
Citation: Zhang, L.; Li, J.; Li, S.

Research on Time-Aware Group

Query Method with Exclusion

Keywords. ISPRS Int. J. Geo-Inf. 2023,

12, 438. https://doi.org/10.3390/

ijgi12100438

Academic Editors: Wolfgang Kainz

and Hartwig H. Hochmair

Received: 12 August 2023

Revised: 13 October 2023

Accepted: 20 October 2023

Published: 23 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Research on Time-Aware Group Query Method with
Exclusion Keywords
Liping Zhang, Jing Li and Song Li *

School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China;
zhangliping0730@hrbust.edu.cn (L.Z.); 1704010306@stu.hrbust.edu.cn (J.L.)
* Correspondence: lisongbeifen@hrbust.edu.cn

Abstract: Aiming at the problem that the existing spatial keyword group query problem did not
consider the query requirements with exclusion keywords and time attributes, a time-aware group
query problem with exclusion keywords (TEGSKQ) is proposed for the first time. To solve this prob-
lem effectively, this paper proposes a query method based on the EKTIR-Tree index and dominating
group (EKTDG). This method first proposes the EKTIR-tree index, which incorporates Huffman
coding and integrates Bloom filters to deal with excluded keywords in order to improve the hit rate
of keyword queries, significantly improving the query efficiency and reducing the storage occupancy.
Then, the Candidate algorithm is proposed based on the EKTIR-tree index to filter out the spatial–
textual objects that meet the query’s keywords and time requirements, narrowing the search space
for subsequent queries on a large scale. To address the problem of the low efficiency of existing
algorithms based on a spatial distance query, a distance-dominating group is defined and a pruning
algorithm based on a spatial distance-dominating group is proposed, which is a refining process of
query results and greatly improves the search efficiency of the query. Theoretical and experimental
studies show that the proposed method can better handle group queries with exclusion keywords
based on time awareness.

Keywords: time-aware; group query; exclusion keywords; spatial keyword query; Huffman coding

1. Introduction

With the rapid development of Internet technology and sensor technology in recent
years, location-based services have been commonly used in daily life. In particular, spatial
keyword query, as one of the important technologies in location-based services, has been
widely used in many fields, such as intelligent navigation systems and spatial positioning
systems. Different types of spatial keyword query problems have been studied in depth
by scholars at home and abroad, such as spatial keyword nearest neighbor query prob-
lems [1–3], TOP-k spatial keyword queries [4–8], inverse nearest neighbor queries [9–12]
and spatial keyword group queries [13–15]. In the spatial database, a number of spatial–text
objects, also known as points of interest (POI), are stored. A spatial keyword query returns
one or some points of interest, which need to meet the various requirements of the query
and be the best distance. Among the various branches of spatial keyword queries, the
application of spatial keyword group queries in daily life has gradually spread in recent
years and attracted the attention of many scholars. For example, when a tourist travels to a
certain city, planning the desired location of the hotel needs to include activities such as
eating, visiting the park, watching movies and so on for a period of time.

Temporal information is also an indispensable consideration in the field of spatial
keyword queries. Since each POI such as stores or parks has its own opening hours, users
cannot access the POI during non-opening hours. In the query system or recommendation
system, different POIs have different opening hours, for example, the breakfast store is
open from 6:30 to 10:00 and the shopping mall is open from 9:30 to 20:00, so for the different

ISPRS Int. J. Geo-Inf. 2023, 12, 438. https://doi.org/10.3390/ijgi12100438 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi12100438
https://doi.org/10.3390/ijgi12100438
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://doi.org/10.3390/ijgi12100438
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi12100438?type=check_update&version=2

ISPRS Int. J. Geo-Inf. 2023, 12, 438 2 of 20

needs of different users, it is necessary to return different POI objects. Specifically, when the
user wants to eat breakfast at 7:00, the query system should return the above breakfast store
instead of the mall. Although there may be restaurants in the mall, the mall’s time does not
meet the user’s needs. However, most researchers have focused on textual constraints and
spatial constraints and have not considered the impact of temporal constraints in daily life.

Furthermore, with the development of science and technology in society, the needs of
users are also increasing. For spatial keyword queries, users may not only want to query to
meet the required keyword objects, but may also hope that, in the query process, they can
be excluded from containing the user’s exclusion keyword objects. Moreover, some users
around the world also have many exclusionary matters due to their religious beliefs and
other reasons. However, few studies on spatial keyword querying have considered users’
exclusion preferences. Therefore, spatial keyword querying with exclusion keywords has
great research value.

Currently, the existing spatial keyword group queries only have keyword information
and distance constraints and do not consider both temporal information and exclusion
keywords. Therefore, this paper proposes a time-aware group query method with exclusion
keywords. To deal with this problem effectively, this paper proposes a query method
based on the EKTIR-Tree index and dominating group which is called EKTDG. The main
contributions of this paper are as follows:

(1) Aiming at the situation where traditional spatial keyword group query research can-
not handle both temporal properties and exclude keyword information, this paper
proposes a new query model, namely temporally aware group query with exclusion
keywords. This query model limits both temporal information and exclusion key-
word information based on traditional spatial keyword group queries, which is more
suitable for the multiple query needs of users in current society.

(2) In response to the problem that the current existing indexing techniques cannot handle
the query model proposed in this paper, a new index, the EKTIR-tree, is proposed in
this paper. The index not only has the advantages of the IR-tree, but also introduces
the idea of Huffman coding to improve the query efficiency. In handling the exclusion
keywords, the index introduces the Bloom filter, which can handle the exclusion
keyword information efficiently. To improve the query efficiency, a pruning query
algorithm called the Candidate algorithm is further proposed based on the proposed
EKTIR-tree index. This algorithm uses the EKTIR-tree index to perform the first step
of pruning operation to derive the objects in the spatial–text database that meet the
query requirements of time constraints and keyword constraints, thus reducing the
computational overhead of subsequent queries.

(3) In order to solve the problem of the low efficiency of the traditional spatial keyword
group query algorithm, this paper further proposes a query algorithm based on
a distance-dominant group. This algorithm first selects the dominant objects of
the distance-dominant group to initially reduce the search space and then further
reduces the search space according to the relationship between the dominant objects
to effectively improve the query performance and efficiency.

Compared with the previous methods, CD-Exact, the operation efficiency of the
proposed method is improved by at least 14%. The rest of the paper is organized as follows.
Section 3 of this paper gives the relevant important definitions. Section 4.1 proposes a new
index, the EKTIR-tree index, and Section 4.2 proposes a filtering algorithm based on this
index. Section 5 of this paper proposes a spatial keyword group query method based on
the distance domination group. Section 6 gives the corresponding experimental analysis
and Section 7 gives a summary. The method proposed in this paper is 14% more efficient
than the previous method. The algorithm relationship is shown in Figure 1.

ISPRS Int. J. Geo-Inf. 2023, 12, 438 3 of 20

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 3 of 21

Algorithm 1: Keyword
encoding calculation

algorithm.

EKTDG：a query method

based on the EKTIR-Tree

index and dominating group

Algorithm 2: EKTIR-tree
index-based filtering algorithm

(Candidate algorithm)

Algorithm 4: Find the
feasible set M` for which

(o, o1, o2) dominates

consistently

premise

Algorithm 3: Finding the

optimal set

Figure 1. The figure of algorithm relationship.

