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Abstract: Augmented reality (AR) technology enables paper maps to dynamically express three-
dimensional geographic information, realizing the fusion of virtual and real information. However,
in the current mainstream AR development software, the virtual information usually consists of
prefabricated components (prefabs), and the content creation for AR maps heavily relies on manual
prefabrication. It leads to repetitive and error-prone prefabrication work, which restricts the design
of the dynamic, interactive functions of AR maps. To solve this problem, this paper explored the
possibility of automatically generating AR map prefabs using object detection models to establish a
data conversion interface from paper maps to AR maps. First, we compared and analyzed various
object detection models and selected YOLOv8x to recognize map point symbols. Then, we proposed
a method to automatically generate AR map prefabs based on the predicted bounding boxes of the
object detection model, which could generate prefabs with corresponding categories and positional
information. Finally, we developed an AR map prototype system based on Android mobile devices.
We designed an interaction method for information queries in the system to verify the effectiveness
of the method proposed in this paper. The validation results indicate that our method can be
practically applied to the AR map prefabrication process and can quickly generate AR map prefabs
with high information accuracy. It alleviated the repetitive workload established through the manual
prefabrication method and had specific feasibility and practicality. Moreover, it could provide solid
data support for developing dynamic interactive functions of AR maps.

Keywords: AR map; object detection model; prefabs; point symbols; data conversion interface;
AR development software

1. Introduction

AR, a technology dedicated to merging the virtual and real worlds, has significant
advantages in map representation and environmental integration. Augmented paper
maps break the static visual representation of traditional maps and serve as an exten-
sion of traditional cartography and map visualization. AR can provide more immersive
human–computer interaction and enhance the multidimensional dynamic perception of
geographic information and understanding of the real world [1]. Therefore, an increasing
number of cartographers are becoming involved in the research combining maps with
AR [2–5], leading to the emergence of AR maps [6].

This paper takes paper maps as the research object and introduces AR technology
to explore a new way of expressing geographic information data in order to expand its
information load and enhance its practicality. Compared with traditional electronic maps,
AR maps bring new vitality and possibilities to many ancient maps without digital forms,
instead of monotonously assimilating them into electronic map forms. Typically, AR maps
comprise real map environments and relevant virtual information [5]. Virtual information,
often prefabricated information, is predesigned by humans and manifests explicitly as a
series of prefabs within existing AR development software. These prefabs can range from
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simple visual markers to complex interactive logic and are primarily used to create virtual
objects rapidly and consistently within the AR environment. Existing research on AR maps
mainly employs computer-vision-based methods for the global registration of prefabricated
information and paper maps, thereby achieving high-quality fusion between the virtual and
real elements [7–11], as shown in Figure 1. Implementation approaches mainly include 3D
registration techniques based on natural features, marker-based 3D registration techniques,
and hybrid tracking and registration techniques [12–14]. Ann Morrison et al. [15] developed
the first mobile AR map system, Maplens, which utilized natural features of maps in
conjunction with smartphones. Xu et al. [9] proposed an adaptive approach using a
map symbol library to process symbol information. By combining the natural features
of paper maps with artificially placed markers distributed in the corners, they achieved
the local and global augmentation of terrain information. The Yousuya laboratory at the
University of Southern California significantly improved the accuracy of AR systems by
combining computer vision methods with inertial sensors [16]. These studies have made
significant explorations and analyses in integrating AR technology with maps. However,
these approaches often involve experimental and independent development solutions that
focus on achieving the fusion of virtual and real elements at the algorithm level. As a result,
they suffer from imbalanced performance indicators, difficulties in cross-platform usage,
and long development cycles. Moreover, existing AR maps use computer-vision-based
methods to superimpose prefabricated information as layers on paper maps. This leads to
a lack of individual characteristics of each prefab and increases the difficulty in designing
dynamic interactive functionality in AR maps.
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implemented using natural features.

