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Abstract: (1) Background: The smart city management system, with GIS technology as its core, is
based on realistic visualization of multiple types of 3D model data syntheses. However, the efficiency
barriers to achieving smooth and continuous visualization from outdoor scenes to small indoor scenes
remain a challenge. (2) Methods: This paper uses the visibility prediction method to obtain potential
visual sets at three levels—outdoor, indoor and outdoor connection, and indoor—and constructs
an R-tree spatial index structure for organizing potential visual sets. By integrating these potential
visible sets with spatial indexes, scene visualization can be carried out effectively. (3) Results: A near-
reality indoor and outdoor scene was used for experimentation, resulting in stable 10% fluctuation
visual frame rates around 90 FPS. (4) Conclusions: Spatial indexing methods that combine potential
visible sets can effectively solve the continuity and stability problem of indoor and outdoor scene
visualization in smart city management systems.

Keywords: potential visual sets; smart city management system; spatial index; consistent visualization

1. Introduction

The 3D simulation management system, catering to the requirements of smart cities, is
progressively adopting realistic 3D GIS technology, which has emerged as a pivotal tool for
governmental agencies in achieving territorial space management and facilitating livelihood
services [1,2]. The operation of this system relies on constructing superfine 3D scenes
by integrating various types of geospatial data and establishing high-performance data
scheduling mechanisms to realize the visual basis of urban space management, which
constitutes the foundation of a smart city management system.

The visualization of a smart city system encompasses both expansive outdoor scenes
and intricate indoor scenes. Effectively visualizing the combination of these complex scenes
faces challenges in terms of data loading efficiency and stable scheduling for large datasets.
Existing visualization systems typically rely on the 3D Tiles structure for data scheduling
and use a spatial distribution to convert the data into a mesh-structured triangular surface
collection [3–5]. However, indoor scenes and outdoor scenes possess distinct spatial charac-
teristics. For instance, objects in outdoor scenes are scattered with a wide field of vision,
whereas building interiors exhibit high spatial density and obstructed views. For example,
BIM-based fine buildings synchronize their physical realization by constructing a digital
twin 3D model with accurate geometry and realistic appearance. The browsing mode of the
3D simulation management system needs to simulate human visual effects, enabling users
to seamlessly transition between indoor and outdoor scenes during browsing sessions. Tra-
ditional single-visual scheduling strategies fail to effectively overcome the challenges posed
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by continuous visualization from large outdoor scenes to small indoor ones, particularly in
addressing frame rate fluctuations caused by sudden scene changes.

This paper presents a novel approach called the visibility-based spatial index (VESI),
which combines potential visible sets with spatial indexes. Utilizing this index to schedule
spatial data significantly improves the continuity and stability of transitions in visualizing
scenes, especially between indoor and outdoor scenes.

2. Related Works

The efficient visualization of 3D scenes is a research area that encompasses three key
aspects: processing the original 3D data, establishing spatially based indexing technology,
and pre-calculating visibility results.

2.1. Improved Visualization with Data Processing

In order to achieve the visual implementation of complex scenes, researchers prepro-
cess original three-dimensional data to generate customized versions based on specific
requirements. The concept of Level of Detail (LoD) was introduced by Clark in 1976 [6],
which involves creating multiple versions with varying levels of detail for the same object
in advance. When an object occupies a smaller portion of the screen, a coarser model can
be used to represent it; otherwise, a more detailed model is used.

This approach has been widely applied in urban and architectural modeling. To visu-
alize urban data, preconstructed model objects with five levels of detail are available for
different applications [7,8]. For instance, the roughest two-dimensional vector plane model
(LoD0) can be used for urban plot planning, while the three-dimensional box model (LoD1)
is suitable for expressing space ownership, and a more refined LoD3 model is required for
detailed facility management [9]. However, since five LoDs may not suffice to achieve a
comprehensive digital twin description from a geometric perspective, Filip proposes an
improved set of 16 LoDs that focus on grading a building’s external geometry [10]. Löwner
suggests extending CityGML LoD by providing an extension mechanism for user-defined
LoD to refine it further [11]. To address the issue of transitioning from outdoor scenes to
indoor scenes in urban settings, Tang develops a full-space LoD integrating indoor and
outdoor using CityGML and forms 20 semantic LoD levels that extend structure, connec-
tivity, volume, and other contents [12]. The trend toward refining the hierarchy of LoDs
continues. Chen classifies models according to visual variables and constructs possible
LoDs to form a four-layer coding capability LoD structure that makes preprocessing data
more feasible [13]. As each application has its fixed level of detail design requirement
leading to excessive preprocessing data issues; Tang proposes a bottom-up approach by
assembling the lowest level of model primitives into an assembly set [14].

Data processing technology enables reducing a substantial volume of 3D data into a
compact multi-level data subset while using an appropriate data scheduling method to
load the necessary subset under diverse circumstances. However, this approach exhibits
certain drawbacks: the utilization of multi-level data subsets leads to a significant increase
in computer storage space and results in considerable data redundancy; furthermore, the
processed data subset represents lossy information that partially lacks characteristic details
from the original dataset. Especially in visualization, the model between the two LoDs
brings the observer with an abrupt visual difference.

2.2. Improved Visualization Using Spatial Index Technology

In order to mitigate information loss, spatial indexing technology is used as a means
to calculate and record the distribution characteristics of data. By effectively enhancing the
retrieval speed of model data, spatial indexing enables faster scheduling and rendering,
thereby ensuring a consistent improvement in visualization outcomes.