2. Related Work

The spatial keyword group query problem [13–15], as a special form of spatial key-

word query, has common applications in real life. The concept of the mCK (m-closest key-

words) query was first proposed in the literature [16]. Given a set of query keywords, the

mCK query finds m interest points and the keyword information of this set of interest

points jointly covers the query keywords and minimizes the maximum pairwise distance

of the objects in the group. However, Zhang et al. [16] only focused on the fact that each

object contains only one query keyword and its proposed exact algorithm has low adapt-

ability for large data sets. Considering the possibility of multiple keywords, Guo et al. [17]

relaxed the constraint of having only one keyword per object and proposed an approxi-

mation algorithm with a factor of (1.15 + ε). Deng et al. [18] presented an optimal keyword

coverage problem, which is a variant of the mCK query. This study considered both intra-

group distance and keyword weights and incorporated both factors into a linear cost func-

tion, thereby proposing an accurate algorithm to solve this problem. Since the results of

mCK queries do not provide sufficient support in some application scenarios, a new spa-

tial keyword query, called the SK-Cover query (spatial keyword cover query), was pro-

posed in the literature [19]. This query considered the number of objects in the results set

and put an approximate algorithm with a time complexity of O (logm) for this query prob-

lem. Effective access policies and pruning rules were laid out to improve the efficiency

and scalability of the algorithm in [19]. Subsequently, Li et al. [20] studied spatial keyword

group queries and proposed a parametric approximation algorithm that allows the ap-

proximation ratio to be adaptive and the user to assign arbitrary query precision.

The literature [13–20] are traditional spatial keyword group queries, focusing only

on the study of keyword constraints and distance constraints. Nevertheless, some re-

searchers have extended conventional spatial keyword group queries to some extent.

Singh et al. [21] considered objects labeled with keywords and embedded in a vector space

to study the multi-objective query problem in a multi-dimensional space for the closest

set of points satisfying a given set of keywords. In a low-dimensional space, IR trees are

mainly used to support query processing. But in a high-dimensional space (with dimen-

sions larger than 10), different MBRs (minimum bounding rectangles) of IR trees can con-

tain a large amount of overlapping data, resulting in a reduced index performance. So,

this literature studied indexing mechanisms and query algorithms in a high-dimensional

space, using random projection and hash-based indexing structures, and achieved high

scalability and speedup ratios. The CoSKQ (collective spatial keyword query) query

model introduces query points based on mCK, and Gao, Cao and Zhao et al. [22–24] stud-

ied the CoSKQ query model in a road network space. Unlike most studies, Zhao et al. [24]

proposed a popularity-aware aggregated keyword in road networks, aiming to find a set

Figure 1. The figure of algorithm relationship.

2. Related Work

The spatial keyword group query problem [13–15], as a special form of spatial keyword
query, has common applications in real life. The concept of the mCK (m-closest keywords)
query was first proposed in the literature [16]. Given a set of query keywords, the mCK
query finds m interest points and the keyword information of this set of interest points
jointly covers the query keywords and minimizes the maximum pairwise distance of the
objects in the group. However, Zhang et al. [16] only focused on the fact that each object
contains only one query keyword and its proposed exact algorithm has low adaptability
for large data sets. Considering the possibility of multiple keywords, Guo et al. [17] relaxed
the constraint of having only one keyword per object and proposed an approximation
algorithm with a factor of (1.15 + ε). Deng et al. [18] presented an optimal keyword coverage
problem, which is a variant of the mCK query. This study considered both intra-group
distance and keyword weights and incorporated both factors into a linear cost function,
thereby proposing an accurate algorithm to solve this problem. Since the results of mCK
queries do not provide sufficient support in some application scenarios, a new spatial
keyword query, called the SK-Cover query (spatial keyword cover query), was proposed in
the literature [19]. This query considered the number of objects in the results set and put an
approximate algorithm with a time complexity of O (logm) for this query problem. Effective
access policies and pruning rules were laid out to improve the efficiency and scalability of
the algorithm in [19]. Subsequently, Li et al. [20] studied spatial keyword group queries
and proposed a parametric approximation algorithm that allows the approximation ratio
to be adaptive and the user to assign arbitrary query precision.

The literature [13–20] are traditional spatial keyword group queries, focusing only on
the study of keyword constraints and distance constraints. Nevertheless, some researchers
have extended conventional spatial keyword group queries to some extent. Singh et al. [21]
considered objects labeled with keywords and embedded in a vector space to study the
multi-objective query problem in a multi-dimensional space for the closest set of points
satisfying a given set of keywords. In a low-dimensional space, IR trees are mainly used
to support query processing. But in a high-dimensional space (with dimensions larger
than 10), different MBRs (minimum bounding rectangles) of IR trees can contain a large
amount of overlapping data, resulting in a reduced index performance. So, this literature
studied indexing mechanisms and query algorithms in a high-dimensional space, using
random projection and hash-based indexing structures, and achieved high scalability and
speedup ratios. The CoSKQ (collective spatial keyword query) query model introduces
query points based on mCK, and Gao, Cao and Zhao et al. [22–24] studied the CoSKQ
query model in a road network space. Unlike most studies, Zhao et al. [24] proposed a
popularity-aware aggregated keyword in road networks, aiming to find a set of popular
POIs (i.e., a popularity region). The POIs cover the query keywords and satisfy the distance
requirements from each node to the query node and between each node pair, such that the
sum of the scores of these nodes for the query keywords is maximized. For this reason,

ISPRS Int. J. Geo-Inf. 2023, 12, 438 4 of 20

a scaling technique for scoring was raised to reduce the search space, and a redundant
computation reduction technique was proposed to reduce the redundant computations
in query processing. Su et al. [25] also studied ensemble spatial keyword queries in a
road network environment, but the difference is that it is based on group-based ensemble
queries, i.e., GBCK (group-based collective keyword). Considering the importance of
the keyword levels for decision support, Zhang et al. [26] proposed the Level Aware Set
Space Keyword Query (LCSK) to find a set of POIs that jointly covers the query keywords
with threshold constraints and minimal spatial distance cost. An exact algorithm and
approximation algorithm with provable approximations related to this problem were
designed for the LCSK. To better express more fine-grained preferences for cost-aware
and distance-constrained keyword queries in the set space, Chan et al. [27] proposed new
criteria, optimized the cost function and designed an exact and approximate algorithm.
Xu et al. [28] differed from other works in that it studied mobile set space keyword queries
from the dynamics of query points and raised two approximation algorithms based on the
safety zone technique.

Considering the importance of temporal information in spatial keyword queries, some
researchers have proposed query models with temporal awareness. Chen et al. [29] first
studied temporally aware Boolean keyword queries, known as a TABSKQ (time-aware
Boolean spatial keyword query), and proposed an efficient index structure TA-tree and its
corresponding query algorithm for this problem model. The index can effectively prune the
search space and take into account both keyword information and temporal information.
Chen et al. [30] proposed two evaluation functions for time-aware aggregate keyword
queries to meet different types of query requirements and both proposed corresponding
processing algorithms. Chan et al. [31] studied the model of indoor keyword routing with
time constraints, i.e., the TIKRQ problem (time-constrained indoor keyword-aware routing
query), and proposed a series of pruning rules and corresponding solution algorithms.
Considering that most of the existing works cannot solve the spelling error cases and thus
focus on the time-aware approximate set keyword search in traffic networks, Feng et al. [32]
proposed a TDAG-tree index for the distance pruning of query objects and designed two
approximation algorithms to improve the processing efficiency to a large extent.

3. Definitions and Symbol Descriptions

According to the content of the research and related technologies applied, this section
provides the following basic definitions.

In this paper, a spatial–text database D = {o1, o2, . . ., on} is given. The object oi in D
is denoted as a tuple (oi.loc, oi.K, oi.st, oi.et), each POI contains its own spatial coordinates
oi.loc, keyword set oi.K, start time oi.st and end time oi.et, where the set of keywords
oi.K = {key1, key2, . . .}.