There are many commercial-grade AR SDKs (such as Vuforia [17], EasyAR [18], and
ARCore [19]) and AR development software (such as Unity3D [20] and UE4 [21]) available
for rapidly building high-performance AR systems. These AR SDKs encapsulate various 3D
registration and tracking algorithms for different scenarios and optimize them effectively.
Developers only need to predesign AR maps in AR development software. The system will
automatically invoke 3D registration and tracking algorithms and adopt cross-platform
technology to enable developers to deploy the AR system on multiple devices. Additionally,
as these AR development software provide comprehensive data management models and
powerful development toolkits, they greatly facilitate the design and development of
dynamic interactive functions of AR systems. Many scholars have used such software to
develop AR systems applicable to their research scenarios [22–24]. However, mainstream
AR development software lack a data conversion interface between existing geographic
information data and virtual information data, which hinders the full utilization of existing
geographic information data. Additionally, when designing AR maps using such software,
the predominant approach is manual prefabrication, which mainly involves manual image
recognition. It leads to repetitive and tedious prefabrication work, resulting in errors in the
categorization and positioning of prefabs.
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The emergence of object detection methods provides a new approach to replace man-
ual image recognition. With the development of object detection methods from traditional
computer-vision-based approaches [25–29] to deep learning-based object detection mod-
els [30–35], object detection methods have attracted increasing attention from researchers
in the field of image recognition due to their high accuracy and fast recognition speed.
Song et al. [36] proposed an improved method for map point symbol recognition based
on improved generalized Hough transform and non-line AR mapping, which achieved
high accuracy in symbol category recognition and positioning. Huang et al. [37] used an
improved YOLOv4 object detection model to recognize point symbols in scanned topo-
graphic maps, which has higher accuracy and efficiency. Furthermore, in recent years, a
new wave of outstanding deep learning models has emerged in the field of object detection.
These include end-to-end object detection models such as DINO [38], based on the DETR
architecture; DiffusionDet [39], which pioneers the application of diffusion models in object
detection frameworks; EfficientDet [40], a scalable detection architecture designed under
practical computational resource constraints with higher precision and efficiency; and the
latest version of the YOLO series, YOLOv8 [41], among others. While these models have
distinct architectural designs, they all demonstrate extremely high levels of accuracy and
have achieved prominent rankings within the field. In this paper, we apply the object
detection model to map point symbol recognition, which can replace manual map reading,
reduce errors, and improve work efficiency when prefabricating AR maps.

In order to reduce the labor-intensive work and inaccuracies in information accuracy
associated with manually prefabricating AR maps in existing AR development software,
we used Amap [42] as the data source (Amap, also known as Gaode Maps, is a mapping
product designed by Gaode Software Co., Ltd. (Beijing, China) to provide high-quality
geographic information data and services, and is popular among users for its accurate,
real-time data updates and rich features), and taking the map point symbols as an ex-
ample, designed a method for automatically generating prefabs for AR maps based on
the predicted bounding boxes of the object detection model. First, we compared and
analyzed various object detection models for recognizing map point symbols. Then, we
selected the best-performing object detection model to automatically generate prefabs for
AR maps. Finally, we developed an AR map information query prototype system based
on the generated prefabs. This study aimed to generate prefabs for point symbols on AR
maps automatically, optimize the prefabrication process, and provide higher-quality data
support for AR maps.

2. Materials and Methods

In the current AR map prefabrication process, the alignment of the prefabs with the
map is mostly conducted manually by hand, which is time-consuming and labor-intensive
and is very prone to manual errors. In order to solve the drawbacks of the current methods,
we designed a method that can automatically generate prefabs with category and location
information. This method can replace the current manual prefabrication process, leading to
improved efficiency and reduced errors. This section introduces the proposed method in
this paper from four modules: the production of the map point symbol dataset, map point
symbol recognition based on an object detection model, the automatic generation method
of AR map point symbol prefabs, and the development of an AR map prototype system.
Among them, the map point symbol recognition part selected four object detection models
that were mainstream and with good performance for comparative analysis. Then, based on
the object detection model with the best performance, a series of prefabs with corresponding
categories and positional information were automatically generated. Lastly, the AR map
prototype system was developed by combining the prefabs with the current mainstream
AR system development framework. The detailed schematic is shown in Figure 2.
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2.1. Map Point Symbol Datasets

The data used in this paper were downloaded from Amap and cover the main urban
area of Nanchang City, Jiangxi Province, China. We chose five categories of point symbols
commonly used in people’s daily lives when using maps as the targets of augmented
representations: school, hospital, restaurant, shop, and residential area, as exemplified
in Table 1.

Table 1. Legend of the five categories of map point symbols.

