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Abstract: With the sustainable and coordinated development of cities, the formulation of urban street
policies requires multiangle analysis. In regard to the existing street research, a large number of
studies have focused on specific landscapes or accessibility of streets, and there is a lack of research
on the multiple functions of streets. Recent advances in sensor technology and digitization have
produced a wealth of data and methods. Thus, we may comprehensively understand streets in a less
labor-intensive way, not just single street functions. This paper defines an index system of the multiple
functions of urban streets and proposes a framework for multifunctional street measurement. Via the
application of deep learning to Baidu Street View (BSV) imagery, we generate three functions, namely,
landscape, traffic, and economic functions. The results indicate that street facilities and features are
suitably identified. According to the multifunctional perspective, this paper further classifies urban
streets into multifunctional categories and provides targeted policy recommendations for urban street
planning. There exist correlations among the various street functions, and the correlation between the
street landscape and economic functions is highly significant. This framework can be widely applied
in other countries and cities to better understand street differences in various cities.

Keywords: street multifunction; deep learning; spatial syntactic algorithms; tradeoff analysis; GIS

1. Introduction

As a microscale component of human settlements and basic unit of the pedestrian
environment, streets yield an important impact on establishing a pedestrian city [1]. There-
fore, streets have been widely studied by scholars in China and abroad. A good street
environment may alleviate urban traffic pressure, maintain the ecological environment,
stimulate street vitality, and effectively improve the frequency of resident sports activi-
ties [2,3]. However, as a kind of urban land, streets also exhibit a variety of functions. Only
examining the walkability of streets [4] or the urban street environment is insufficient.

The concept of multifunctional land originates from the Sustainability Impact Assess-
ment: Tools for Environmental, Social, and Economic Effects of Multifunctional Land Use in
European Regions (SENSOR) (part of the sixth research framework program), which mainly
refers to the environmental, social, and economic effects of land use. The original concept
of multiple functions stems from early agricultural and ecosystem research [5–7]. With the
development of the sustainable theory in the 1990s, this concept gradually expanded from
the agricultural field to include multiple sustainable land use functions [8,9], which has
enriched the scope of multifunctional research [10,11].

With the development of urbanization, 70% of the global population is expected to
live in urban areas by 2050. Faced with a continuously increasing urban land demand,
the sustainable use of limited urban land is becoming increasingly important [12], and
spatial optimization has increasingly been included in government agendas. The functional
diversity of the urban internal space should also be considered by the government and
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researchers [13,14]. Based on the multiple functions of land use, this paper proposes various
functions of the urban internal public space, namely, landscape, traffic, and economic
functions. At present, research on multiple functions is mostly macroscopic [7,10]. The
research scale is large, data acquisition is challenging, and the accuracy is low. Therefore,
there is a lack of urban-scale research.

The landscape function of streets notably improves the urban environment and benefits
the sustainable development of cities [14,15], so this function has been widely considered.
The function of the street landscape is mainly determined by the factors that make people
feel safe and comfortable, such as green vegetation and the vastness of the sky. However,
there is still a lack of objective and accurate street landscape functional measurement
methods. In traditional street research, the methods of on-the-spot observations and
questionnaire surveys have usually been adopted, which consume considerable manpower
and material resources but also exhibit the problems of an approximate research scale and
low research precision [16]. The main reason is that people’s perception is subjective, and
the traditional way lacks the objective measurement of human perception such as vision.
Research based on traditional data is limited by bottlenecks, and the application of big data
to street research has become the general trend [17–19].

With the exponential growth of the global data volume, the era of big data has ar-
rived [20]. The advancement of electronic sensors has enabled small-scale urban street
research. In recent years, emerging panoramic image collections (such as Google Street
View (GSV) and Baidu Street View (BSV)) have provided new data sources for traditional
street research [21]. The research scope of street view pictures is wide and may cover whole
cities. The contained information also objectively reflects the visual perception of humans,
which is not influenced by the subjective consciousness [22,23]. However, it is difficult
to extract information from street view images, which is the main technical challenge in
current street research [24]. Automated recognition and processing of street view images
will become the development trend of future urban street research [25,26].

At present, the analysis models of street views mainly include instance and semantic
segmentation models based on deep learning. Instance segmentation effectively identifies
pedestrians, buildings, and other elements in street view images and calculates their number
to determine the overall conditions of the research area [27,28]; in semantic segmentation,
the number and ratio of pixels of each image element are quantified to measure the visual
perception of people [25,29]. Instance segmentation is accurate in the analysis of specific
objects such as buildings and pedestrians, while semantic segmentation summarizes the
integrity of streets.