Definition 1. TEGSKQ. A time-aware spatial keyword group query with exclusion keywords
(TEGSKQ) is denoted as q = (q.loc, q.K+, q.K−, q.st, q.et), where q.loc is the location coordinate of
the query point in the Euclidean space, q.K+ is the set of positive keywords of the query, representing
the user’s preference, q.K− is the set of repulsive keywords of the query, representing the user’s
repulsive intention, q.st is the starting time point of the query-specified time period and q.et is the
end time point of the query-specified time period. The query q should return the feasible set with the
optimal distance. It is to make the objects in the feasible set as compact as possible and closest to the
query point as possible. The concept of the feasible set is shown in Definition 2.

For example, a pair of friends plan to visit an area and expect to leave from the hotel
where they are staying at 9:00 to return to the hotel at 20:00. The pair suggest that they
would like to eat food such as pizza or fried rice and suggest excursions such as amusement
parks and parks, malls with cafes, etc. But they have repulsive intentions, such as being
repulsive to restaurants with pork dishes and disliking cafes with music. At this point, the
demand proposed by the pair of friends conforms to the TEGSKQ query model, q = (q.loc:

ISPRS Int. J. Geo-Inf. 2023, 12, 438 5 of 20

the hotel location, q.K+: {pizza, fried rice, amusement parks, parks}, q.K−: {pork, cafe with
music}, q.st: 9:00, q.et: 20:00).

Definition 2. Feasible set M. Given a TEGSKQ query denoted as q and let M be a feasible set of q,
then M satisfies the following conditions:

(1) q.K+ ⊆ ∪oi.Koi∈M, the keyword concatenation of objects in M can cover all the keywords
in q.K+.

(2) ∀keykey∈q.K− /∈ ∪oi.Koi∈M, no object in M can contain any of the exclusion keywords specified
by query q.

(3) ∀oi.(st, et)oi∈M ⊆ q.(st, et), the time zone of any object in M must be included in the time
zone of q.

Definition 3. The diameter of the feasible set M.Dia. Given a feasible set M, when there is only
one object in M, the diameter of the feasible solution set M.Dia is 0. When the feasible set contains
a set of objects, the diameter of the feasible set M.Dia is the diameter of its enveloping circle, i.e.,
M.Dia = max

oi ,oj∈M
dist(oi, oj). dist(oi, oj), which is the Euclidean distance between the two points.

M.Dia quantifies the compactness of the objects in the feasible solution set; the more compact, the
closer the query point is to each object.

Definition 4. The distance between the feasible set and query point Dist(q, M). Given a TEGSKQ
with its feasible set M, the distance between the feasible set M and the query point q, Dist(q, M), is
the distance between the query point and the object in the feasible set that is farthest away from the
query point, Dist(q, M) = max

o∈M
dist(q, o)

Definition 5. The spatial distance cost of a feasible set M.Scost. Given a feasible solution set
M, where the spatial distance cost is denoted as M.Scost, the formula is calculated as shown in
Equation (1):

M.S cos t = α×M.dia + (1 − α)×Dist(q, M) (1)

The smaller the value of M.Scost, the greater the possibility that its corresponding
feasible set M becomes the final result set of a TEGSKQ. Here, a linear approach is used to
calculate the distance cost, which can be more intuitive to understand the magnitude of the
weights of both. α is a smoothing parameter to balance the compactness between objects in
the feasible set and the distance between the feasible set and the query point. In this paper,
for the convenience of the study, taking α = 0.5, the distance cost of the feasible set can be
simplified to Equation (2):

M.S cos t = M.dia+Dist(q, M) (2)

Definition 6. The time overlap η [29]. Given a TEGSKQ denoted as q with a spatial–text object o,
where such that t = {st, end}. η(q, o) can be calculated according to Equation (3):

η(q, o) =
|q.t ∩ o.t|
|q.t| (3)

η(q, o) is the temporal overlap between query q and object o. Quantitatively, it repre-
sents the temporal fit between object o and query q. The larger the value, the higher the
probability that object o meets the temporal requirements of the query.

4. Pruning Filtering Method Based on the EKTIR-Tree Index

The traditional spatial keyword group query can no longer meet the diverse query
needs of today’s society. In addition to the keyword constraints, the user may also have
limited requirements for the time and will put forward their own exclusion intentions
in exclusion keywords as one of the query filtering conditions. For such queries, this

ISPRS Int. J. Geo-Inf. 2023, 12, 438 6 of 20

paper first constructs a new index, the EKTIR-tree, for spatial–text database D and then
performs pruning queries based on the EKTIR-tree in spatial–text database D to select
all candidate objects that meet the positive keywords, exclusion keywords and time con-
straints. The whole process can be split into two parts: index construction and index-based
pruning query.

4.1. EKTIR-Tree Index

This section proposes a new index to handle spatial keyword group queries with
time-constrained exclusion keywords. Firstly, the relevant definitions are proposed, as
shown in Definitions 7–9.

Definition 7. The keyword documentation doc(·). Given region A, there is a set of spatial–text
objects o in the region and the keyword information of all objects is collected into a document, which
is the keyword document of the current region, denoted as doc(A) = ∪

o∈A
o.key.

Definition 8. The keyword weight w. Given a spatial–text database D containing many spatial–text
objects o, the keywords of all o in D are put into a set to form a document. The weight of each
keyword in the document is calculated using the TF-IDF [33] method in the field of natural language
processing, which is subsequently used to sort the keywords and construct Huffman trees and
keyword encoding.

Definition 9. The keyword encoding Codekey. The keywords of all spatial–text objects o in D
are constructed into Huffman trees according to their respective word frequencies f and then the
Huffman encoding Codekey of each keyword is obtained.

Since the R-tree series index can reduce the query space range efficiently, this paper
proposes an EKTIR-tree index based on an IR-tree. An example of POI distribution is given,
as shown in Figure 2.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 6 of 21

η(q, o) is the temporal overlap between query q and object o. Quantitatively, it repre-

sents the temporal fit between object o and query q. The larger the value, the higher the

probability that object o meets the temporal requirements of the query.

4. Pruning Filtering Method Based on the EKTIR-Tree Index

The traditional spatial keyword group query can no longer meet the diverse query

needs of today’s society. In addition to the keyword constraints, the user may also have

limited requirements for the time and will put forward their own exclusion intentions in

exclusion keywords as one of the query filtering conditions. For such queries, this paper

first constructs a new index, the EKTIR-tree, for spatial–text database D and then performs

pruning queries based on the EKTIR-tree in spatial–text database D to select all candidate

objects that meet the positive keywords, exclusion keywords and time constraints. The

whole process can be split into two parts: index construction and index-based pruning

query.

4.1. EKTIR-Tree Index

This section proposes a new index to handle spatial keyword group queries with

time-constrained exclusion keywords. Firstly, the relevant definitions are proposed, as

shown in Definitions 7–9.

Definition 7. The keyword documentation doc(·). Given region A, there is a set of spatial–text

objects o in the region and the keyword information of all objects is collected into a document, which

is the keyword document of the current region, denoted as () .
o A

doc A o key
∈

= ∪ .

Definition 8. The keyword weight w. Given a spatial–text database D containing many spatial–

text objects o, the keywords of all o in D are put into a set to form a document. The weight of each

keyword in the document is calculated using the TF-IDF [33] method in the field of natural lan-

guage processing, which is subsequently used to sort the keywords and construct Huffman trees

and keyword encoding.

Definition 9. The keyword encoding Codekey. The keywords of all spatial–text objects o in D are

constructed into Huffman trees according to their respective word frequencies f and then the Huff-

man encoding Codekey of each keyword is obtained.

Since the R-tree series index can reduce the query space range efficiently, this paper

proposes an EKTIR-tree index based on an IR-tree. An example of POI distribution is

given, as shown in Figure 2.