Zhu utilized K-means clustering results to achieve the node grouping of an R-tree
and establish a spatial index for a small model, which exhibits excellent visualization
effects in virtual geographic environments [15]. In the context of limited computing
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resources, Zhang used spatial indexing technology to enhance the adaptive rendering
capability of large and complex spatial data [16]. To cater to the rapid visualization
requirements of extensive scenes like geographical space, Yang used a quadtree index
for global data organization and a three-dimensional spatial index for local scope [17].
As data structures become increasingly intricate, Ke proposed utilizing a combination of
R-trees and B*-trees to establish efficient retrieval mechanisms for spatiotemporal data [18].
When applied to the IoT network, parallel queries involving grids and trajectories can be
processed in real-time using an integrated spatial index model [19]. In ocean electronic chart
visualization applications, Yu divided ocean objects into corresponding R-tree nodes based
on their minimum bounding boxes, significantly enhancing object visualization efficiency
in sparse ocean spaces [20]. Liu introduced the HiIndex as a novel spatial index enabling
real-time and interactive visualization of large-scale vector data by partitioning global
geographic scopes using TQ-tree’s quadtree structure; each TQ-tree node represents the
spatial extent of specific rules [21], ultimately facilitating rapid visualization for large-scale
vector datasets. Wu used a B+ tree-based spatial index to accelerate voxel data processing
in tunnel geological environments. Dynamic volume calculation was used to integrate
dense collective elements representing complex internal heterogeneous information with
sparse voxels representing structural information, thereby achieving accelerated volume
rendering and rendering capabilities [22].

The utilization of spatial indexing enhances data retrieval efficiency without altering
the original data structure, thereby facilitating faster loading of 3D data in visual data
scheduling. However, this approach exhibits certain limitations as it solely considers the
geographical distribution of spatial objects and overlooks model visibility. Consequently,
during data scheduling in the visualization pipeline, a substantial amount of invisible
redundant information may be inadvertently imported into rendering memory, resulting
in diminished visualization efficiency.

2.3. Predictive Visibility-Based Visualization Enhancement

Similar to the application of level-of-detail techniques, visibility computation holds
significant value in the real-time visualization of large-scale models and data volumes [23].
Within the graphics rendering pipeline, this process involves calculating visible objects
within a scene, eliminating invisible components, and ultimately generating an image frame.
Visibility calculation can be time-consuming, particularly when dealing with a substantial
number of objects from specific perspectives such as interior scenes [24]. The precom-
puted storage of predetermined visible results enhances both the speed and stability of
visualizations.

Masehian uses predictive visibility to construct a visibility graph and integrate a
Voronoi diagram to establish a knowledge reserve for robot motion planning, thereby
enabling a rapid and stable response speed in wayfinding [25]. Roden suggests that doors
within indoor environments can traverse the line of sight and utilizes a ray approximation
calculation method across doorways to streamline occlusion elimination, thus enhancing
the computational efficiency of potential visible sets [26]. The utilization of ray detection for
visible set sampling is susceptible to erroneous judgments. By incorporating the calculation
of spatial occupancy of visible objects [27] and grid-based preprocessing techniques [28], a
harmonious balance between accuracy and efficiency is achieved. In recent years, Wang
proposed utilizing grid predictive visibility for geospatial data scheduling, facilitating three-
dimensional navigation and visualization integration both indoors and outdoors within
smart cities [29]. When encountering rooms with dense spatial features, a multi-viewpoint
joint sampling approach enhances the accuracy of visible object extraction while further
improving information fidelity in visualization effects [30].

The spatial locations that viewpoints can reach are infinite for a large scene, resulting
in high computational costs when collecting visual sets at each location. Consequently, this
leads to increased storage costs and query time during retrieval scheduling [31]. Hladky
leverages the computing power support of GPU to establish an estimation function by
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performing motion prediction on camera frames [32]. The effectiveness of this estimation
function directly impacts the accuracy of the visualization effect. Additionally, a combi-
nation of PVSs (potential visible sets) and spatial indexing has been proposed, where the
contours of potential visible sets are stored in an octree structure to accelerate rendering
scheduling. This method demonstrates excellent performance for small mesh models (e.g.,
Stanford bunny) [33].

The technology of predictive visibility calculates and stores visible objects in specific
spatial positions in advance, enabling the direct use of predictive results for visual data
scheduling. Precomputation involves a prediction process that estimates physical objects
likely to be observed at particular spatial locations. The more precise the spatial position,
the more accurate the prediction result becomes. When predictions can be made for every
three-dimensional space point, they closely approximate real-world situations.

3. Methodology
3.1. Context

In a three-dimensional urban management system, users have the flexibility to adjust
their viewing angle and navigate through the city as if they were using Google Earth.
Alternatively, they can opt for a realistic exploration of both indoor and outdoor spaces
within physical constraints. To achieve seamless visual transitions at different regions, an
effective data processing and scheduling method is required that considers outdoor scenes
as well as highly detailed local models or indoor scenes. By combining predictive visibility
with spatial indexing, continuous visualization is made possible by simulating the relational
dynamics between the observer (i.e., viewpoint) and the observed (i.e., spatial object).