In existing studies, streets have been analyzed via the measurement of street environ-
mental factors [30]. For example, many scholars have applied green vegetation pixels to
measure street greening [23,31–33], and greening results have been compared to remote
sensing image results [34,35]. Researchers have calculated the sky scale to measure the
street openness [15,22]. With the continuous improvement in technology, street view im-
ages may be adopted to analyze the characteristics of buildings [30,36]. Social sensing is
also a new research field of heightened interest [37–39], and it has been demonstrated that
the street environment affects the walking behavior and even the health of people [38,40].
These results verify that street view images are suitable for street research and may be
adopted to examine new urban problems [41–44].

The development of machine learning has resulted in the intelligent acquisition and
interpretation of street view images, which has attained a suitable accuracy in complex
urban environments. Many semantic pixel-width image segmentation methods based on
convolutional networks have recently emerged, such as You Only Look Once (YOLO),
ImageNet, SegNet, and DeepLab. For example, SegNet is a deep convolutional network,
which has been applied in objective image segmentation research. However, DeepLab
won the first prize in the 2017 Cityscapes competition. DeepLab processes low-resolution
features, similar to SegNet, which has been applied in other studies. DeepLab relies on fully
connected pairwise conditional random fields (CRFs) to capture edge details while fitting
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considering long-range dependencies. DeepLab [45] combines deep convolutional neural
networks (DCNNs) and probability map models (DenseCRFs) via the atrous algorithm [45]
to obtain more contextual information. The three main advantages of this method are
its speed, accuracy, and simplicity. Above all, DeepLab is a tool that is highly suitable
for the image analysis of urban streets. With the continuous development of technology,
the accuracy and speed of automated identification has been further improved, and the
accuracy (mean intersection over union or MIoU) of DeepLabv3+ has reached 82.66%. This
new approach allows for future research on urban agglomerations and large-scale analysis.

Street view image processing based on deep learning is a new method applicable to
urban research [17]. In this method, not only are specific street elements studied but also
various walking and driving behaviors [46–49] and related street safety aspects [29–50].
However, the current research has focused on specific street elements or single street
functions and their correlation [51], and a comprehensive understanding of streets remains
lacking. Streets not only involve static observation factors such as street infrastructure and
environmental conditions but also their appeal to the outside world and the traffic flows
among street networks [52,53], i.e., the economic influence and urban traffic capacity of
streets. Therefore, we need to fully utilize the advantages of the big data era [54,55], adopt
highly accessible open-source data to supplement existing research, and improve street
multifunctional research.

Urban streets comprise construction land that does not rely on the mainstream pro-
duction system or the ecological and economic functions of mature agricultural land. Three
key questions should be addressed to better understand the multiple functions of streets.
(1) At present, there is no universally accepted definition of a multifunctional street system.
How can a multifunctional system suitable for urban land be derived from existing multi-
functional research? (2) How can large-scale and multifactor urban street landscapes be
measured? (3) What are the tradeoffs among different streets?

In addition to landscape function and economic function, streets are a connecting
channel of various urban functional areas, and their traffic function cannot be ignored. One
of the major characteristics of traffic is the connection between streets to form a complete
street network. Considering only the street physical environment in street evaluation
research ignores the interaction between the street and street network. The traffic function
should not only consider the street itself but also consider the spatial structure of the
street and the role of the street in the street network [56]. Against the background of
the big data era, application of the above new techniques may provide new answers to
traditional problems. Relevant research has also revealed that street networks and road
connectivity exert a certain impact on the walking and riding behaviors of residents [46–49].
The advantage of the spatial syntactic model [57] is that the network space is abstracted
as a spatial connection graph with interconnected axes, and the interaction relationship
between topological connection characteristics and accessibility is revealed through spatial
statistical analysis. Application of the spatial syntactic model has gradually become one
of the main methods to analyze urban models [58]. This method partially supplements
the existing research. It examines the spatial structure and potential of the street network
while investigating the street space. Cardiff University developed spatial design network
analysis (SDNA) software [59], which achieves these functions well and partially improves
measures such as the two-phase betweenness (TPBt). A major feature of SDNA software
is its compatibility with ArcGIS, which provides the basis for further analysis of urban
planning. The specific methods and principles are described in the next section.

In this paper, we define a multifunctional index system of urban streets considering
their landscape, traffic, and economic functions. We adopt a deep learning method and
street view data to analyze the multiple functions of streets in Beijing. The combination
of open-source data, such as street view imagery, and big data analytics, such as deep
learning methods, yields a new research potential. This framework fills the gap in the
current multifunctional street research. The research results provide a new policy basis for
the sustainable and coordinated development of multifunctional streets.
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2. Materials and Methods
2.1. Study Area

Our research is carried out in the Fourth Ring Road District of Beijing (covering an
area of 302 km2). Figure 1 shows a road map of this area, and the street network is retrieved
from Open Street Map (OSM). Streets are scattered across the city, with 1214 main streets
and more than 5000 panoramic image sampling points. The research area is the central
area of Beijing, the political center of Beijing, the economic center of Beijing, and the most
important traffic artery of Beijing. In the process of urbanization, streets continue to develop
with the characteristics of surrounding areas and gradually divide into different types of
streets. The Fourth Ring Road District at the center of Beijing is a typical metropolitan
area, which is analogous to the core urban areas of other cities. The study of Beijing’s street
development is of reference significance to other cities.
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Figure 1. Study area and sampled streets.