R1

R2

R4

R5 R7

R6

R3

o1

o2

o3

o4
o5

o6

o7

o8

o9

o10

q

Figure 2. The figure of POI’s distribution. Figure 2. The figure of POI’s distribution.

Figure 2 shows a batch of POI objects distributed in the spatial–text database D. Firstly,
these POIs are spatially divided according to the division rules of R-tree, followed by the
construction of the EKTIR-tree index, as shown in Figure 3.

The format of the non-leaf node of the EKTIR-tree index is (cp, MBR, info), where cp is
the pointer of this node to its children, MBR is the minimum outer wrapping rectangle of its
children pointed by cp and info is the information file of this node. And the internal format
of info is (InvFile, BloomFilter, Ukey, Utime), where InvFile is the inverted file formed by
the special processing of all POI keyword information in the node, BloomFilter is the Bloom
filter formed by the keyword document doc (Ri) for the node and Ukey is the intersection
of the Ukey content of the node’s children, built from the bottom up. Ukey is used to

ISPRS Int. J. Geo-Inf. 2023, 12, 438 7 of 20

collaborate with BloomFilter to filter the excluded keywords. Utime is the concatenation
of the time intervals of all POIs in the node. The leaf node of the index contains a set of
POIs in the region of the node; in addition, each leaf node also contains a pointer to the
information file (info) of the node. The format of the info file is (CodeArr, BloomFilter,
Utime), where CodeArr is the keyword encoding of all POIs in the leaf node in order and
the BloomFilter is similar to Utime and the non-leaf nodes.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 7 of 21

Figure 2 shows a batch of POI objects distributed in the spatial–text database D.

Firstly, these POIs are spatially divided according to the division rules of R-tree, followed

by the construction of the EKTIR-tree index, as shown in Figure 3.

R2 R3

R4 R5 R6 R7

o1 o2 o6 o7o3 o4 o5 o8 o9 o10

InvFile1:

 Code1:R2,R3

 Code2:R3

 Code3:R2

 Code4:R2

 Code5:R2;

BloomFil ter;

Ukey;

Utime1(st,et);

R1

R2 R3

R4 R5 R6 R7

CodeArr7;

BloomFil ter7;

Utime7(st,et);

info

info

Figure 3. The EKTIR-tree index.

The format of the non-leaf node of the EKTIR-tree index is (cp, MBR, info), where cp

is the pointer of this node to its children, MBR is the minimum outer wrapping rectangle

of its children pointed by cp and info is the information file of this node. And the internal

format of info is (InvFile, BloomFilter, Ukey, Utime), where InvFile is the inverted file

formed by the special processing of all POI keyword information in the node, BloomFilter

is the Bloom filter formed by the keyword document doc (Ri) for the node and Ukey is the

intersection of the Ukey content of the node’s children, built from the bo7om up. Ukey is

used to collaborate with BloomFilter to filter the excluded keywords. Utime is the concat-

enation of the time intervals of all POIs in the node. The leaf node of the index contains a

set of POIs in the region of the node; in addition, each leaf node also contains a pointer to

the information file (info) of the node. The format of the info file is (CodeArr, BloomFilter,

Utime), where CodeArr is the keyword encoding of all POIs in the leaf node in order and

the BloomFilter is similar to Utime and the non-leaf nodes.

The non-leaf node of this index adds a time a7ribute and a filter to handle the exclu-

sion keyword to the IR-Tree and specializes the inverted files in the IR-Tree. The format

of each record in a traditional inverted file is (key: document1, document2 …), which takes

each keyword key as an index item and the object containing the keyword as the index

value. However, when the EKTIR-tree generates the inverted file, each keyword is ar-

ranged in descending order by weight in advance, according to the weight size of the de-

sired keyword in the file. And the index item is no longer the keyword itself when stored,

but the keyword’s corresponding Huffman-coded Codekey is used. As a result, each record

in the EKTIR-tree’s inverted file has the format (Codekey:R1, R2, …), which has the ad-

vantage of being processed as follows: First, the index entries of each record are arranged

according to weights, allowing for the faster finding of the target record when looking for

data in the inverted file. Secondly, each index item adopts the form of Codekey instead of

keywords, which can reduce the space storage consumption to a certain extent.

Since the number of POIs in the leaf nodes is not as many as in non-leaf nodes, the

inverted indexing strategy of using the IR-tree in leaf nodes occupies more space. To re-

duce storage space, the leaf nodes of the EKTIR-tree index arrange the encoding of key-

words in the order of weight to form a string of bits, which can use the efficient KMP

algorithm when matching keywords. One of the main features of Huffman coding is non-

prefix matching coding, which allows individual codes to be concatenated and decoded

without adding any interval symbols in between. Moreover, Huffman coding is the code

with the shortest average code length, so this strategy not only reduces space storage con-

sumption, but also does not have a large speed reduction in matching keywords.

Figure 3. The EKTIR-tree index.

The non-leaf node of this index adds a time attribute and a filter to handle the exclusion
keyword to the IR-Tree and specializes the inverted files in the IR-Tree. The format of each
record in a traditional inverted file is (key: document1, document2 . . .), which takes each
keyword key as an index item and the object containing the keyword as the index value.
However, when the EKTIR-tree generates the inverted file, each keyword is arranged
in descending order by weight in advance, according to the weight size of the desired
keyword in the file. And the index item is no longer the keyword itself when stored, but
the keyword’s corresponding Huffman-coded Codekey is used. As a result, each record in
the EKTIR-tree’s inverted file has the format (Codekey:R1, R2, . . .), which has the advantage
of being processed as follows: First, the index entries of each record are arranged according
to weights, allowing for the faster finding of the target record when looking for data in the
inverted file. Secondly, each index item adopts the form of Codekey instead of keywords,
which can reduce the space storage consumption to a certain extent.

Since the number of POIs in the leaf nodes is not as many as in non-leaf nodes, the
inverted indexing strategy of using the IR-tree in leaf nodes occupies more space. To reduce
storage space, the leaf nodes of the EKTIR-tree index arrange the encoding of keywords in
the order of weight to form a string of bits, which can use the efficient KMP algorithm when
matching keywords. One of the main features of Huffman coding is non-prefix matching
coding, which allows individual codes to be concatenated and decoded without adding
any interval symbols in between. Moreover, Huffman coding is the code with the shortest
average code length, so this strategy not only reduces space storage consumption, but also
does not have a large speed reduction in matching keywords.

When the text or time information of a POI changes, the EKTIR-tree index will first
locate the leaf node where the POI is located, check the information and update the extended
information of the leaf node and then update the extended information of the parent node
iteratively, according to the change information, until the upward parent node does not
need to update.

Since the use of Huffman coding can significantly improve the query efficiency of
indexes and greatly reduce the space occupation, in order to improve the efficiency and
quality of index construction, this paper gives Algorithm 1 to calculate the keyword coding.