3.2. Connotation and Mathematical Representation of VESI

The essence of VESI lies in the organization of visual outcomes achievable within
a specific spatial location. Its mathematical representation entails the mapping between
three-dimensional physical space and three-dimensional visual space, thereby endowing
VESI with the characteristics of a four-dimensional space that amalgamates physical and
visual domains. This relationship is denoted by a mapping function.

f (Viewpoint Space) ∼ f (Visual World) (1)

In the formula, f (Viewpoint Space) represents a region in which the viewpoint is
situated. This region is defined as an integral of the viewpoint along the X-, Y-, and
Z-directions, and is referred to as viewpoint space. On the other hand, f (Visual World)
denotes all visible results that can be observed within this scope of viewpoint space.
In essence, it corresponds to the spatial objects associated with this particular viewpoint.
The integral form of f (Viewpoint Space) is:

f (Viewpoint Space) =
y

f (Viewpointx , Viewpointy, Viewpointz

)
dxdydz (2)

In practical calculations, it is infeasible to compute all viewpoints within the entire
space. Therefore, a discrete sampling method is used to approximate the expression and
achieve visibility prediction results. The resulting viewpoint space takes on a set form as
follows:

f (Viewpoint Space) ≈ { f (Viewpoint1), f (Viewpoint2), . . . , f (Viewpointn)} (3)

The term f (Viewpointi) denotes the entirety of tangible entities that are visible from a
three-dimensional spatial location in all directions.

Specifically, f (Visual World) represents a comprehensive three-dimensional visual
outcome that encompasses two essential components. The first component comprises
a collection of viewing units corresponding to all viewpoints in the viewpoint space.
The second component is the continuous viewing space that corresponds to the viewpoint
space. When expressing viewpoint space with set approximation, the visual world can be
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defined as the union of omnidirectional view space and its associated set of visual units
under multiple viewpoints. Thus, in the following formula, Entity denotes the visual unit
while Vision represents the visible spatial domain.

f (Visual World) =
n⋃

vp=1

(
∑ Entityivp

)
+

n⋃
vp=1

(
∑ Visionivp

)
(4)

The schematic diagram in Figure 1 illustrates the viewpoint space and the visual world.
The collection of units visible to the three viewpoints within the viewpoint space, along
with their corresponding view field (Figure 1a), collectively constitute a unidirectional
visual outcome (Figure 1b). By overlaying comprehensive visual outcomes, the visual
world corresponding to the viewpoint space is formed (Figure 1c).
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Figure 1. Viewpoint space and the visual world: (a) the spaces and entities; (b) the visual results of a
single direction; and (c) the entire 3D visual world.

In visual computing, an Entity refers to the fundamental visual element involved
in computations, encompassing basic points, line segments, triangulars, mesh surfaces,
volume units, and model objects.

3.3. The Construction Procedure of VESI

The construction procedure of VESI primarily encompasses viewpoint space subdi-
vision, potential visual set detection strategy, spatial index establishment, and matching
incremental data scheduling mechanism. The relationships among each component is
illustrated in Figure 2.
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3.3.1. Viewpoint Space Subdivision

Viewpoint space refers to the area accessible to the observer (camera) during the
viewing process, which can be categorized into three types: outdoor space, indoor–outdoor
transition space, and interior space. The three types collectively constitute a continuous
spatial transition between the interior and exterior and possess significant characteristics in
terms of visibility observation.

• Outdoor space is defined as a region with a certain distance from the building where
observers have access to an empty area with a relatively wide field of view and are
often able to see the outer surface of buildings at a distance.

• In–outdoor space represents the transitional zone between the interior and exterior
spaces. The creation of in–outdoor space is achieved by strategically establishing the
distances before and after entering a building. Within these spaces, observers are
afforded the opportunity to simultaneously perceive both the interior objects through
windows and doors, as well as the exterior surfaces of neighboring buildings.

• Interior spaces are located at a certain distance after observers completely enter a
building, where they can only observe indoor objects that are more densely distributed
than those found in outdoor spaces.

According to the visibility characteristics in the three types, the continuous scene data
are meticulously structured at the primitive level, including building shell extraction and
reorganization of indoor entities. The purposes are (1) in outdoor observations, treating
the building shell as an independent entity can reduce data redundancy by loading it only
once, while disregarding indoor data aids in streamlining data scheduling and (2) in indoor
space observation, indoor objects are balanced and rearranged based on spatial proximity
relationships to enhance visual computation efficiency.

The process of shell extraction involves screening doors, windows, walls, columns,
and top floors of the building based on semantics. Subsequently, the intersection relation-
ship between each object and the transitional spaces connecting indoors and outdoors is
individually assessed to identify intersecting objects recorded as shells. All the filtered
objects are grouped as a building shell object.

Regarding interior entity reorganization, entities originally organized according to
“material + geometry” are transformed into entities organized based on spatial positional
relationships. In Figure 3, the diagram is sequentially divided into four sections from left
to right in accordance with the depicted arrows, and the leftmost section represents the
unaltered 3D model. The second part implies that the initial model typically relies on model
materials to organize entity data, where all red windows in the diagram are designated
as one entity. In the third part, the red material entity (windows) is divided into multiple
sub-entities based on the spatial connectivity of the triangular surface, resulting in the
acquisition of several independently operable windows. In the fourth section, we partition
the entire building space into grids, creating multiple smaller blue spaces, and subsequently
consolidate all sub-entities within each blue space into a single entity. In this process, the
value Hmax is used to impose an upper limit on the number of triangular surfaces generated
after each object reorganization, thereby ensuring that excessive triangular surfaces are
avoided for each individual object.