Symbol
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Description Shop Restaurant School Residential
area Hospital

First, we divided the downloaded map into 1134 samples of 480 × 480 pixels each, as
shown in Figure 3. Then, we manually annotated 1134 samples using LabelImg. A total
of 4427 instances of the 5 categories of point symbols were annotated, with the specific
distribution shown in Figure 4. Finally, we divided the annotated samples into a training
set, validation set, and test set, with the training set accounting for 80% of the total samples,
totaling 882 samples. The validation and test sets accounted for 10% of the samples,
amounting to 252. The dataset contained map image samples and corresponding txt files,
where the txt files included cls_id (numeric encoding of symbol categories), x′, y′ (the
center coordinates of the bounding box, expressed as proportions relative to the width and
height of the image), and w′, h′ (the width and height of the bounding box, expressed as
proportions relative to the width and height of the image).



ISPRS Int. J. Geo-Inf. 2023, 12, 440 5 of 20ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 3. Map of Nanchang City and some map samples. (This paper uses Amap as an example, in 
which the Chinese characters do not affect the experimental results). 

 
Figure 4. The sample number of five categories of map point symbols in the training set and total 
set. 

2.2. Map Point Symbol Recognition Based on Object Detection Model 
Maps usually contain many point symbols consisting of different shapes, texts, and 

colors, providing rich graphical features and unique semantic information. These point 
symbols convey a large amount of geographic information to map users. However, the 
wide variety and dense distribution of point symbols in maps can easily cause omissions 
when prefabricating AR maps. In addition, as the input data for the method proposed in 
this paper, the recognition effect of the map point symbols will directly affect the genera-
tion of the AR map point symbol prefabs. Therefore, accurately identifying map point 
symbols is the first research focus of this paper. We intend to utilize an object detection 
model for the recognition of map point symbols. When the object detection model com-
pletes its prediction, it generates bounding boxes with category labels. The coordinates of 
these bounding boxes along with their label information serve as the specific input data 
format for the method proposed in this paper. 

We selected four mainstream models that have demonstrated excellent performance 
in the field of object detection. These models have different architectures and are repre-
sentative in their own right. To determine which model is more suitable for the 

Figure 3. Map of Nanchang City and some map samples. (This paper uses Amap as an example, in
which the Chinese characters do not affect the experimental results).

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 3. Map of Nanchang City and some map samples. (This paper uses Amap as an example, in 
which the Chinese characters do not affect the experimental results). 

 
Figure 4. The sample number of five categories of map point symbols in the training set and total 
set. 

2.2. Map Point Symbol Recognition Based on Object Detection Model 
Maps usually contain many point symbols consisting of different shapes, texts, and 

colors, providing rich graphical features and unique semantic information. These point 
symbols convey a large amount of geographic information to map users. However, the 
wide variety and dense distribution of point symbols in maps can easily cause omissions 
when prefabricating AR maps. In addition, as the input data for the method proposed in 
this paper, the recognition effect of the map point symbols will directly affect the genera-
tion of the AR map point symbol prefabs. Therefore, accurately identifying map point 
symbols is the first research focus of this paper. We intend to utilize an object detection 
model for the recognition of map point symbols. When the object detection model com-
pletes its prediction, it generates bounding boxes with category labels. The coordinates of 
these bounding boxes along with their label information serve as the specific input data 
format for the method proposed in this paper. 

We selected four mainstream models that have demonstrated excellent performance 
in the field of object detection. These models have different architectures and are repre-
sentative in their own right. To determine which model is more suitable for the 

Figure 4. The sample number of five categories of map point symbols in the training set and total set.

2.2. Map Point Symbol Recognition Based on Object Detection Model

Maps usually contain many point symbols consisting of different shapes, texts, and
colors, providing rich graphical features and unique semantic information. These point
symbols convey a large amount of geographic information to map users. However, the
wide variety and dense distribution of point symbols in maps can easily cause omissions
when prefabricating AR maps. In addition, as the input data for the method proposed in
this paper, the recognition effect of the map point symbols will directly affect the generation
of the AR map point symbol prefabs. Therefore, accurately identifying map point symbols
is the first research focus of this paper. We intend to utilize an object detection model
for the recognition of map point symbols. When the object detection model completes
its prediction, it generates bounding boxes with category labels. The coordinates of these
bounding boxes along with their label information serve as the specific input data format
for the method proposed in this paper.
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We selected four mainstream models that have demonstrated excellent performance
in the field of object detection. These models have different architectures and are represen-
tative in their own right. To determine which model is more suitable for the recognition
task in this paper, we conducted a comparative analysis of their performance in map
point symbol recognition. The selected models are DINO, DiffusionDet, EfficientDet, and
YOLOv8. The YOLOv8 series includes five sub-models: YOLOv8n, YOLOv8s, YOLOv8m,
YOLOv8l, and YOLOv8x. Among these, YOLOv8x has the slowest detection speed but the
highest mAP (mean average precision) [43]. Therefore, we chose to compare YOLOv8x
with the other models. Similarly, within the EfficientDet series, there are eight sub-models
labeled D0 to D7. We chose EfficientDet-D0.