ISPRS Int. J. Geo-Inf. 2023, 12, 438 8 of 20

Algorithm 1: Keyword encoding calculation algorithm

Input: Spatial–text database D.
Output: doc(D) corresponds to the code set Code{Codek1, Codek2, . . .}.
begin
1: doc(D)← ∪o.key; HT←Ø; /* Get all keywords and declare an empty tree node */
2: W: { wk1, wk2, . . .}← TF-IDF(doc(D)); /* Calculate the weight of each keyword using the
TF-IDF model */
3: TreeSet T.add(W); /* Put the weight data into a TreeSet object T and sort it by increasing
weight value */
4: while T is not empty then /* Constructing a Huffman tree HT */
5: Take the two keywords keyn, keyn−1 with the smallest weight as the left and right nodes, and
generate a virtual tree node f with wf = wn + wn−1, and node f is the parent node of the keywords
keyn, keyn−1;
6: T.add(wf);
7: end while
8: HT← The final generated virtual node;
9: Code{Codek1, Codek2, . . . }← Get the code of each keyword from HT;
10: return Code{Codek1, Codek2, . . . };
end

The Huffman encoding of each keyword is obtained by Algorithm 1. The smaller the
length of the encoding, the more frequently the keyword appears. In the construction of
the EKTIR-tree, this encoding is involved in the construction of the CodeArr of the leaf
nodes and the formation of the inverted file of the non-leaf nodes. For example, suppose
the keyword set of a leaf node is {key1, key3, key5} and the calculated Code is {Codekey1 = 0,
Codekey3 = 11, Codekey5 = 100}, then the CodeArr in the leaf node information file is 011100.
Furthermore, suppose the keyword set of a non-leaf node is {key1, key2, key3, key4, key5}
and the calculated Code is {Codekey1 = 0, Codekey2 = 101, Codekey3 = 11, Codekey4 = 1000,
Codekey5 = 100}, then the inverted file in the information file of the node part of the format
is {Codekey1: . . .; Codekey3: . . .; Codekey2: . . .}. The order of each record is sorted by the length
of the index keyword code in ascending order, meaning that the keyword with the highest
weight is in the front of the reverse file record, thus improving the efficiency of each search.

Suppose that the total number of POI keywords in this database D is k, that is, the
number of leaf nodes of the Huffman tree is k, the time complexity of sorting and other
operations using the Treeset data structure is O(logk) and the time complexity of building
the Huffman tree and obtaining the Huffman code is O(klogk). This means that the time
complexity of Algorithm 1 is O(klogk).

4.2. Pruning Query Method Based on EKTIR-Tree Index

Following the construction of the EKTIR-tree index, this subsection performs keyword
and temporal pruning based on the index. It searches for all POI objects that meet the
keyword and exclusion keywords and temporal requirements of query q and scores each
object into a hash table to facilitate subsequent processing. For more efficient pruning,
Theorems 1–3 are first given:

Theorem 1. Given a spatial–text database D and the corresponding EKTIR-tree index and query q,
note that a non-leaf node in the index is N. If its BloomFilter determines that the keyword key does
not appear in q.K−, then there is absolutely no exclusion keyword in the children nodes of N.

Proof of Theorem 1. According to the working principle of the Bloom filter, assuming the
existence of the exclusion keyword key in the children nodes of N, there must be key ∈
doc(N). When constructing the Bloom filter, the bit of key after hash function mapping
must be 1 instead of 0. Therefore, after verifying, the exclusion keyword key of q by the
Bloom filter is calculated to exist. Contrary to the original condition, the proof is complete.
�

ISPRS Int. J. Geo-Inf. 2023, 12, 438 9 of 20

Theorem 2. Given a spatial–text database D and the corresponding EKTIR-tree index and query
q, note that a non-leaf node in the index is N. If its BloomFilter determines that the keyword
key appears in the exclusion keyword set q.K−, the result is that it exists. And the keyword
intersection of non-leaf node N contains a keyword key in the set of query exclusion keywords, i.e.,
∃

key∈q.K−
key ∈ N.Ukey. Then, the key exists in the Ukey of all children nodes of this node and this

node and its descendant nodes should all be pruned.

Proof of Theorem 2. Using the converse method, assume that key /∈ ∀Ni.Ukey because
N.Ukey = ∩Ni.Ukey, then key /∈ N.Ukey contradicts the original condition and the proof is
complete. �

Theorem 3. Given a query q and an EKTIR-tree index, if the time zone of the query does not have
any intersection with the time zone of the current node, i.e., q.st > N.info.et or q.et < N.info.st, then
the node and its descendants can be pruned in full.

Proof of Theorem 3. Using the converse method, assume that there exists a POI object
oi in the MBR region of the node that intersects with the time interval of the query q, i.e.,
oi.t ∩ q.t 6= Ø. Since the Utime in the information file of each node in the EKTIR-tree is a
concatenation of the Utimes of its child nodes, then oi.t ⊆ N.Utime and q.t ∩ N.Utime 6= Ø,
contradicting the original condition, and the proof is complete. �

The scoring function for POI is further given in Equation (4):

Score(o) = β· 1
dist(o, q)

+ (1− β)·η(o, q) (4)

The fractional values of the non-leaf nodes are calculated by Equation (5):

Score(N) = β· 1
dist(oi, q)

+ (1− β)·η(N, q) (5)

In Equation (5), oi is the nearest child node among the child nodes to the query point
and β is the smoothing parameter to balance the spatial distance and temporal overlap
degree. The closer to the query point or the higher the overlap between time and query, the
larger the Score value. Without losing generality, this article takes β as 0.5.

Specifically, take the R4 node in Figure 2 as an example and assume that the Euclidean
distance between o1 and q in R4 is 4, the time of o1 is (9:30, 20:30), the Euclidean distance
between o2 and q is 2, and the time of o2 is (7:00, 11:00) and the time of q is (9:00, 21:00), then
the scoring is calculated for o2 to get Score(o2) = 1/2 + 4/12 ≈ 0.83 and for non-leaf nodes
R4 to get Score(R4) = 1/4 + 11/12 ≈ 1.167.

Based on the EKTIR-tree index, combined with Theorems 1–3, the traversal starts from
the root node and determines whether the query requirements are met in terms of time
and keywords, respectively. A priority queue is used to save the intermediate results until
the POI is traversed and the candidate POI is computed as a Score value into a hash table,
further giving Algorithm 2.

Algorithm 2 first initializes a priority queue U to store the nodes that need to be
recorded during the query and a node is queued when queue U is not empty (lines 1–4).
If the currently traversed node is a POI and matches the query requirement in terms of
keywords and time, its spatial distance cost is calculated according to Equation (4) and
stored in the resultant hash table Q according to its keywords (lines 5–15). If the current
traversal node is a non-leaf node, first prune according to the time and determine whether
the Utime of the node intersects with the Utime of the query q. If there is an intersection,
then there may be a POI in the child nodes of the node that meets the time familiarity. If
the time attribute meets the requirement then the Bloom filter and keyword intersection
are used to jointly determine whether its child nodes meet the query keyword requirement

ISPRS Int. J. Geo-Inf. 2023, 12, 438 10 of 20

and the child nodes that meet the requirement are entered into queue U (lines 16–27). If
the current node is a leaf node, it operates the same as a non-leaf node when determining
the time attribute. However, since the keyword information stored in the leaf node is of a
string type, the KMP algorithm is used here to find whether there is a POI that meets the
requirements (lines 28–39). When the queue U is empty, the result is returned as a hash
table Q (line 40). The data stored in Q are <key, o> pairs, which are sorted in reverse order
according to the zipper method based on the Score value when there is a storage conflict.