In the visualization system, the viewpoint space is the area that the observer (camera)
may reach. But in the three-dimensional environment, a part of the space occupied by
the physical entity is the inaccessible space, which is mainly occupied by the building
objects and the tree objects. Therefore, the location characteristics and reachable region
of viewpoint space should be considered comprehensively in the division of viewpoint
space. The outer bounding box serves as an approximation of the physical entity’s size.
The following strategies are used in this paper to partition viewpoint space:

The outdoor viewpoint space is divided by first removing the outer bounding box
of the physical entities within the viewpoint space, followed by calculating the average
dimensions (length, width, and height) of all architectural entities’ outer bounding boxes.
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These average dimensions are then used as voxels to divide the viewpoint space. Finally, the
entire scene space is partitioned based on voxel size. So, a voxel is a minimal representation
of viewpoint space concretely in Formula (3), recorded as a VS voxel.
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The indoor and in–outdoor viewpoint space refers to the observation place within and
outside a building at close range. In visualization, the level of visual detail required should
be determined by controllable sampling based on importance. To achieve this, we propose
using a voxel cube with a side length denoted as l. The value of l is typically determined by
factors such as the size of the building model (Sizeb), the number of entities in the model
(N), the maximum entity size (Sizemax), and the average size across all entities (Sizeave)
(Formula (5)). Here, size represents an average measurement encompassing length, width,
and height.

l =
N × Sizeave

Sizeb
× Sizemax (5)

3.3.2. Potential Visible Set Detection

We need to calculate the visible objects corresponding to each VS voxel by setting
a series limited field of view. This process is the embodiment of the visual world in
Formula (4). Entity acquisition in the visual world is called potentially visible set detection,
while vision corresponds to the setting of the field of view. For each VS voxel in three
scenarios of indoor, outdoor, and mixed scenes, we used visibility set detection methods
based on building shells, openings, and omnidirectional views, respectively.

When the VS voxel is positioned outside, we use the shell detection method to obtain
the visible set. We establish a fully connected line between the eight corners, the center
of the VS voxel, and the minimum bounding box of the building shell, subsequently
determining whether these lines intersect with any other objects. In the case that no
obstructions are encountered, we consider that the chosen building shell is visible to the
VS voxel. For example, as shown in Figure 4a, the corners of the building shell are connected
to a VS voxel corner and are not obstructed.
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Opening-based detection is primarily used for visualizing transitional areas both
indoors and outdoors, where the line-of-sight traverses through an aperture such as a door
or window. Within these transition spaces, the view extends beyond the building envelope
via openings, encompassing diverse spatial regions.

In the opening object detection method, the initial selection of opening objects in the
building shell includes doors and windows. Subsequently, a connection line is established
between the center of the VS voxel and the center of each selected opening object. The angle
formed between this connection and the wall containing the opening is then calculated. If the
angle falls within the range of 15◦ to 90◦, it is assumed that VS voxels can obtain visible objects
through the opening space. For example, as shown in Figure 4b, the VS voxel’s center is
connected to the centers of seven windows, with angles between the connections and walls
measuring l1 = 38◦, l2 = 34◦, l3 = 28◦, l4 = 30◦, l5 = 27◦, l6 = 23◦, and l7 = 13◦. It is hypothesized
that the connection at angle l7 may be imperceptible to the VS voxel.

The interior building space contains dense objects. In this paper, omnidirectional
detection is used to collect the visible set of VS voxel. In the simulation of human vision in
three-dimensional space, whether an object can be seen depends on human sight distance.
The sight distance varies depending on the lighting conditions, with shorter distances
observed in dim environments and longer distances in well-lit situations. Though omni-
directional visibility is calculated without considering the lighting conditions, the indoor
sight distance is adopted using the diagonal length of the smallest building bounding box
to ensure that no visible sets are lost.

The range of human visibility dictates that the field of human observation should be
represented as a sphere, with the visual range serving as its radius. In omnidirectional
detection, the field of view for a VS voxel in virtual space is simplified into six directions:
upward, downward, leftward, rightward, forward, and backward. These six directions
form a cuboid approximation of the tapered field of view (Figure 4c). So, the collection of
visible objects in three-dimensional space can be transformed into a union of visible sets
along these six directions.

To obtain a comprehensive collection of visible objects in a specific direction, we
leverage the depth map cache within the graphics rendering pipeline. However, due
to the inherent characteristics of this pipeline, transparent objects such as glass are erro-
neously treated as obstructive entities, leading to an omission of objects located behind
them in the depth cache map. Consequently, this paper proposes a novel multi-frame
recovery algorithm aimed at achieving precise extraction of the visible set. A depth cache
map is generated in every frame, capturing the color and unique identity of each pixel
as ObjectID. Thus, DepthBu f f er = {(Pixel_x, Pixel_y, Color, ObjectID)}. By travers-
ing the DepthBu f f er set and eliminating duplicate ObjectIDs, we obtain the VisibleSet,
which represents the remaining visual collection. Building upon this foundation, a multi-
frame restoration process (Figure 5) is used to further extract visible transparent objects.
The specific process involves:

Step 1: While traversing the DepthBu f f er set, eliminate duplicate object IDs and
record the number of duplicate deletions as r, denoted as the VisibleSet = {(ObjectID, r)}.
Remove objects with r > p from VisibleSet, resulting in a valid collection VisibleSet =
{(ObjectID)}.

Step 2: Label all transparent objects in the view space based on their material property
values, denoted as the TransSet. Prior to occlusion culling, remove TransSet from the view
space and then take and record the depth cache map of the first frame as DepthBu f f er0,
which includes all visible non-transparent objects.