YOLOv8 is the latest version of the YOLO (You Only Look Once) series of object
detection and image segmentation models developed by Ultralytics, and it is also the
version with the best performance in the YOLO series; it consists of the backbone module
for extracting features, the neck module that adopts a PAN (path aggregation network)
structure, and the head module that generates prediction bounding boxes and output
vectors. The specific structure of the YOLOv8 model is shown in Figure 5. YOLOv8 adopts
the C2f module, which is richer in gradient streams, backbone, and neck, and adjusts the
number of channels differently for different scales of the model. A decoupled head structure
is adopted in the head, which mainly includes loss calculation and object detection frame
screening. Among them, loss calculation includes positive and negative sample allocation
strategy and loss calculation. Task-aligned assigner matching is adopted in the positive
and negative sample allocation strategy. BCE loss (binary cross entropy loss) is used in
the classification branch of loss calculation, and DFL (distribution focal loss) and CIOU
(complete intersection over union) loss functions are used in the regression branch [44].

On the other hand, we evaluated the performance of the object detection model using
five evaluation metrics, namely precision (P), recall (R), F1-score (F1), mAP50, and mAP50–95.
This process aims to obtain more comprehensive and objective evaluation results regarding
the model’s recognition effectiveness. The specific calculation methods for each metric are
outlined in Equations (1)–(5).

P =
TP

TP + FP
× 100% (1)

R =
TP

TP + FN
× 100% (2)

F1 =
2× P× R

P + R
× 100% (3)

AP =
∫ 1

0
P(R)dR× 100% (4)

mAP =
∑n

i=1 APi

n
× 100% (5)

where P is precision, R is recall, TP is the number of true positive bounding boxes detected
when the confidence score is higher than the predefined threshold, FP is the number of true
positive bounding boxes detected when the confidence score is lower than the predefined
threshold, FN is the number of true positive bounding boxes that were not detected, F1 is
the harmonic mean of precision and recall, AP is the average recognition accuracy for a
specific category, mAP is the mean average precision, and n is the number of categories.
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2.3. An Automated Method for Generating AR Map Point Symbol Prefabs

Due to the lack of proper geographic information data interfaces in existing main-
stream AR development software, the reuse of geographic information data is not achiev-
able in the process of prefabricating AR maps. To solve this problem, we proposed an
automated method for generating prefabs of AR map point symbols, taking the Unity3D
platform as an example. We established a data conversion interface between paper map
point symbols and AR map point symbol prefabs. We also transformed the map point
symbol information extracted from the object detection model into corresponding 3D
models with category and positional information. Then, these 3D models were used as
prefabs in AR maps, enabling the reuse of geographic information data and simplifying the
prefabrication process of AR maps.

The principle of the automated method for generating prefabs of AR map point
symbols was to use the predicted bounding boxes of the object detection model as input
data. The category labels of the predicted bounding boxes were used to automatically
generate 3D models of the corresponding category. The geometric center of the predicted
bounding boxes was then abstracted as the coordinate point of the point symbol in the
image pixel coordinate system. Based on the conversion relationship between the image
pixel coordinate system and the virtual environment coordinate system, the corresponding
point of this coordinate point in the virtual environment coordinate system was obtained.
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Finally, the generated 3D models were repositioned using this information, and prefabs with
corresponding categories and positional information were output. The detailed schematic
is shown in Figure 6.
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We used the conversion relationship between the image pixel coordinate system and
the virtual environment coordinate system to achieve the transfer of information from
paper maps to AR maps. Among them, OBJ model files, as a standard 3D model file format,
are widely used by various 3D software for 3D model storage and are compatible with
most AR development software. They are simple text files that can be used for editing and
modification operations without complex data processing. We chose the OBJ model file
format as the output method for the prefabs. In Unity3D’s virtual coordinate system, the
long edge of the image is quantized to a unit of 1, while the short edge is quantized based
on the ratio of the short edge to the long edge. If the dimensions of the image are the same,
both edges are quantized to a unit of 1. The coordinate origin is set at the center of the
image and the initial coordinates of the OBJ models are assumed to be at the origin of the
virtual coordinate system. In order to convert the center of the predicted bounding box
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into the positioning point of the OBJ model in the virtual coordinate system, we use the
formula for calculating the coordinate offset of the OBJ model file, shown in Equation (6).