Algorithm 2: EKTIR-tree index-based filtering algorithm (Candidate algorithm)

Input: EKTIR-tree index on D, query q (loc, K+, K−, st, et).
Output: Candidate hash table Q.
begin
1: Initialize the priority queue U and the hash table Q to empty; /* The index value of the priority
queue is its score value */
2: U.enqueue(KTIR-tree.root);
3: while U is not empty then
4: e← U.dequeue; /* The head of queue U exits the queue */
5: if e is POI then
6: if e.Utime is included in q.t then
7: for key ∈ e.K then
8: if key ∈ q.K− then /* Exclusion keywords are skipped if present */
9: continue; /* skip the current loop */
10: Q.add (e); /* Positive keywords exist for the query, join Q
11: end if
12: end for
13: else then
14: continue; /* skip the current loop, Theorem 3 */
15: end if
16: else if e is a non-leaf node then
17: if e.Utime intersects with q.t then
18: for each keyword key− in q.K− then
19: if e.info.BloomFielter(key−) is true && key-∈e.Ukey then
20: continue; /* skip the current loop, Theorem 2 */
21: end if
22: if inverted file search for keyword records in q.K+ then
23: U.enqueue(e); /* Theorem 1 */
24: else then
25: continue; /* skip the current loop, Theorem 3 */
26: end if
27: end for
28: else then /* e is a leaf node */
29: if e.Utime intersects with q.t then
30: for each keyword key− in q.K− then
31: if kmp(e.CodeArr, Codekey−)! = −1 then
32: continue; /* skip the current loop */
33: end if
34: U.enqueue(e);
35: end for
36: end if
37: end if
39: end while
40: return Q;
end

Assuming that the number of nodes in the EKTIR-tree index is n, the number of hash
functions set by the Bloom filter is m, and m is a constant value, the time complexity of
the Bloom filter query keyword in Algorithm 2 is O(mlogn) and the time complexity of

ISPRS Int. J. Geo-Inf. 2023, 12, 438 11 of 20

the KMP algorithm used to query the leaf node keyword is O(M+N). Since the average
Huffman code length of keywords is N = O(logk) in the worst case, assuming that the
number of keywords of POIs in database D is S on average, then M = O(Slogk) and the
time complexity of searching the leaf part is O(Slogk). Therefore, the time complexity of
Algorithm 2 is O(mlogn) + O(Slogk).

5. Spatial Keyword Group Query Method Based on Distance Domination Group

For the spatial keyword group query problem, this section discusses the underlying
separation property based on the distribution law of spatial distance to POI and further
proposes Properties 1 and 2 and Theorems 4–7 based on the separation property. In order
to improve the efficiency of algorithmic queries, this section proposes Algorithms 3 and 4
based on the proposed properties and theorems.

Since this section only studies the properties and theorems on spatial distances, it
will query the spatial coordinates of q.loc and use q to represent the coordinate points
represented in the space.

Separation Property ([34]). Suppose M′ is a feasible set and the distance cost between M′ and the
query point q is only related to the object o1 in M′ that is farthest away from q and the two objects
o2 and o3 in M′ that are farthest away from each other.

As shown in Figure 4, a query point q and five space–text objects, o1, o2, o3, o4 and
o5, exist and the keyword attribute contents of all object points are visible in the figure.
Suppose q.K+ = {k1, k2, k5}, then there exists a feasible set as M′ = {o1, o2, o3} with the distance
dominator o1 and diameter dominators o2 and o3 for M′. According to the separation
property above, the distance cost of M′ is only related to these three objects within the set.
We can calculate the spatial distance cost of the feasible set M′ by the formula in Definition
5. Here, it is considered that o1, o2 and o3 form a distance domination group. Any feasible
set with its query distance dominator as o1 and diameter domination pairs as o2 and o3
is said to be (o1, o2, o3) domination consistent and each (o1, o2, o3) domination consistent
feasible set has the same distance cost.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 12 of 21

to be (o1, o2, o3) domination consistent and each (o1, o2, o3) domination consistent feasible

set has the same distance cost.

o1

o5

o3

o2

o4

q

o1.key={k1,k3}

o2.key={k2}

o3.key={k4,k5}

o4.key={k1,k4}

o5.key={k1,k2}

Figure 4. The figure of example objects.

A distance-dominated group-based approach: based on the separation property, we

propose a distance-dominated group-based query approach. The method maintains a var-

iable set S to store the currently found optimal feasible set and then iterates to find differ-

ent feasible sets, taking the optimal solution each time until the final result is obtained.

The main steps are:

(1) Step 1: Find the distance dominator and select an object o in the spatial–text object as

the distance dominator of the current feasible set.

(2) Step 2: Find the diameter dominating pair, select two objects o1 and o2 in the spatial–

text objects as the distance dominating pair of the current feasible set and o, o1 and o2

can all cover q.K+ and form a feasible set M′.

(3) Step 3: Find the suboptimal feasible set. Find the set M for which (o, o1, o2) dominates

consistently, and update M′ if it exists and Scost(M) < Scost(M′).

(4) Step 4: Iterate, repeat steps 1 and 2, find another distance-dominating group and con-

tinue with step 3 until all dominating groups are traversed.

Steps 1–4 give a search strategy based on all possible distance-dominated groups, but

the time complexity is O(|N|^3), which is too inefficient. Therefore, to improve the search

efficiency, Properties 1 and 2 are proposed for pruning.

Property 1. Given a feasible set M′, if o is a distance dominator of M′, then the two objects of the

diameter-dominating pair of M′ are also in the circular region with q as the center and dist(o, q) as

the radius, i.e., C(q, dist(o, q)).

Proof of Property 1. A distance dominator is the object in the feasible set that is farthest

from the query point q, so for any object o′ in M′ other than o, we have dist(o′, q) ≤ dist(o,

q), i.e., o′ is in C(q, dist(o, q)). □

Property 2. Given a feasible set of M′ and o is a distance dominator of M′, with o2 and o3 being

diameter-dominated pairs of M′, all possible objects of M′ are in the region R = C(q, dist(o, q))∩C(o1,

dist(o1, o2))∩C(o2,dist(o1, o2)).

Proof of Property 2. For every object, o′∈M′, there is dist(o′, q) ≤ dist(o, q), i.e., o′ is in C(q,

dist(o, q)). For each object, o′∈M′, there is dist(o′, o1) ≤ dist(o1, o2), i.e., o′ is in C(o1, dist(o1,

o2)), and dist(o′, o2) ≤ dist(o1, o2), i.e., o′ is in C(o2, dist(o1, o2)). □

Taking Figure 4 as an example, assuming here that o1 has been chosen as the distance

dominator and o2 and o3 as the diameter-dominating pair, there is still no need to consider

o4 as an object in the feasible set M′ because, firstly, o4 violates the distance dominator

property and, secondly, since dist(o2, o4) > dist(o2, o3), o4 violates the separation property

when the diameter-dominating pair is (o2, o3), so there is no need to consider o4 either.

By Properties 1 and 2, the query method based on the distance-dominating group can

reduce the search space in a large area. However, according to the usual situation, that the

Figure 4. The figure of example objects.

A distance-dominated group-based approach: based on the separation property, we
propose a distance-dominated group-based query approach. The method maintains a
variable set S to store the currently found optimal feasible set and then iterates to find
different feasible sets, taking the optimal solution each time until the final result is obtained.
The main steps are:

(1) Step 1: Find the distance dominator and select an object o in the spatial–text object as
the distance dominator of the current feasible set.

(2) Step 2: Find the diameter dominating pair, select two objects o1 and o2 in the spatial–
text objects as the distance dominating pair of the current feasible set and o, o1 and o2
can all cover q.K+ and form a feasible set M′.

(3) Step 3: Find the suboptimal feasible set. Find the set M for which (o, o1, o2) dominates
consistently, and update M′ if it exists and Scost(M) < Scost(M′).

(4) Step 4: Iterate, repeat steps 1 and 2, find another distance-dominating group and
continue with step 3 until all dominating groups are traversed.

ISPRS Int. J. Geo-Inf. 2023, 12, 438 12 of 20

Steps 1–4 give a search strategy based on all possible distance-dominated groups, but
the time complexity is O(|N|ˆ3), which is too inefficient. Therefore, to improve the search
efficiency, Properties 1 and 2 are proposed for pruning.

Property 1. Given a feasible set M′, if o is a distance dominator of M′, then the two objects of the
diameter-dominating pair of M′ are also in the circular region with q as the center and dist(o, q) as
the radius, i.e., C(q, dist(o, q)).