The data in this paper mainly include the following: (1) BSV image data, point-of-
interest (POI) data, and road speed data pertaining to the center of Beijing, all obtained from
the Baidu developer interface (http://www.lbsyun.baidu.com, accessed on 1 September to
30 September, 2020); (2) street network data of the central area of Beijing, originating from
OSM (http://www.openstreetmap.org, accessed on 1 September 2020); and (3) other data
of the central area of Beijing.

2.2. Measurement of Multiple Street Functions

Traffic is an inherent attribute of urban streets, and the landscape is an objective feature
of urban street facilities. This paper chooses landscape, traffic, and economic functions to
measure the multiple functions of streets. Figure 2 shows a workflow of the analysis of
multiple street functions. We used the semantic segmentation model Deeplab to analyze
the factors of street vegetation, sky landscape, and sidewalk in street view image data to
measure the street landscape function. Traffic function is mainly measured by street traffic
safety function based on road speed and the street spatial priority function based on space
syntax. We measure the impact of different types of POIs on street economic function by
setting different attraction coefficients and distance attenuation models based on the actual
road distance of the OSM network.

http://www.lbsyun.baidu.com
http://www.openstreetmap.org
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BSV has been applied in related research in a manner similar to GSV. BSV collects
street information from the human perspective through a parameter setting model. Via the
collection of images along the four main directions at a given sampling point, we can obtain
a panoramic view containing 360-degree distortion-free image information. We collected
information on 1359 main streets and more than 5000 panoramic image sampling points.
To reflect the human perception of the street landscape, we applied an accurate model
to analyze the street landscape. As a semantic segmentation model, DeepLab contains a
training set consisting of 5000 street photos originating from 50 different cities. Its rich
training set and accuracy of up to 0.817 indicates that this model generally achieves a good
recognition effect. Each street image was semantically segmented with the adopted model,
and we determined the location and number of each type of pixel.

2.2.1. Landscape Function

We choose the street vegetation, sky view, and sidewalk factors to express the street
landscape function. The street green vegetation factor is mainly based on the proportion
of green plants in an image. In contrast to the visible green vegetation ratio, the street
vegetation ratio identifies trees, flowers, grasses, and other street vegetation categories,
such as nongreen plants important to people, as vegetation, which is not limited to visible
green vegetation. In related research, the geographical accessibility and spatial impact of
green spaces such as parks have been widely studied [60,61], and this method is further
expanded to include street green vegetation.

The sky view factor is an indicator measuring the degree of openness of a street. It
reflects the visual perception and psychological impact on street residents. The traditional
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measurement approach of the sky view factor is subjective, whereas a machine learning
algorithm measures every street according to objective criteria. Compared to the traditional
GPS signal method, the machine learning method attains a high processing speed and
accuracy and better simulates the real feelings of residents from a visual angle.

A suitable sidewalk configuration not only affects the psychological crowding effect
on residents but also ensures their safety. To date, research on street sidewalks is lacking.
The main reason is that sidewalks exhibit many characteristics. Compared to green vegeta-
tion and sky view conditions, sidewalks are more difficult to identify and simulate with
computers. However, the Deeplab model effectively identifies sidewalks and achieves
good recognition results.

We calculate the total number of pixels and the pixel ratio of each landscape category
and determine the factor score of each category. After standardization, we determine
the weight of the above three factors via the entropy weight method [62] and obtain the
functional value of the street landscape. The corresponding equation is as follows:

CF1 = ∑3
i=1 CPi ×Wi (1)

CP1 =
Pi

∑n
i Pi

(2)

where CF1 is the landscape function result, CPi is the pixel ratio of class i, Wi is the weight
of class i, Pi is the number of pixels of category i, and n is the total number of categories for
semantic segmentation.

2.2.2. Traffic Function

The traffic function in this study primarily includes street traffic safety based on the
road speed and street spatial priority according to the spatial syntax.