∆x = 0.5− xl+xr
2Il

, ∆y = Iw−yl−yr
2Il

Il > Iw

∆x = 0.5− xl+xr
2Il

, ∆y = 0.5− yl+yr
2Iw

Il = Iw

∆x = Iw−yl−yr
2Il

, ∆y = 0.5− yl+yr
2Iw

Il < Iw

(6)

where ∆x and ∆y are the offset on the x-axis and y-axis, respectively. xl and yl are the
coordinates of the upper left corner of the prediction bounding box in the image pixel
coordinate system. xr and yr are the coordinates of the lower right corner of the prediction
bounding box in the image pixel coordinate system. Il and Iw are the length and width of
the map image, respectively.

Due to the correspondence between the x–y plane of the image pixel coordinate system
and the x–z plane of the virtual environment coordinate system, the coordinate offset
obtained from Equation (6) was used to sequentially adjust the coordinate values of the
vertex coordinates in the x-axis and z-axis of the OBJ model file. The specific calculation
methods are described in Equations (7) and (8). The modified vertex coordinate format is
“[V Vnewx VoldyVnewz]”, where the corrected results replace the original vertices.

Vnewx = Voldx + ∆x (7)

Vnewz = Voldz + ∆y (8)

where Vnewx and Vnewz are the adjusted vertex coordinates. Voldx and Voldz are the original
vertex coordinates before adjustment. ∆x and ∆y are the offset amounts.

The specific procedure of the automated method for generating prefabs of AR map
point symbols is shown in Table 2.

Table 2. The procedure of the automated method for generating prefabs of AR map point symbols.

Method: The automated method for generating prefabs of AR map point symbols.

Input: The predicted bounding of the object detection model during inference
Output: Prefabs in OBJ file format

1: Initialize a 2D array data_temp and a constant k
2: while (k < The number of predicted bounding boxes) do

3: Read the coordinates and category labels of the bounding box and append them to
data_temp

4: k++
5: end while
6: for (i = 0; i < data_temp.length—1; i++) do // Iterate through data_temp

7: Generate the corresponding OBJ model and MTL material file based on the
category label of data_temp[i]

8: Rename the OBJ file as “category_name + i” and change the file extension to “.txt”

9: Calculate the offset of the OBJ model based on the coordinate information in
data_temp[i], as described by the formula in Equation (6)

10:
Read the vertex coordinates of the model from the OBJ file generated in step 7, and

adjust the vertex coordinates based on the offset. The calculation method is described
in Equations (7) and (8)

11: Organize the adjusted vertex coordinates in the “[V Vnewx VoldyVnewz]” format and
replace the original vertex coordinates with them

12: Change the file extension of the corrected OBJ model text file to “.obj”
13: end for

2.4. Development of an AR Map Prototype System

In order to verify the feasibility and practicality of the proposed method, an AR
map prototype system was developed. An interactive information query function was
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developed within the system. Given the availability of mature commercial-grade AR system
development frameworks, Vuforia and Unity3D have been favored by many developers due
to their rich functions, high-quality augmented reality integration effects, excellent cross-
platform compatibility, scalability, and comprehensive development toolkits. Therefore,
this paper adopted the mainstream AR system development framework to develop the AR
map prototype system. Unity3D (version: 2019.3.2f1) was selected as the core platform for
the development of the system. Additionally, we introduced the necessary AR components
in the system with Vuforia SDK (version: 8.5.9). Finally, the system was deployed on the
Android mobile platform using the Android NDK (version: r19c).

3. Results
3.1. Recognition of Map Point Symbols

In order to comprehensively analyze the results of the four object detection models
selected in this paper, we demonstrate the result of the four object detection models in the
map point symbol recognition task in terms of performance metrics, recognition result,
and training process. In addition, the training and validation of the four object detection
models were conducted using the Windows 11 operating system. The mainstream deep
learning framework PyTorch 1.12.1 was used, with the development environment set to
Python 3.8. The graphics card used was NVIDIA GeForce RTX 3080 Laptop 32G, and GPU
acceleration was achieved using CUDA 11.4 and cuDNN 8.4.1.