Step 3: Restore the previously deleted TransSet; acquire and compare differences
between pixel values in both DepthBu f f er0 and DepthBu f f eri for a given frame. The dif-
ference value indicates a transparent object. Then, put all the results VisbleTransObj =
{VisibleTransparentObjects} in the collection of visual transparent objects while removing
{VisbleTransObj} from TransSet.
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Step 4: Iterate through frames by taking subsequent depth cache maps (e.g., DepthBu f f eri)
until it matches with initial depth cache map (i.e., when DepthBu f f er0 = DepthBu f f eri).
The resulting set of visible objects is obtained by combining VisbleTransSet with objects present
in DepthBu f f er0.
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Figure 5. Multi-frame recovery to obtain visible objects.

3.3.3. R-Tree-Based Spatial Indexing

The computation of all potential visible sets was performed, establishing an association
record with the VS voxel. However, during the process of visual scheduling, it is imperative
for the system to swiftly determine the specific VS voxel occupied by the observer (camera)
and promptly load the recorded visible objects within. In addition, a large number of
VS voxels in a scene results in high retrieval costs, necessitating the construction of a spatial
tree to enhance data scheduling efficiency. In this study, we use R-tree to establish a spatial
index based on the following considerations: (1) R-tree possesses the capability to handle
high-dimensional data, aligning with VESI’s data structure characteristics and (2) R-tree
can construct an index tree based on data proximity, where proximity is determined by
whether two distinct VS voxels record similar or identical potentially visible sets.

R-tree utilizes minimum bounding boxes (MBBs) as the key for irregular geometries
in order to construct a spatial index. In this study, we use a minimal set of visible objects
(similar to MBBs at the data level) as the key for each VS voxel, facilitating the creation
of a spatial index. Subsequently, we utilize a scenario diagram to visually depict the
detailed structure of a potential visible set organized using an R-tree. Figure 6 illustrates
a scene containing 12 objects labeled A-L, V1-V8 voxel grids, and outsourced rectangles
that identify visible objects within each voxel space. For instance, Objects A, B, and C are
considered visible objects within V1.

Figure 6a shows the visible objects recorded by each VS voxel. Though voxel V1 and
voxel V2 are not adjacent in space, they share observable Objects A, B, and C. Since both
have the same visible set, they will be placed under the same leaf node in the R-tree structure.
Similarly, since Voxel V3 observes objects B, C, and D while sharing part observations with
Voxel V1 and Voxel V2, the parent node for V1, V2, and V3 will be constructed.

The R-tree structure of the scenario is depicted in Figure 6b. The tree consists of
four layers, with two child nodes, namely, R9 and R10, under the Root node. R9 contains
records for R3, R4, and R8, while R10 records only R6 and R7. In the third layer of the
tree, R3 stores two nodes: R1 and R2. Among them, both V1 and V2 are visible sets
present in node R1; however, since they have identical visible sets, they can be recorded
only once. By using an efficient recording process within the context of an R-tree data
structure, VS voxels exhibiting similar visible sets exhibit shorter distances between their



ISPRS Int. J. Geo-Inf. 2023, 12, 498 10 of 19

corresponding nodes. Moreover, VS voxels with larger visible sets also benefit from
reduced search levels and distances due to the arrangement provided by the tree structure.
This optimization enhances performance for subsequent real-time scheduled data queries.
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3.3.4. Data Scheduling Using VESI

When data are scheduled, VESI is utilized to efficiently retrieve physically visible
objects from the viewpoint location. The visualization system initially loads VESI files into
memory and pre-constructs a spatial index tree. Upon entering a specific voxel, the system
queries relevant visible objects through this tree structure, stores them in temp computer
memory, and subsequently pushes them to the rendering pipeline for direct rendering.

The pseudo-code in Figure 7 formulates the scheduling process using VESI. Firstly,
the system reads the VESI file to input the information in the 3D scene into memory.
This information comprises a set of VS voxels and an R-tree pertaining to VS voxels.
Then, the 3D scene walkthrough operation and data loading are performed. This includes
determining the current position of the camera, setting the update interval, checking if
a valid movement has occurred within the update interval, and calculating the set of
new visible objects after a valid movement. Finally, the new visible object was rendered
and visualized.

The CurrentVoxel is calculated by traversing all the recorded VS voxels and determining
the x, y, and z values of CurrentPosition within the range of a specific VS voxel. So, a
CurrentVoxel can be found. The initial rendering of the scene will consist of the collection of
visible objects captured in the CurrentVoxel.

We utilize ticktime to facilitate update determination, wherein we calculate the NextVoxel
based on the CurrentPosition prior to the expiration of ticktime. If CurrentVoxel and NextVoxel
are identical, no data updates occur; otherwise, we compute the difference between them
and visualize this disparity (called incremental mechanism).

The retrieval of R-trees is accomplished using a highly versatile approach. As il-
lustrated in Figure 8, the pathfinding process from CurrentVoxel to NextVoxel involves a
transition between two-layer parent nodes.