The application programming interface (API) of Baidu Map contains real-time speed
data of each street. World Health Organization (WHO) research shows that for pedestrians,
when the vehicle collision speed is not higher than 30 km/h, the survival rate is about 90%;
when the vehicle collision speed is higher than 45 km/h, the survival rate is less than 50%.
Therefore, this paper chooses 45 km/h as the speed threshold for road safety. The Baidu
Map API was called through Python to obtain the real-time observed speed data of each
street at five-minute intervals. We downloaded street driving speed data over half a month.
Based on the minimum threshold method, the basic street safety level was determined.
This was corrected with the BSV image recognition traffic safety correction tool, and the
equation is as follows:

S = 1−V × G× T (3)

V = ∑n
i=1

f (Si)

n
(4)

G(x) =
{

1, x > 0
0.8, x = 0

(5)

T(y) =
{

1, y > 0
0.8, y = 0

(6)

CF2 = S× C× B (7)

where S is the walking safety result, V is the overspeed time of a given road (higher than
45 km/h), Si is the average speed on a given road during period i, i is a different time
period, and n is the time period. The total number f (Si) indicates whether a given road
segment occurs under overspeed conditions during time period i, and G(x) is the road
correction coefficient indicating the presence of guardrails. When a given street contains
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guardrails, G(x) is set to 0.8, which reduces the overspeed time. Conversely, G(x) is set to 1.
T(y) is the traffic indicator correction factor for a given road. When a given street contains
a traffic indicator such as traffic lights, T(y) is set to 0.8. Otherwise, T(y) is set to 1. CF2
is the traffic function result, C is the closeness, B is the betweenness, and S is the walking
safety result.

Closeness and betweenness are the two main indicators of the spatial syntax model [57].
The network quantity penalized by the distance (NQPD) represents the closeness, usually
referred to as a gravity model considering the quantity and accessibility of the network
weight. In street research, NQPD reflects the connection difficulty of a street to the other
streets within the same network, and streets with a high proximity usually exhibit a high
topological accessibility and centrality. The SDNA software, which was invented by Cardiff
University, is a popular spatial syntactic model. The SDNA model is an improvement
and an optimization of the traditional spatial syntax model and is highly compatible
with ArcGIS.

NQPD(x) = ∑y∈Rx
p(y)

d(x, y)
(8)

where Rx denotes all the streets affected by street x, P(y) is the ratio of the length of street y
affected by street x to the total length of street y, and d(x, y) is the distance between streets
x and y.

The two-phase betweenness (TPBt) is a form of the betweenness indicator, but the
weight is distributed according to destination weights. This indicator more reasonably
measures the probability that a given street in the entire road network is passed by people
and traffic. Streets with a high traffic degree exhibit a high affinity for traffic flows.

TPBt(x) = ∑y∈N ∑z∈Ry OD(y, z, x)
W(z)P(z)

total weight(y)
(9)

OD(y, z, x) =


1, if x occurs on the first geodesic from y to z
1
2 , if x = y 6= z
1
2 , if x 6= y = z
1
3 , if x = y = z
0, otherwise

(10)

where N denotes all the polylines in the study area, W(z) is the weight of polyline z, P(z) is
the proportion of any polyline z within the radius, and total weight (y) denotes the total
weight within a certain radius from polyline y.

2.2.3. Economic Function

The economic function of streets mainly depends on the attraction of street facilities
to people. The different types of facilities along a street determine the street type and
economic development level. Therefore, we choose POI data to measure the street economic
function. We measure the impact of different types of POIs and distances on the street
economic function by setting varying attraction coefficients. This method adopts the
distance attenuation model based on the actual road network distance of the OSM road
network, which better reflects the real street conditions than the Euclidean distance. The
equation is as follows:

CF3 = ∑n
i=1 d(i) (11)

where CF3 is the economic function result, n is the number of POIs affecting the street
economic function, and d(i) is the attraction coefficient of POI i.

This method applies the piecewise distance attenuation model. As shown in Table 1
and Figure 3, the longer the walking distance is, the lower the attraction coefficient. The
influence degree of facilities within 400 m is the highest, namely, the attenuation coefficient
from 400 to 800 m is 0.9, the attenuation coefficient from 800 to 1200 m is 0.55, the attenuation
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coefficient from 1200 to 1600 m is 0.25, and the attenuation coefficient from 1600 to 2400 m
is 0.08. The influence of facilities beyond 2400 m is not considered.

Table 1. Attraction coefficient of the different POIs.

Type of Facility Facilities Attraction Coefficient

Education Kindergarten 0.50
Primary school 0.50
Middle school 0.50

Health care General hospital 0.75
Specialized hospital 0.25
Community hospital 0.25

Pharmacy 0.25
Catering Small restaurant 0.75 0.50 0.25

Large restaurant 0.75 0.50 0.25
Fast food chain 0.50

Bakery 0.50
Teahouse 0.25

Café 0.25
Shops Supermarket 1.00

Convenience store 1.00
Shopping mall 0.75

Bookstore 0.25
News kiosk 0.25

Exclusive shop 0.50
Sports and entertainment Culture and art 0.50

Sports venue 0.75
Entertainment 0.50

Park 1.00
Finance Bank 0.20

ATM 0.20
Station Bus station 0.75

Subway station 1
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2.2.4. Tradeoff Measurement