Proof of Property 1. A distance dominator is the object in the feasible set that is farthest
from the query point q, so for any object o′ in M′ other than o, we have dist(o′, q) ≤ dist(o,
q), i.e., o′ is in C(q, dist(o, q)). �

Property 2. Given a feasible set of M′ and o is a distance dominator of M′, with o2 and o3 being
diameter-dominated pairs of M′, all possible objects of M′ are in the region R = C(q, dist(o, q))∩C(o1,
dist(o1, o2))∩C(o2,dist(o1, o2)).

Proof of Property 2. For every object, o′∈M′, there is dist(o′, q) ≤ dist(o, q), i.e., o′ is in C(q,
dist(o, q)). For each object, o′∈M′, there is dist(o′, o1) ≤ dist(o1, o2), i.e., o′ is in C(o1, dist(o1,
o2)), and dist(o′, o2) ≤ dist(o1, o2), i.e., o′ is in C(o2, dist(o1, o2)). �

Taking Figure 4 as an example, assuming here that o1 has been chosen as the distance
dominator and o2 and o3 as the diameter-dominating pair, there is still no need to consider
o4 as an object in the feasible set M′ because, firstly, o4 violates the distance dominator
property and, secondly, since dist(o2, o4) > dist(o2, o3), o4 violates the separation property
when the diameter-dominating pair is (o2, o3), so there is no need to consider o4 either.

By Properties 1 and 2, the query method based on the distance-dominating group can
reduce the search space in a large area. However, according to the usual situation, that the
optimal set will be formed near the query point q, the distance nearest the first method
is adopted in step 1 to determine the distance dominator. Taking Figure 3 as an example,
when o3 is selected as the distance dominator in step 1, no object exists in the delimited
region C(o3, dist(o3, q)) in step 2, so that no diameter dominating pair can be found. In view
of this phenomenon, Theorems 4 and 5 are given in this paper to find the nearest farthest
distance dominator.

The set of nearest neighbors of q is denoted by N(q) and r(C) denotes the radius of the
circular region C.

Theorem 4. Use rmin = max(dist(o, q) | o∈N(q)) when and only when rmin ≤≤ r(C), then a
feasible set in region C exists.

Proof of Theorem 4. Sufficiency is obvious because for ∀C, r(C)≥ rmin, all N(q) in region C
are a feasible set. Necessity is proved by contradiction. Suppose r(C) < rmin and a feasible
set M exists in region C. Let of be the object farthest from the query point in N(q), i.e., rmin =
dist(of, q). If a keyword key∈of.K∩q.K+ exists, an object that contains the keyword key and
is closer to the query point q than of does not exist, otherwise of /∈ N(q). If M is a feasible set,
an object o ∈M exists and the set of keywords of o contains the key. Therefore, there is a
conclusion dist(o, q) ≤ r(C) ≤ rmin = dist(of, q), which obviously contradicts the original
proposition. �

Theorem 4 shows that if r(C) ≤ rmin, then there is no feasible set in region C. So, the
region of radius rmin is the smallest region to be considered in this paper, the boundary
objects in this region are the nearest distance dominators and the boundary objects are
distributed along the region boundary.

Theorem 5. Suppose M is a feasible set and rmax = Scost(M) and r(C) > rmax for region C. Then,
for any feasible set M′ containing at least one object other than C, Scost(M′) > Scost(M).

ISPRS Int. J. Geo-Inf. 2023, 12, 438 13 of 20

Proof of Theorem 5. Scost(M′)≥max(dist(o, q) | o∈M′) > r(C) > rmax = Scost(M), assuming
that a feasible set M′ outside M exists. Obviously the value of Scost(M′) is greater than the
distance between the distance dominator of M‘ and the query point q and this distance
must be greater than r(C) of M, i.e., Scost(M′) > Scost(M). �

Theorem 5 shows that when a feasible set M is known, there is no need to consider
objects outside the region C(q, rmax), where rmax = Scost(M), and again, here, the objects
are distributed along the region boundary.

Theorems 4 and 5 illustrate the minimum and maximum regions to be considered in
this paper, specifically, the distance dominators o in the feasible set M‘ must be distributed in
a circle which is the region formed by subtracting the minimum region from the maximum
region.

Let M be a feasible set such that rmin = max(dist(o, q) | o∈N(q)) and rmax = Scost(M),
defining the circular representation of the set M as Ring(M), i.e., C(q, rmax)–C(q, rmin).
As the radius of the outer circular region of Ring(M) is Scost(M), the region occupied by
Ring(M) becomes smaller as Scost(M) becomes smaller. Based on the Properties 1 and 2
and Ring(M), we further give Algorithm 3 to find the optimal set.

Algorithm 3: Finding the optimal set (FOPS algorithm)

Input: Query point q and candidate hash table Q.
Output: The Optimal set M.
begin
1: M← N(q); Pairs← Ø;
2: while Ring(M) has unprocessed objects then
3: o← the closest unprocessed object; /* step 1*/
4: C← the region with q as the center and radius of dist(o, q); /* step2, Pairs are arranged
internally in ascending order of distance between two points */
5: Pairs← All possible diameter dominance pairs located within C;
6: for each(o1, o2)∈Pairs then
7: if there exists a (o, o1, o2)-dominated consistent feasible set M′ in C then
8: if Scost(M) > Scost(M′) then
9: M←M′;
10: break;
11: end if
12: end for
13: o is marked as processed;
14: end while
15: return M;
end

As the initial data in the spatial–text database D have been selected by Algorithm 2
for all POIs that meet the keyword and time requirements, only the optimal set needs to
be selected from the candidate hash table Q here. Algorithm 3 initializes the set Pairs to
be empty and maintains a set M to store the currently sought optimal set, initialized as
the set of nearest neighbors of the query point, and then proceeds to the iterative process
(line 1): The unprocessed objects in Ring(M) are checked and the closest one is selected as
the distance dominator of this feasible set in step 1. A circular region C with the query point
as the center and dist(q, o) as the radius is drawn in step 2. All possible diameter-dominated
pairs are found in region C to add to the set Pairs (lines 2–5) and, in step 3, each pair of
diameter-dominated pairs (o1, o2) in the set Pairs are iterated to find if there is an existing
set where (o, o1, o2) is dominated consistently. If such a set M′ is found and the Scost(M′)
is smaller than the cost of the currently known optimal set, the update of the optimal set
is performed and then the traversal of the objects in the set Pairs is stopped (lines 6–15).
If such a set M′ is not found, the traversal of the next pair of diameter-dominated pairs
continues until it is found or all the objects in the Pairs are processed.

ISPRS Int. J. Geo-Inf. 2023, 12, 438 14 of 20

In order to further improve the efficiency of the algorithm, step 2 can refer to the results
of the previous iteration process in different rounds of the iterative process to improve the
efficiency of the screening process in this round. Assuming that the distance dominator
selected in step 1 is o, construct region C and construct the set of Pairs in C. Then, in the
next iteration, the distance dominator selected in the next round is o′ and the set is Pairs′.
Since there are always Pairs∈Pairs′, another set AddPairs is constructed to hold the extra
diameter-dominating pairs in Pairs′ relative to Pairs, i.e., AddPairs = {(o′, o′′) | o′′∈C(q, dist(o,
q))}, then Pairs′ = Pairs∪AddPairs. Moreover, it is not necessary to add all possible diameter
dominators to the set of Pairs in step 2. Theorems 6 and 7 are given here to effectively
improve the pruning efficiency of the candidate diameter-domination pairs.

Theorem 6. Suppose M is a feasible set with distance dominator o and diameter-dominated pair
(o1,o2), then dist(o1,o2) > dist(o, q) − min{dist(o1, q), dist(o2, q)}.