The incremental data scheduling mechanism we proposed can improve the efficiency
of data rendering. While browsing in three-dimensional space, the viewpoint may tra-
verse multiple voxel spaces or directly jump to a distant location (for example, when the
movement speed significantly exceeds the update interval “ticktime”). In both scenarios,
there exists a possibility of an intersection between visible objects recorded by different
voxels, leading to the observation of the same object at different locations. The likelihood
of such intersections increases with continuous transformations. Therefore, each time the
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viewpoint is shifted to a new voxel, it becomes necessary to update the visible objects in
the current location stored in memory. However, this update process uses an incremental
mechanism that calculates and updates only the differences between the potentially visible
set of the current and upcoming voxels with every change in viewpoint.
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Figure 9 presents a scheduling scenario, where Voxel5 and Voxel6 represent two
arbitrary spatial locations. Figure 9a illustrates two VS voxel records of visible objects,
wherein the visible objects recorded in Voxel5 include Ent1, Ent7, and Ent8, and those
recorded in Voxel6 include Ent1, Ent2, Ent4, Ent7, and Ent8. Figure 9b demonstrates the
utilization of an incremental mechanism for processing when transitioning from Voxel5 to
Voxel6. Using the VESI retrieval method and comparing the differences in the visible sets
between these voxels, Ent2 and Ent4 are added to computer memory while Ent8 is removed.
With efficient incremental updates, newly visible objects can be promptly integrated into
the rendering pipeline for executing visualization programs.
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4. Empirical Exploration and Methodical Analysis

We conducted an experiment using a simulation scene that incorporated three ar-
chitectural details, both indoor and outdoor spaces. Scene 1-1 accurately replicated the
physical environment corresponding to the model, while the implementation of VESI
effectively depicted the visualization process during transitions between the indoor and
outdoor spaces. The photograph in Figure 10a depicts the current state, where Building
1 in the scene (Figure 10b) will serve as the continuous visualization for both the indoor
and outdoor settings during this experiment. We utilized the C++ programming language
in conjunction with the fundamental library provided by Unreal Engine 4 to develop a
VESI production program and an accompanying visualization platform. The experimental
software and hardware environment encompassed Windows 10, an Intel i7 CPU, and 16 GB
of memory.
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scene as 3D models.

4.1. The Process of Creating a VESI

The original scene structure comprises four parts, each part is a single object with a
large data size including three buildings and the building site, with several trees arranged
on the site to simulate a realistic environment.

According to the VESI construction method, we extracted the shells of three build-
ings separately and reorganized their indoor data. The data on the three buildings were
organized separately to generate sub-objects with distinct materials. To ensure a balanced
granularity of object data, the number of triangular surfaces contained in a single object is
limited during the generation process. The results of this reorganization are presented in
Table 1. Building 1 exhibits a large shape and complex internal structure, thus adopting a



ISPRS Int. J. Geo-Inf. 2023, 12, 498 13 of 19

threshold value of 3000 to restrict the number of triangular surfaces per object. After reorga-
nization, it yields 1409 new sub-objects with an average surface count of 1388. The simplest
object consists of only 18 triangular surfaces. On the other hand, Buildings 2 and 3 possess
relatively simpler structures and undergo data reorganization using a threshold value set
at 1000; resulting in, respectively, generating 37 and 18 new sub-objects that all use a single
material for rendering. The restructured data has become controllable metrological objects
with fine grain, which meets the need for stable visualization using VESI.

Table 1. The reorganization result of the entire scene data.

Indoor Structure
Reorganization Setting Post-Reorganization

Total Tri(s) Threshold Objects Tri(s) Ave. Tri(s) Min. Tri(s) Max.

Building 1 1,956,156 3000 1409 1388 18 2680
Building 2 25,274 1000 37 683 24 912
Building 3 10,148 1000 18 558 24 631

In the division of viewpoint space, the coarse-grained voxel size (8 × 4 × 3) for
outdoor space is determined by averaging the values of surrounding boxes outside the
building. The height value of the VS voxel is 3, and it is chosen based on an estimated
general building layer height of approximately 3 m. After excluding rigid objects (taking
up inaccessible space), the remaining space is divided into a total of 1262 outdoor VS voxels
using this size. The interior and connecting spaces are divided into Building 1’s VS voxels
with a finer size of 2 × 1 × 1, resulting in 4408 units. Building 2 has 204 VS voxels, while
Building 3 has 126.

Subsequently, we calculate the visible set for all VS voxels and record the ID of each
visible object. Table 2 presents the results obtained from dividing viewpoint spaces into
voxels and calculating visible sets. In particular, as exterior walls primarily observed in
outdoor spaces are merged into one object, there are fewer visible objects in these areas
compared with others. On average, each VS voxel records five visible objects. Due to its
complex internal structure, Building 1’s corresponding VS voxel captures more visible
objects with a maximum count reaching up to 52, whereas Buildings 2 and 3 exhibit
relatively lower counts, averaging 10 and 9, respectively.

Table 2. The results obtained by dividing viewpoint spaces into voxels.

Viewpoint Space Voxel Size VS Voxel Num.
Visible Objects Per Voxel

Ave. Min. Max.

Outdoor 8 × 4 × 3 1262 5 2 16
building 1 2 × 2 × 1 4408 25 6 52
building 2 2 × 2 × 1 204 10 7 22
building 3 2 × 2 × 1 126 9 7 18

The VESI information is documented in Json format. Figure 9 illustrates the organi-
zational structure and content of the VESI file for this particular scenario. In Figure 11a,
MetaData captures PVS meta information for four regions. For the building area, Referenced-
Position specifies the world coordinate position of the building, InnerBounding represents
the bounding box of its interior space, and OuterBounding denotes the bounding box encom-
passing both interior and transition spaces. ObjectList provides a comprehensive record of
all reorganized objects within the scene. The file uses InnerPVS, In-OutPVS, and OuterPVS
to document VS voxel information across the three kinds of distinct spaces, including
VS voxel ID, location coordinates, and associated visible objects (identified by ObjectIndex).
Figure 11b showcases the hierarchical tree structure of VESI with seven layers of nodes,
where each node’s Type attribute indicates whether it is a leaf node or not. The Next property
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of intermediate nodes facilitates traversal to obtain child nodes, while the leaf nodes’ Next
property records VS voxel IDs.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 15 of 21 
 

 

  
(a) (b) 

Figure 11. The structure of the VESI file in Json format (show in Notepad++). (a) The list of visible 
sets in VESI. (b) The tree structure of VESI. 