The multiple functions of a street affect each other, and the traditional multifactor
comprehensive evaluation approach does not directly determine the coupling and coor-
dination degrees of each function. However, the coupling and coordination degrees of
ecological aspects reflect the coordination degree between land functions. Therefore, this
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paper relies on the coupling and coordination degrees of ecological aspects to derive the
multifunctional coupling and coordinating degrees of streets. The equation is as follows:

T =
∑3

i CFi

3
(12)

C =

√
2−

3×
[
CF2

1 + CF2
2 + CF2

3
]

[CF1 + CF2 + CF3]
2 (13)

D = C× T (14)

where T is the multifunctional comprehensive index; CF1, CF2, and CF3 are the landscape,
traffic, and economic function indexes, respectively; C is the multifunctional coupling
degree; and D is the multifunctional coordination degree.

The three functions of the landscape, traffic, and economy and the calculated coordina-
tion degree are then divided into three levels, namely, high, medium, and low, to determine
the multifunctional street types. The specific classification method is summarized in Table 2.

Table 2. Classification rules of multifunctional streets.

Multifunctional Type
Functions

Coordination Degree
Landscape Traffic Economic

I Multifunction
coordination type

I-1 High High High High High
I-2 Medium Medium Medium Medium Medium

I-3 Low Low Low Low Low

II Single-function
leading type

II-1 Landscape ≥Medium ≤Medium ≤Medium Low
II-2 Traffic ≤Medium ≥Medium ≤Medium Low

II-3 Economic ≤Medium ≤Medium ≥Medium Low

III Dual-function
coordination type

III-1 Landscape–Traffic ≥Medium ≥Medium ≤Medium Medium
III-2 Landscape–Economic ≥Medium ≤Medium ≥Medium Medium

III-3 Traffic–Economic ≤Medium ≥Medium ≥Medium Medium

3. Results

Figure 4 shows the original images and the results of semantic segmentation of BSV
images via machine learning. The semantic segmentation results are good, and elements
such as sidewalks, roadways, buildings, motor vehicles, green plants, sky, and pedestri-
ans are accurately identified. Compared to traditional machine learning single-objective
recognition, our method identifies multiple elements simultaneously, performs multidi-
mensional analysis, and distinguishes ground objects overlapping each other via semantic
segmentation. This method achieves a good recognition effect.

3.1. Multifunctional Spatial Differentiation of Streets
3.1.1. Street Landscape Function

Figure 5 shows the street landscape function quality of the study area and the spatial
distribution results of each factor. In regard to green vegetation, the overall research area
attains a high level, and streets with poor vegetation coverage are mainly distributed
outside the Third Ring Road. The proportion of vegetation along northern streets is higher
than those along southern streets.
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From the perspective of the sky view factor, the overall view of the streets in central
Beijing is relatively broad. The sky view conditions in Dongcheng District, Xicheng District,
and Fengtai District are better than those in the other areas. In general, the sky view
conditions of eastern streets are slightly higher than those of western streets. From the ring
road toward the center, the sky view factor exhibits a high-low-high spatial distribution.

Regarding sidewalks, the proportion of sidewalks in each region is relatively even,
and there are no obvious high-value areas. Relatively small sidewalk areas are mostly
located near the ring roads. Most of the ring roads exhibit a high transportation capacity.
The angle of street view images may affect the sidewalk measurement, which may also be
one of the reasons for the balanced sidewalk proportion. However, more than 90% of the
streets contain obvious sidewalks, which ensure street comfort and safety.

Green vegetation and open skies visually enhance street comfort, while sidewalks are
psychologically reassuring. As shown in Figure 5d, the quality of the street environment
is comprehensively reflected by these three aspects. The street landscape function in the
downtown area of Beijing reveals obvious attenuation characteristics. The street landscape
function decreases with the distance from the central city. In space, there exists a certain
geographical differentiation, and the street comfort in the northeast and southwest regions
is high. In contrast, the street comfort in the southeast and northwest regions is low. The
central urban streets within the second ring road are better than those outside it.

3.1.2. Street Traffic Function

Figure 6a shows the street traffic safety of the study area. The walking safety level
in the study area is excellent due to the improvement in transportation-related facilities.
High-risk regions mainly occur in the peripheral area between the Third and Fourth Ring
Roads and along the main streets across the ring road area. On the one hand, these results
reflect the safety level of Beijing government traffic. On the other hand, they also reflect
the large-scale traffic congestion conditions in Beijing. All streets contain traffic lights, and
more than 95% of the roads contain guardrails to protect sidewalks, thus demonstrating
the safety of Beijing as an international metropolis.
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Figure 7 shows the closeness and betweenness of the study area. Based on the ex-
tended spatial syntactic SDNA model, the results reveal the spatial accessibility and spatial
attraction of streets. The figure also shows the spatial difference between streets to a certain
extent. In general, the traffic conditions in the central area of Beijing are highly convenient,
and the traffic conditions in Xicheng District are the best, followed by Dongcheng District.
Along the different directions, the traffic conditions and accessibility in Xicheng District in
the northwest region are good, while in the southwest region, even the central area does
not exhibit suitable accessibility.