During model training, the input sample image size was 480 × 480, the batch size was
16, and a total of 135 iterations were performed. Moreover, the initial learning rate was set
to 0.01, the weight decay coefficient was set to 0.0005, the confidence threshold was set to
0.5, and the momentum was set to 0.937. In addition, four object detection models were
compared under the same parameter conditions. No pre-training model was used, all four
models were trained from scratch.

3.1.1. Visualization of Map Point Symbol Recognition Results

The recognition results of the four object detection models on some samples from the
validation set are shown in Figure 7. Figure 7a–d, respectively, show the recognition results
of DiffusionDet, DINO, EfficientDet-D0, and YOLOv8x on sample A. Figure 7e–h show the
recognition results for sample B.
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As shown in Figure 7, four object detection models exhibited high accuracy in recog-
nizing map point symbols. The confidence scores were also generally high. However, both
DiffusionDet and YOLOv8x were able to detect a small number of point symbols when
they were partially cut off by the edges of the map image tiles, as shown by the red boxes
in Figure 7e,h. However, DINO and EfficientDet-D0 failed to recognize such symbols in the
same cases. This indicated that YOLOv8x and DiffusionDet had stronger feature learning
capabilities and, hence, better recognition performance for map point symbols. However,
the confidence scores of DiffusionDet were generally lower than those of YOLOv8x.

3.1.2. Comparison of Performance Metrics of Object Detection Models in Map Point
Symbol Recognition

The performance metrics of the four models on the validation set are presented in
Table 3. YOLOv8x achieved the highest values in all metrics and is the best-performing
model among the four detection models. YOLOv8x outperforms DiffusionDet by about
10.8% in recall, followed slightly by DINO and EfficientDet-D0. Additionally, EfficientDet-
D0 outperformed DINO by approximately 0.6% and 1.3% in precision and mAP50–95,
respectively. However, DINO demonstrated a lead over EfficientDet-D0 by approximately
1.0%, 0.2%, and 0.4% in recall, F1-score, and mAP50, respectively. DiffusionDet lagged
behind the other three models on almost all metrics, only marginally outperforming DINO
on the precision and mAP50–95 metrics by 0.1% and 0.8%, respectively.

Table 3. Performance metrics of the four models for symbol recognition.

MODEL Precision
(%) Recall (%) F1-Score

(%) mAP50 (%) mAP50–95
(%)

DINO 98.5 97.8 98.1 99.1 68.5
DiffusionDet 98.6 88.3 93.2 98.6 69.3

EfficientDet-D0 99.1 96.8 97.9 98.7 69.8
YOLOv8x 99.6 99.1 99.3 99.3 74.7

As shown in Table 4, DINO demonstrated the best recognition performance in the
school and hospital symbol categories, achieving AP values of 100% and 99.9%, respectively.
EfficientDet-D0 achieved the best recognition performance in the school, restaurant, and
shop symbol categories, with 100% AP achieved in both the school and restaurant symbol
categories. YOLOv8x exhibited the best recognition performance in the residential area
symbol category, with no less than 98.8% AP across all symbol categories, and had the
highest mAP of 99.3%, outperforming the other three models. However, DiffusionDet did
not achieve the best performance in any symbol category.

Table 4. AP and mAP values for the four object detection models in each symbol category.

MODEL School Residential
Area Restaurant Hospital Shop mAP

DINO 100.0 98.4 98.8 99.9 98.3 99.1
DiffusionDet 99.5 98.1 99.4 99.4 96.4 98.6

EfficientDet-D0 100.0 98.2 100.0 98.2 99.3 99.1
YOLOv8x 99.5 99.2 99.5 99.5 98.8 99.3

The PR curves in Figure 8 show that when the recall is lower than 0.7, the precision
of all four models is close to 1. However, when the recall is greater than 0.8, the precision
starts to decrease. In general, the closer the curve is to the coordinate (1, 1) position, the
better the performance of the model. The area enclosed by the PR curve and the horizontal
and vertical coordinates is the mAP. Therefore, as can be seen in Figure 8, the YOLOv8x
model has the highest detection accuracy and the best performance.
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In conclusion, we chose YOLOv8x for map point symbol recognition because it pro-
vides reliable data support for the generation of AR map point symbol prefabs. The
predicted bounding boxes generated during the object detection model prediction pro-
cess will serve as input for the automated method for generating prefabs of AR map
point symbols.