4.2. The Creation Efficiency of VESI 
The efficiency issues in the preproduction of PVS and spatial index, which are part 

of data preprocessing, need to be addressed. Similarly, the calculation and measurement 
of the preprocessing efficiency of VESI as a combination of both programs is essential. 

In comparison with the three-dimensional spatial index, VESI introduces an addi-
tional dimension of visual outcomes, thereby enhancing its efficiency with factors such as 
the scene size, sampling speed of the visual set, number of objects in the scene, and size 
of the scene viewpoint space (i.e., voxel count). Among these factors, the scene size re-
mains objectively invariant, while the sampling speed relies on hardware conditions. 
Therefore, during VESI construction, we focus on achieving an optimal balance between 
efficiency by considering two parameters: the triangular surface threshold 𝐻௠௔௫ for indi-
vidual object data reorganization and VS voxel size (voxel type) for division within the 
viewpoint space. 

The data preprocessing speed of the three buildings under different 𝐻௠௔௫ values is 
depicted in Figure 12a. Overall, there is a decreasing trend in processing time as the 
threshold increases. Notably, for Building 1, setting the threshold to 3000 leads to a signif-
icant reduction in pretreatment time. Figure 12b demonstrates the efficiency of view space 
partitioning and sampling PVS across four regions with varying voxel sizes: Type1 (8 × 4 
× 3), Type2 (4 × 4 × 3), Type3 (3 × 3 × 3), Type4 (2 × 2 × 1), Type5 (2 × 1 × 1), and Type6 (1 × 
1 × 1). In terms of the outdoor space, the sampling speed of the viewpoint space division 
tends to stabilize as the grid size decreases. Conversely, for Building 1, there is a sharp 
increase in sampling time for the viewpoint space division as the grid size decreases. 
Building 2 and Building 3 exhibit similar simple internal structures, resulting in low pro-
cessing times for both data preorganization and viewpoint space division sampling. 

  

Figure 11. The structure of the VESI file in Json format (show in Notepad++). (a) The list of visible
sets in VESI. (b) The tree structure of VESI.

4.2. The Creation Efficiency of VESI

The efficiency issues in the preproduction of PVS and spatial index, which are part of
data preprocessing, need to be addressed. Similarly, the calculation and measurement of
the preprocessing efficiency of VESI as a combination of both programs is essential.

In comparison with the three-dimensional spatial index, VESI introduces an additional
dimension of visual outcomes, thereby enhancing its efficiency with factors such as the
scene size, sampling speed of the visual set, number of objects in the scene, and size of
the scene viewpoint space (i.e., voxel count). Among these factors, the scene size remains
objectively invariant, while the sampling speed relies on hardware conditions. Therefore,
during VESI construction, we focus on achieving an optimal balance between efficiency by
considering two parameters: the triangular surface threshold Hmax for individual object
data reorganization and VS voxel size (voxel type) for division within the viewpoint space.

The data preprocessing speed of the three buildings under different Hmax values is
depicted in Figure 12a. Overall, there is a decreasing trend in processing time as the
threshold increases. Notably, for Building 1, setting the threshold to 3000 leads to a
significant reduction in pretreatment time. Figure 12b demonstrates the efficiency of view
space partitioning and sampling PVS across four regions with varying voxel sizes: Type1
(8 × 4 × 3), Type2 (4 × 4 × 3), Type3 (3 × 3 × 3), Type4 (2 × 2 × 1), Type5 (2 × 1 × 1),
and Type6 (1 × 1 × 1). In terms of the outdoor space, the sampling speed of the viewpoint
space division tends to stabilize as the grid size decreases. Conversely, for Building 1,
there is a sharp increase in sampling time for the viewpoint space division as the grid size
decreases. Building 2 and Building 3 exhibit similar simple internal structures, resulting in
low processing times for both data preorganization and viewpoint space division sampling.

During the process of VESI creation, a smaller Hmax value leads to the reconstruction
of smaller and more balanced triangular surfaces, resulting in the formation of more dis-
cernible objects. Decreasing voxel size increases the number of VS voxels and consequently
affects the extraction of visible sets. With each increment of one in voxel count, there is a
corresponding increase by six in PVS calculations. Additionally, for indoor spaces with
dense objects, voxel size significantly impacts efficiency due to the large number of visible
objects involved in each PVS calculation. To achieve an optimal balance between efficiency
and computational load, it is crucial to select threshold settings based on current test results,
as outlined in Section 3.3.1.
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4.3. The Visual Effects Analysis of VESI

We chose an “outdoor-indoor-outdoor” roaming path to test the implementation effect
of VESI and compared the effect of using only the R-tree spatial index and PVS. Our main
goal is to judge the fluency and stability of the visualization, which is estimated by the
variation in the frame rate. All tests are executed after the preprocessed file is loaded.