The betweenness indicates the probability that people and traffic will pass along
a given street within the network. To a certain extent, the betweenness measures the
attractiveness of a space. High-penetration areas are largely located in the central and
northern regions. A street connecting inner and outer streets is also attractive. The spatial
attractiveness along the three directions of north, east, and west is high. In contrast, the
attractiveness of the southern region is less obvious.
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Figure 6b shows the integrated street traffic function of the study area. The traffic
function of Beijing exhibits an obvious centrality, namely, the traffic function of the central
city area is much higher than that of city areas farther away. The traffic demand of Xicheng
District is the highest, followed by Dongcheng District, and the traffic capacity of the Third
Ring Road area is much higher than that of the other areas.

3.1.3. Street Economic Function

Figure 8 shows the ecological functions of the study area. The street economic quality
of the Fourth Ring Road District of Beijing is relatively high, and the street economic quality
of the area within the Third Ring Road is higher than that of the area outside it. The streets
in the northwest area of Beijing are more attractive than those in the other areas, which
is consistent with the numerous commercial buildings in the Xicheng District of Beijing.
In contrast to the general rule, the economic function of Dongcheng District in the central
urban area exhibits the opposite, i.e., a low value, while the landscape function of this part
of the district attains a high value, which will be further examined in Section 4.1. Xicheng
District, Chaoyang District, and Haidian District possess higher economic functions than
the other administrative regions. As the geographical differentiation in the street economic
function closely adheres to the boundaries of the administrative regions, we infer that
the strength of urban economic functions is closely related to the different administrative
regions. In particular, different government development decisions affect the economic
development of streets.
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3.2. Tradeoffs between the Multiple Street Functions

Figure 9 shows the coupling degree and coordination degree of the study area. The
multifunctional coupling degree of the streets in the study area is high in the west and
low in the east, and the coupling degree in the area outside the Third Ring Road is lower
than that in the central city. However, the absolute value of the overall coupling degree is
high, namely, most of the coupling degrees are higher than 0.8. The coupling degree in the
central urban area is generally higher than 0.9, which reflects the high correlation of the
street functions in Beijing.
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Figure 9. Coupling degree (a) and coordination degree (b) of the multiple functions of streets.

In space, the coordination degree decreases from the central area to the periphery,
and the difference among the loops is notable. These results exhibit a high degree of
consistency with the spatial characteristics of the street traffic function. It is found that both
the level and tradeoff relationship of the multiple street functions exhibit an obvious spatial
heterogeneity. Based on the types listed in Table 3, nine multifunctional street categories of
three types are defined, and the spatial distribution is shown in Figure 10.

Table 3. Zoning indicators of the multiple functions of streets.

Multifunctional Type
Functions

Coordination Degree AreaLandscape Traffic Economic

I Multifunction
coordination type

I-1 High 0.571~1 0.709~1 0.758~1 0.844–0.939 4.52%
I-2 Medium 0.480~0.571 0.527~0.709 0.621~0.758 0.769–0.826 2.09%

I-3 Low 0~0.480 0~0.527 0~0.621 0.591–0.726 2.86%
II Single-function

leading type

II-1 Landscape 0.480~1 0~0.709 0~0.758 0.496–0.891 24.02%
II-2 Traffic 0~0.571 0.527~1 0~0.758 0.662–0.860 20.31%

II-3 Economic 0~0.571 0~0.709 0.621~1 0.461–0.851 15.75%

III Dual-function
coordination type

III-1 Landscape–Traffic 0.480~1 0.527~1 0~0.758 0.729–0.909 5.51%
III-2 Landscape–Economic 0.480~1 0~0.709 0.621~1 0.706–0.897 11.75%

III-3 Traffic–Economic 0~0.571 0.527~1 0.621~1 0.739–0.894 13.19%
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4. Discussion

Based on the traditional research method of the multiple functions of agricultural land,
this study defined a multifunction system of urban streets, and Beijing was selected as an
example to measure the spatial distribution of the landscape, traffic, and economic functions,
while the tradeoffs among the multiple functions were determined. First, this study
proposed a multifunctional measurement framework based on street view data and deep
learning. Compared to traditional single-objective street research, the method proposed
in this paper adopted a multifunctional perspective, considered multiple objectives, and
attained a high efficiency, so it provides an important basis to better understand the
spatial characteristics of city streets. Second, it divided the multiple function types of each
street, which is helpful for government departments to clarify their development goals
and formulate targeted policy recommendations. Third, in this study, the relationship
among the landscape, traffic, and economic functions was further examined. The results
showed that there existed a significant negative correlation between the landscape and
economic function.

