.041 1.126
413819268 RSTPM 0.0581 0.0184 0.551 0.066 7.010 0.997

5.2. Analysis of Results in Multifork River Sections

In this paragraph, we carry out some tests on ship trajectories in the multifork area
selected in Section 4.2. As shown in Figure 19, one four-fork and three three-forks are
observed in the experimental area (red dashed circles in the figure). When a ship travels
to a three-fork area, it may travel to any of the other two segments. Therefore, the ship’s
position on two different segments needs to be predicted simultaneously before the ship
arrives at the fork.

We use the same method as in Section 5.1 to verify the accuracy of the RSTPM and
GRU models on trajectory prediction. Then we compare the prediction errors of four
random trajectories from the test set in the multifork area, as shown in Table 8. It indicates
that the RSTPM has lower errors than the GRU model in most cases.

We chose a ship from the test set that had traveled in multiple directions at a multifork
river for testing. As shown in Figure 20, the ship (MMSI:413760772) has a total of five
historical trajectories. Four of the historical trajectories of the ship belong to cluster 1 and
one belongs to cluster 6, indicating an 80% probability of the ship passing through the
channel where cluster 1 is located and a 20% probability of it passing through the channel
where cluster 6 is located when it reaches the multifork.
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Figure 19. Location of multifork river in the study area.

Table 8. Prediction errors of different trajectories.

MMSI Models Distance Error (km) Speed Error (km) Heading Error (Degree)
Max Mean Max Mean Max Mean
413823145 GRU 0.0442 0.0171 0.362 0.098 5.194 1.433
RSTPM 0.0362 0.0144 0.322 0.096 4.417 1.158
413791454 GRU 0.0354 0.0149 0.293 0.068 10.852 2.135
RSTPM 0.0354 0.0131 0.286 0.069 7.434 1.847
413981121 GRU 0.0382 0.0154 0.507 0.110 5.003 1.577
RSTPM 0.0397 0.0147 0.555 0.111 7.360 1.570
413977486 GRU 0.0300 0.0163 0.213 0.063 6.292 2.110
RSTPM 0.0285 0.0138 0.210 0.064 6.794 1.627
traj_id cluster geometry mmsi

2701 413760772_2021-10-09 09:06:13_0_0 1| LINESTRING (120.48091 30.71859, 120.40112 30.... 413760772

2705 413760772_2021-11-23 15:49:09_0_0 1| LINESTRING (120.48095 30.71859, 120.40103 30.... 413760772

2715 413760772_2021-08-10 18:10:24_0_0 1| LINESTRING (120.48093 30.71059, 120.40124 30.... 413760772

2722 413760772_2021-08-23 16:31:49_0_0 1| LINESTRING (120.40084 30.71058, 120.40097 30.... 413760772

7035 | 413760772_2021-08-28 15:26:44_0_0 6| LINESTRING (120.48095 30.71059, 120.40118 30.... 413760772

Figure 20. Ship history track.

As shown in Figure 21, we attempted to predict the ship’s trajectory on two different
segments prior to its arrival at the fork. According to the prediction accuracy of the two
models, it is hard to determine exactly which river segment the ship will choose. However,
we can obtain the probability of the ship traveling on two segments based on its historical
trajectory data. The figure shows that the prediction result of model 6 at 2 min deviates
significantly from the centerline of the channel, and the prediction error is more than 10 m,
whereas the prediction error of model 1 is less than 10 m. Therefore, the ship will pass
through the section where the class cluster 1 is located. The final prediction result for the
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ship’s trajectory is shown in Figure 22. The results prove the applicability of the developed
model in the multifork river sections.
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Figure 21. Predicted trajectory on multiple segments when the ship reaches the bifurcation.
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Figure 22. Predicted trajectory of the ship after passing the bifurcation.

6. Conclusions

In this study, we focused on the Wuhan section of the dendritic river system in the
Yangtze River’s middle reaches and a partial reticulated river system in the northern part
of the Zhejiang Province. Using AIS track data, we proposed a new ship track clustering
method called CDDTW, which improves the clustering efficiency and quality of ship tracks
and effectively extracts regional navigation characteristics of ships. We then constructed
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an RSTPM based on the trajectory clustering results and an RNN algorithm. The results
of the experiment suggest that the proposed model can predict ship trajectories on inland
waterways with an accuracy of approximately 20 m, characterized by high detection
accuracy, less setting parameters, and ease of implementation.

We hope our research can provide theoretical and technical support to the water
traffic management department, which is of practical importance in ensuring that ships
can navigate safely on the waterway and improving the department’s ability to manage
the ships. In the future, we strive to enhance the model’s prediction accuracy by increasing
the input dimensions, such as ship length and ship type.
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