3.1.3. Training Process of YOLOv8x

The precision, recall, mAP50, and mAP50–95 curves during the YOLOv8x training
process are shown in Figure 9a–d. They indicate that all the metrics exhibited rapid im-
provement in the first 20 training epochs. After the 105th training epoch, the precision,
recall, and mAP50 curves were close to 1, and the mAP50–95 curve was close to 0.75. After
that, the curve increased slightly. Generally, too few training epochs lead to the underper-
formance of the model, while too many training epochs lead to overfitting. Therefore, we
chose the model output after the 135th training epoch as the object detection model for
map point symbols.
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As shown in Figure 10, all three loss curves of YOLOv8x are nearly converged at the
end of the training, and there is almost no gap between the ‘train’ curve and the ‘validation’
curve, with the latter even showing a slight decline. In addition, we conducted a large
number of tests on the validation set and test set, and the test results show that the trained
YOLOv8x is a reliable model.
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3.2. Automated Generation of Prefabs
3.2.1. Input Data

The input data for the automated method for generating prefabs of AR map point
symbols included a series of predicted bounding boxes generated by the object detection
model during the prediction phase. As shown in Table 5, these data included the coordinates
of the predicted bounding boxes in the image pixel coordinate system (the coordinates
of the upper left and lower right corners) and the numerical labels corresponding to the
symbol category.
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Table 5. Examples of input data for the automated method for generating prefabs of AR map
point symbols.

Index xl yl xr yr Confidence Category

1 353 328 378 353 0.84271 1
2 13 130 37 154 0.82989 4
3 221 111 245 136 0.82106 2
4 222 437 246 463 0.81471 1
5 234 53 257 77 0.55326 0

. . . . . . . . . . . . . . . . . . . . .
12 0 4 13 27 0.77921 1

3.2.2. Visualization of the Prefabs Generated through the Automatic Method for
Augmented Map Point Symbol Prefabs

The predicted bounding boxes of the object detection model were used as input
data for the automated method for generating prefabs of AR map point symbols. After
processing, the method output a series of OBJ models corresponding to the categories of
map point symbols, and their respective positional information. As shown in Figure 11,
these models were then loaded into the virtual environment of Unity3D. Furthermore, all
the point symbols for augmented representation were generated as prefabs, and the five
categories of prefabs generated were accurately aligned with the base map in terms of
category and position.
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3.3. System Development and Method Validation

We integrated the generated prefabs into the AR system development framework,
designed a database to store additional attribute information of the prefabs, and finally
developed an AR map prototype system. In addition, we designed interactive functions for
information querying in the system, which allows users to click on the prefab to query the
additional attribute information, in order to validate the functionality and effectiveness of
the automated method for generating prefabs of AR map point symbols, and to demonstrate
that the automatically generated prefabs are visual markers with interactive potential.

Firstly, we uploaded the map image to the Vuforia official website. We then extracted
its image features into a data package using the website tool and loaded it into Unity3D.
Then, we introduced the Vuforia AR component to import the map image into the virtual
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environment coordinate system and loaded the generated prefabs into the virtual environ-
ment. Finally, the Android NDK was used to deploy the AR map prototype system to the
validation device. The system environment of the validation device is shown in Table 6.

Table 6. System environment of the validation device.

System Environment Reference Value

Operating System HarmonyOS 2.0
Processor Huawei Kirin 820

RAM 6.0 GB
Screen Size 2000 × 1200

Camera Pixel 3264 × 2448

The proposed method in this paper was validated using the AR map prototype system.
The operation effect graph of the AR map prototype system is shown in Figure 12. This
shows that the real-time performance and stability of this system met the application
requirements of the AR map on the validation device used in this paper. The system
validation results indicated that the automated method for generating prefabs of AR map
point symbols could be used in the prefabrication process of the AR map. Combined with
the object detection model, this method could automatically generate AR map prefabs
with positional information, replacing the previous manual prefabrication method. It
ensured high information accuracy while simplifying the prefabrication process of the AR
map, demonstrating practicality and feasibility. In addition, users could select prefabs by
touching the screen, and when a prefab was selected, the information box on the left side of
the system page displayed additional information about that prefab. This proved that the
automated method for generating prefabs of AR map point symbols could provide solid
data support for the development of dynamic interactive functions in the AR map.
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4. Discussions

Investigating methods for automatically generating AR map prefabs has a positive
impact on optimizing the prefabrication process of AR maps. This paper explored the
feasibility of integrating object detection models for automatically generating AR map
prefabs. We made valuable contributions to optimizing the AR map prefabrication process
by ensuring extremely high information accuracy while simplifying the process. Addi-
tionally, our approach provided better data support for the dynamic interactive functions
of AR maps, demonstrating the feasibility of our design. The main contributions of this
paper can be summarized as follows: (1) We constructed a dataset of map point symbols
and compared the recognition performance of four object detection models on map point
symbols. (2) We proposed a method for automatically generating AR map point symbol
prefabs and established an interface for converting map point symbols to AR map point
symbol prefabs. (3) We integrated the AR system development framework to design an AR
map prototype system.