4.1. Multifunctional Perspective

Previous studies have focused more on a single street function, such as traffic accessi-
bility and street greening, and systematic research on multiple street functions is lacking.
As one of the basic units of the lives of urban residents, streets possess diversified functions.
The requirements of sustainable and coordinated development indicate that street policies
should adopt a multifunctional perspective. Based on the three functions of the landscape,
traffic, and economy, this paper constructs a multifunction measurement system of streets
and provides a new perspective for the study of multiple street functions.

The framework relies on the deep learning method to analyze street view images
for the identification of sky conditions, vegetation, sidewalks, and other features. The
proposed method is a less labor-intensive but accurate method, and it effectively assesses
the differences between streets. We find that the landscape function in the northeastern
and southwestern regions is higher than that in the other regions. The geographical
agglomeration effect of the landscape function corresponds to cultural tourism facilities
such as parks and museums in Beijing. These areas with strong landscape functions often
exhibit poor economic functions, such as the Palace Museum and Temple of Heaven Park
in Dongcheng District. The multifunctional perspective allows us to consider the spatial
characteristics of various functions when explaining the results of a certain street function.
In general, the landscape and economic functions in Beijing exhibit a gradual decline from
the central urban area toward the urban areas farther away, and the decline in the traffic
function is notable, as shown in Figure 4a–c. This indicates that Beijing is still very much
a single-center city, and a traffic demand that is too high could lead to traffic congestion.
Notably, this is a common problem in every large city. The geographical characteristics of
the three functions are different, indicating that a spatial differentiation among the street
landscape, traffic, and economic functions occurs. Many commercial and government
office areas occur in the central area of Beijing, and the high building density and height
constrain the street landscape. The numerous cultural and leisure facilities, such as parks
and museums, in Dongcheng District also limit the commercial economy of its streets.

4.2. Policy Suggestions

Due to the different directions of public infrastructure and policy planning, the mul-
tiple function types of the streets in the study area reveal an obvious spatial heterogene-
ity. In the Fourth Ring Road District of Beijing, the proportion of single-function lead-
ing areas is the highest, accounting for more than 60% of the total area, of which the
landscape function dominates, followed by the traffic and economic functions. The pro-
portion of the dual-function coordination area is lower than that of the single-function
leading area, of which the traffic–economic zone is the most frequently occurring, fol-
lowed by the landscape–economic and landscape–traffic zones. Based on the functions
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to be developed in the dual-function coordination area, the following is determined:
landscape function > traffic function > economic function. This is the reverse of the order
of functions to be developed in the single-function leading area. The proportions of high-,
medium-, and low-coordination areas are the lowest, all less than 5%.

In a large city such as Beijing with so many single-function leading areas, we cannot
simply consider enhancing the coordination between streets. Because more of the same
types of facilities could improve the agglomeration effect, the economic demand of the
business district could increase, while the landscape demand could decrease. Policy
guidance may also alter the direction of regional development, and cultural protection
areas do not require a commercial atmosphere that is highly notable.

Hence, we adopt the administrative district as a unit to analyze the street types and
future development needs, as listed in Table 4. We find that the central city (Dongcheng
District and Xicheng District) attains the highest multifunctional coordination, followed by
Chaoyang District. The characteristics of the central city are also different. In Xicheng Dis-
trict, the economic foundation is good, but the landscape function should be strengthened.
In contrast, in Dongcheng District, the landscape environment is good, but the economic
function should be strengthened. Fengtai District contains the best landscape environment,
and Chaoyang District exhibits a high economic function, while Haidian District is bal-
anced. In terms of transportation, the central urban area is much better than the other areas.
Based on the above results, this study proposes the following policy recommendations for
each administrative region.

Table 4. Street types and future development needs of the administrative districts.

Distinct
Multifunction
Coordination

Type

Single-
Function

Leading Type

Dual-Function
Coordination

Type

Landscape
Functions to

Be Developed

Traffic
Functions to

Be Developed

Economic
Functions to

Be Developed

Dongcheng 9.86% 52.61% 37.52% 48.36% 66.34% 29.79%
Xicheng 9.77% 48.51% 41.72% 61.42% 48.68% 28.64%
Haidian 7.08% 67.16% 25.77% 50.07% 50.87% 67.16%

Chaoyang 14.55% 61.49% 23.97% 56.53% 48.26% 68.93%
Fengtai 5.71% 67.62% 26.67% 35.48% 62.86% 64.29%

Dongcheng District is rich in historical and cultural buildings and parks, but there
is a slight shortage in its economic development. Dongcheng District should continue to
maintain its historical and cultural buildings and parks, and it should also pay attention
to the maintenance of its ecological facilities. On this basis, we should clarify our own
regional advantages and appropriately promote regional economic development.