4.3.1. Analysis of Roaming Fluency and Visualization Effects

On the roaming path, we displayed 20 relatively distinctive visual locations, and based on
them, a statistical analysis was made in the follow-up. Figure 13 shows the scene browsing process
along the entire roaming path. Among them, Figure 13a shows the VESI-based test, Figure 13b
shows the spatial index-based test, and Figure 13c shows the PVS-based test. The starting point
is situated adjacent to Building 2, encompassing an outdoor setting that primarily includes the
building shell, the site, and surrounding trees (mainly pic. 1 to 3). Subsequently, access to the
interior of Building 1 is attained through the indoor–outdoor transitional area (mainly pic. 4 to
7) of Building 1. Upon entry, an office corridor featuring a guest reception is traversed before
reaching the hall (mainly pic. 8 to 14) within the main entrance vicinity. Finally, proceed through
the primary entrance of Building 1 is traversed before re-enter the outdoor scene and observing
Building 1 within its exterior context (mainly pic. 15 to 20).

Figure 13. Cont.
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The three methods enable complete scene browsing from a free-roaming perspective.
Among them, VESI and PVS exhibit higher fluency without noticeable stalling phenomena.
However, in the spatial index-based roaming process, there are varying degrees of delays
when transitioning between indoor and outdoor scenes. Furthermore, Figure 13b demon-
strates that distant trees are not accurately calculated or loaded when directly visualized
using the spatial index method at roaming points 1, 2, and 3. Similar issues occur with
objects such as plants and tables/chairs at points 10 and 11. This is not observed with VESI
and PVS.

According to the definition of Formula (3), the actual calculated PVSs only provide
an approximate estimation of the complete visible set calculation, which may result in
potential omissions within the computed outcomes. However, during this experiment, the
omissions of visible objects were not significant due to several factors: (1) the original data
was reorganized based on “material + geometry”, which could lead to spatially separated
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parts being considered as a single object (e.g., chairs with identical materials); (2) different
VS voxel partitions were used for various spatial regions; and (3) the outer envelope of the
building was merged into one.

4.3.2. Visual Stability Analysis under Regional Changes

We conducted a comprehensive statistical analysis on the fluctuations in frame rate
during the roaming process, while also contributing to the visual stability analysis.

As shown in Figure 14a, the VESI-based test yielded an average frame rate of 95.17,
with the render frame rate at almost all positions along the path fluctuating around
95 frames, within a range of 10% (85–105 frames). The lowest frame rate observed was
86.37, occurring when transitioning from outdoor to indoor environments. Throughout
the entire roaming process, the visualization effect remained consistently smooth due to its
stable frame rate.
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As shown in Figure 14b, the spatial index-based test yielded an average frame rate of
49.76, exhibiting two significant instances of frame rate jitter along the trajectory. Firstly,
upon transitioning from outdoors to indoors (position 4 to position 8), the frame rate
dropped from 70 to 30 and returned after that. Secondly, during the switch from an indoor
scene to an outdoor scene (position 13 to position 17), the frame rate decreased from
75 to a minimum of 15.37. These fluctuations in frame rates within the indoor/outdoor
transition area can be attributed to the sudden emergence of numerous new visible objects
in this region, which necessitates substantial processing time for culling by the graphics
rendering pipeline. In addition, the frame rate statistics are consistent with the actual
roaming experience.

In the PVS-based tests (Figure 14c), the average frame rate was 68.53, indicating
relatively smooth visualizations. However, the overall frame rate was lower compared
with VESI-based roaming due to the time-consuming process of retrieving PVS collections.
Notably, a significant frame rate jitter occurred along the roaming path during testing;
specifically, when transitioning from outside into a room (position 4 to position 6), the frame
rate dropped from 70 to its lowest point at 52.05 frames per second (fps). This decrease can
be attributed to both slow retrieval speed and sudden changes in visible objects.

5. Conclusions

A realistic 3D visualization platform is gradually becoming an essential capability for
smart city management, enabling cross-industry technology integration and collaborative
contributions to its strength. With the two-way integration and driving force of 3DGIS
technology and game engines (like Unreal Engine), methods to meet users’ demands for
browsing three-dimensional spatial scenes are continuously improving, as reflected in
enhanced visual fidelity, smoother roaming processes, and further visual stability. Data pre-
processing offers an effective approach to address these challenges. However, most previous
methods have focused on solving the issues of large data loads and stable visualization ef-
fects from a single perspective, resulting in redundant data generation. To comprehensively
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tackle these problems, this paper proposes the VESI approach, which builds a spatial index
based on PVS collection. This method ensures a stable, reliable, and authentic 3D roaming
experience without compromising the original data’s visual effect.

The method proposed in this paper, however, still has significant potential for expan-
sion. This is evident in the current testing scenario, which solely encompasses a confluence
of multiple edifices and situations, akin to a miniature digital park. Nevertheless, further
exploration is required to achieve stable visualization at the city level. Such endeavors
may encounter challenges related to VESI scene stitching and higher-level data schedul-
ing. So, the method of combining multiple sub-scenes into a large scene, including the
re-computation of the PVS for adjacent spaces and the reorganization of the spatial index
should be developed.

Furthermore, the current VESI solely captures physical components, disregarding
real-time or near-real-time rendering elements in its calculation. However, it is crucial
to investigate factors such as illumination (light, daylight, reflected light, and so on) that
significantly impact human visual perception within the digital twin scene for future
advancements in VESI. In terms of long-term development, the application exploration
of VESI will also constitute a crucial undertaking. In particular, disaster visualization for
smart city management is important as it can help realize an evacuation decision in the
case of fire by integrating dynamic elements (pedestrians, cars, etc.) into an existing scene.
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