Even though the precision and recall of YOLOv8x on the validation set are as high as
99.6% and 99.1%, respectively, for large map data, minor imperfections may arise, which
in turn affect the accurate generation of prefabs. In order to correct these minor errors,
some manual intervention may still be required. Regardless, the method proposed in this
paper greatly improves the prefabrication efficiency and information accuracy of AR maps
compared to previous manual prefabrication methods.

According to the results of the automated generation of prefabs, our proposed method
led to overlap and coverage between prefabs in areas where map point symbols were
densely distributed. The reason might be that paper maps can only synthesize map symbols
in two-dimensional space, while AR maps are dimensional representations based on paper
maps, which lack automatic synthesis in three-dimensional space like electronic maps.
Therefore, it led to the information being covered in three-dimensional space, adversely
affecting interactive functionality use. In future research, we will develop a set of prefab
symbols at different scales inspired by the design principle of cartographic synthesis,
aiming to introduce cartographic synthesis rules into AR maps.

Since the prefabs generated in our method were individual data management objects
with positional information, we not only greatly simplified the prefabrication process of AR
maps but also provided solid data support for the dynamic interaction function and spatial
analysis function of AR maps. In the AR map prototype system, we designed an interactive
information query function so that users could click on prefabs to view more information
about the corresponding symbols, effectively expanding the information capacity of paper
maps. In future research, we can add more attribute information to the generated prefabs
and combine them with interactive functionalities to design more advanced spatial analysis
functions. The spatial analysis results will be loaded into AR maps in the form of prefabs,
further enhancing the practicality of AR maps.

However, the method proposed in this paper considered only point symbols, lacking
considerations for the augmented representation of other map elements. However, for a
complete AR map system, it is not enough to focus on the augmented representation of map
point symbols. There are also many line symbols, polygon symbols, annotation information,
and other map elements that have the potential for augmented representation that can
enrich the AR maps. From these perspectives, relying only on point symbol prefabs in AR
maps limits the expansion of map information and weakens their practicality. Despite these
limitations, this paper mainly focuses on exploring the feasibility of transforming paper
map symbol elements into AR map prefabs by integrating object detection models. In the
future, we plan to integrate additional map elements into the automatic generation method
of AR map prefabs to further improve the data conversion interface from paper maps to AR
maps. Moreover, we intend to include more map symbols of various styles in the training
set of the object detection model. This aims to enhance the semantic understanding of map
symbols and improve the object detection model’s capability to process diverse map data.
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5. Conclusions

Addressing the problem that existing AR development software mainly rely on man-
ual prefabrication when creating AR maps, this paper mainly focuses on the automatic
generation of point symbol prefabs in AR maps. First, the effectiveness of four object
detection models—DINO, DiffusinDet, EfficientDet-D0, and YOLOv8x—were compared
and analyzed. The model with the best performance was selected for recognizing map
point symbols. Then, based on the predicted bounding boxes of the object detection model,
we proposed a method to generate AR map point symbol prefabs automatically. Last,
combining the generated prefabs, an AR map prototype system was developed for the
Android platform using the Unity3D+Vuforia+Android development framework. The
results were as follows:

Firstly, the YOLOv8x model achieved 99.6% precision and 99.1% recall on the valida-
tion set, completing the recognition of a sample in an average of 29.4 ms. It outperformed
the other three models and was significantly superior to manual image recognition.

Secondly, the prefabs generated by the proposed method in this paper correspond to
the categories of map point symbols and include positional information. The prefabs can
accurately align with the map point symbols when imported into the virtual environment.
Furthermore, the prefabs generated by the method were individual data management
objects, providing solid data support for the design of dynamic interactive and analytical
functions in AR maps.

Finally, the virtual reality fusion effect of the AR map prototype system developed
in this paper is stable and accurate. Moreover, the method proposed in this paper can be
applied to actual AR map prefabrication processes, significantly reducing the workload
while maintaining high accuracy. In addition, the information query function was realized
by clicking on the prefabs through the touchscreen interaction, expanding the information
capacity beyond that of traditional paper maps.
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