The traffic advantages of Xicheng District are the most obvious, but its landscape con-
struction is slightly lacking. Xicheng District should consolidate its economic advantages,
improve the greening degree of surrounding streets and enhance the landscape quality of
its streets.

Chaoyang District has a deep foundation of multifunctional construction and should
continue to maintain the coordinated development of its multiple functions in the fu-
ture. We should strengthen internal ecological construction and external transportation
development.

Fengtai District contains the most advantages in regard to landscape function develop-
ment, with the highest degree of street openness. It should focus on economic construction,
increase economic investment, and improve traffic accessibility and regional multifunc-
tional coordination while developing its own economic strength.

The development of Haidian District is relatively balanced. Haidian District is eco-
nomically close to Xicheng District, and its street greening conditions are good. In the
future, we should maintain the coordinated development of multifunctional streets, pay
attention to the openness of streets, and improve the urban skyline.
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4.3. Correlation of the Multiple Functions

By comparing the landscape and economic functions of streets, we find that the
local economic function is often weak, while the landscape function is strong, and vice
versa. This also leads to the problem of harmonious coexistence between human economic
development and nature.

The three functions of streets were analyzed by Pearson correlation analysis. The
Pearson correlation coefficient varies between 1 and −1. The correlation coefficient being
closer to 1 or −1 means that there is a stronger positive or negative association between
the two functions. As the correlation coefficient approaches 0, the association between the
two variables becomes weaker. Another important index of Pearson correlation analysis is
significance. It expresses whether the Pearson correlation coefficient between variables is
significant. Significance and Pearson’s correlation coefficient are different. The correlation
coefficient r indicates the strength of the relationship between the two, while the significance
indicates whether the relationship between the two is credible, that is to say, they do have
correlation. When the significance p value is below 0.01, it means the correlation coefficient
between the two variables is extremely significant.

Table 5 indicates that all coefficients are significant at the 0.01 level (two-tailed). Cor-
relations occur among the landscape, traffic, and economic functions. In particular, there
exists a strong negative correlation between the landscape and economic functions. This
also indicates that the urban landscape is affected to a certain extent. There are similar-
ities between the past and future development directions of many cities in China. As a
result, cities are becoming increasingly similar, thus losing the characteristics of distinct
architectural styles.

Table 5. Correlation between the multiple functions of streets.

Landscape Function Traffic Function Economic Function

Landscape function Pearson’s Correlation
Coefficient 1 0.47 * −0.99 **

Significance
(two-tailed) 0.000 0.000 0.000

N 5436 5436 5436

Traffic function Pearson’s Correlation
Coefficient 0.47 * 1 0.164 **

Significance
(two-tailed) 0.000 0.000 0.000

N 5436 5436 5436

Economic function Pearson’s Correlation
Coefficient −0.99 ** 0.164 ** 1

Significance
(two-tailed) 0.000 0.000 0.000

N 5436 5436 5436
Note: * and ** respectively indicate p < 0.05 and p < 0.01.

The functions of the street landscapes in our study mainly include the degrees of sky
openness, green coverage, and walking safety. These three aspects also greatly affect the
happiness index of residents in urban life. In world-class cities with highly developed
economies, people under pressure due to urban life often need streets with rich functions
to meet their leisure expectations.

In addition, there occurs a significant positive correlation between the traffic function
and the other functions, although it is not as strong as that between the landscape and
economic functions. This also verifies that convenient transportation conditions facilitate
the maintenance of streets, which ensures their economic vitality.

The three functions of streets are related to each other. They are all indispensable,
but their coordination remains a difficult problem to resolve. For the government, the
development of a city should also consider other street functions. Therefore, it is very
important to study streets from the perspective of their multiple functions.
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5. Conclusions

This paper is the first to define an index system of the multiple functions of urban
streets, and a framework for multifunctional street measurement based on the deep learning
method is proposed. From the perspective of the multiple functions, this paper measures
the landscape, traffic, and economic functions of streets and examines the spatial differences
between these three functions. The results indicate that there exists a spatial mismatch
between the three functions. The street function of the central area of Beijing is higher
than that of the surrounding suburban areas. Correlation analysis reveals that a significant
negative correlation occurs between the landscape and economic functions, that is, when
the landscape function of the street in the study area is strong, the economic function of
the street is often weak, and vice versa. The openness and comfort of streets often cannot
coexist with the prosperity of streets, which also indicates that the formulation of street
development policies should consider multiple objectives. This paper further analyzes
the multiple types of street functions and provides a basis for government departments to
formulate policies. According to the street multifunction analysis results, multi-objective
policy recommendations are proposed.

The application of multisource big geo-data to observe the urban space has become the
main trend in urban planning research. The advantage of open-source data is that the data
are easy to obtain and can be applied to other cities. Future research will further improve
the multifunctional street evaluation system and will fully utilize the advantages of open-
source data to expand the research area and examine the multifunctional differences and
influencing factors of streets in different cities.
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