Proof of Theorem 6. It is easy to know that dist(o1, o2) > dist(o1, o) and dist(o1, o2) > dist(o2,
o). Based on the trigonometric inequality, it is known that dist(o1, o) + dist(o1, q) > dist(o,
q) and dist(o1, o) + dist(o2, q) > dist(o, q), which can be derived from dist(o1, o2) > dist(o, q)
−min{dist(o1, q), dist(o2, q)}, so it is known that there is an existing minimum boundary
value for the diameter-dominated pair (o1, o2). �

Theorem 7. Suppose M is a feasible set with distance dominator o and diameter dominating pair
(o1,o2) such that M′ is another feasible set. Scost(M) ≤ Scost(M′) when, and only when, dist(o1,o2)
≤ Scost(M′) − dist(o, q).

Proof of Theorem 7. Proof by contradiction, assume that Scost(M)≥ Scost(M′), i.e., dist(o, q)
+ dist(o1, o2)≥ Scost(M′), which introduces dist(o1, o2)≥ Scost(M′)− dist(o, q), contradicting
the original condition. �

Let M′ be the feasible set found so far, Theorems 6 and 7 show that the diameter-
dominated pair (o1, o2) can be pruned if dist(o1, o2) > Scost(M′) − dist(o, q). Suppose
dmax = Scost(M′) − dist(o, q), then dmax is the maximum boundary value of the diameter-
dominated pair (o1, o2). In summary, it is only necessary to select the diameter-dominated
pair between the minimum and maximum boundary values in step 2.

Step 3 finds the feasible set for which (o, o1, o2) dominates consistently, which involves
the processing of keywords, and Algorithm 4 shows the relevant computational logic
details in detail.

In Algorithm 4, a feasible set with the consistent domination of (o, o1, o2) is found then
its output is direct, otherwise the output is Ø. First of all, one must determine whether dist
(o1, o2) ≥ max{dist (o, o1), dist (o, o2)} is true based on the nature of the diameter branch
pair in the Separation Property (line 1). If not, no feasible set is uniformly dominated by
(o, o1, o2). Directly output the result until the algorithm ends; otherwise proceed to the
next step of judgment. Initialize M′ to {o, o1, o2} and also maintain a set (unkey) to save the
keywords that currently need to be searched (lines 2–3). If the unkey is Ø, it indicates that the
currently found object set has covered all the query keywords and we can directly output
M′ (lines 4–5). Otherwise, we need to iterate through the POIs related to the keywords in
the unkey and find the objects that can form a consistent set of dominators feasible with
the currently existing objects. First, after reducing the search space to R by Property 2, the
traversal can be based on the hash table Q output by Algorithm 2 to select the best object in
R for the desired keyword (lines 6–13). Then, we add the objects matching the keyword to
M′ and check whether M′ is dominated consistently, i.e., check whether o1 and o2 are still
the diameter-dominated pair of the set. If yes, output M′ (lines 14–18), otherwise restore M′

and check the next subset of objects. If at the end, there is still no feasible set found, then
output Ø (lines 19–24).

ISPRS Int. J. Geo-Inf. 2023, 12, 438 15 of 20

Algorithm 4: Find the feasible set M‘ for which (o, o1, o2) dominates consistently

Input: Three spatial text objects o, o1, o2.
Output: If it exists then output (o, o1, o2) dominates the consistent feasible set M‘, otherwise
output Ø.
begin
1: if dist(o1, o2) ≥max{dist(o, o1),dist(o, o2)} then
2: M′←{o, o1, o2};
3: unkey←q.K+ − (q.K+ ∩ (o.K∪o1.K∪o2.K); /* keywords not yet collected */
4: if unkey is Ø then
5: return M′;
6: else then
7: R← C(q, dist(o, q))∩C(o1, dist(o1, o2))∩C(o2, dist(o1, o2)); /* Property 2 */
8: find all object points in R with keywords related to unkey from Q into the middle set Temp
9: if the keywords of the objects in Temp cannot be overwritten together with unkey then
10: return Ø;
11: else then
12: for each curkey in unkey then
13: e←Q.get(curkey);
14: if e∈Temp then
15: M′ ←M′∪{e}; /* The best POI corresponding to each desired keyword from the
hash table Q and which is within R is added to the set M′ */
16: else then
17: if M′ is (o, o1, o2) dominated consistently then
18: return M′;
19: else then
20: M′←M′− e; /* reset M‘ */
21: end if
22: end for
23: end if
24: end if
25: end if
26: return Ø;
end

In Algorithm 4, assuming that |q.K+| is u and |o.K| is v on average, the time com-
plexity of the set operation used to compute the unkey is O(u + v) and the time complexity
of searching for keyword-related POIs from the hash table is O(1). However, the time
complexity of determining whether the keywords of the selected objects cover the unkey
as a whole is O(v), so the time complexity here is O(v), and then calculating whether the
relevant objects in R can be formed into a feasible set, and the time complexity of this part
is O(u). Therefore, the overall time complexity of Algorithm 4 is O(u + v).

Since Algorithm 4 forms part of Algorithm 3, the time complexity of Algorithm 3 can be
analyzed only after the time complexity analysis of Algorithm 4 is complete. In Algorithm 3,
assuming that the number of POIs in the database D is p, the time complexity of finding N(q)
is O(logp), the time complexity of finding the distance-dominant and diameter-dominant
pairs and ranking them is O(plogp) and the time complexity of finding the suboptimal
feasible set in Step 3 is O(p2u + p2v), so that Algorithm 3 has a time complexity of O(plogp)
+ O(p2u + p2v).

Up to this point, the optimal set of all POI objects can be obtained after two stages of
Algorithms 2 and 3, so this paper proposes a query method based on the EKTIR-tree index
and dominating group (EKTDG). The method consists of two parts, the first part is based
on the EKTIR-tree index using Algorithm 2 to perform preliminary pruning and filtering
operations on POI objects to get the candidate objects that meet the time and keyword
requirements and then Algorithm 3 is used to refine the candidate objects to select the
result set with the optimal distance.

ISPRS Int. J. Geo-Inf. 2023, 12, 438 16 of 20

6. Experiment Analysis

For the problem of a time-aware group query with exclusion keywords, this paper
proposes a query method based on an EKTIR-tree index and dominating groups. The
proposed method first performs pruning queries on temporal and keyword attributes
based on the established EKTIR-tree index and filters out all POIs in the spatial–text
database D that meet the temporal and keyword requirements into the hash table. Further
based on the information of the hash table, the final optimal set is found based on the
spatial distance and domination group. In order to evaluate the method performance, four
aspects of comparison experiments are designed in this section. The first aspect compares
the effect of the dataset size on the efficiency of different algorithms, the second aspect
compares the effect of the number of query’s positive keywords on the efficiency of different
algorithms, the third aspect compares the effect of the number of query rejection keywords
on the efficiency of different algorithms and the fourth aspect compares the accuracy of
the execution result 3

4 s of different algorithms on different datasets. The methods that are
compared with the algorithm proposed in this paper are the CD-Exact algorithm [27], the
Unified-E algorithm [14] and the EXACT algorithm [16].

The environment used for the experiments is the Microsoft Windows 10 (64-bit),
Core(TM) i7-7500U CPU@2.70 GHz processor, with a running memory of 12 GB, and the
programming language is Java1.8.

The experimental data were obtained from the real data set with small data processing
to make it more suitable for the experimental needs. In this paper, we use three datasets,
Yelp, Hotel and GN, where Yelp is downloaded from the Yelp US dataset and each POI
has a location coordinate and a set of classification tags, which can be considered as a set
of keywords. The dataset Hotel contains information about some hotels in the United
States and each POI has unique location information and a set of keywords to describe the
characteristics of the hotel. The dataset GN is from the U.S. Geographic Names Committee
(geonames.usgs.gov), where each object has a location and a set of descriptive keywords
(e.g., a place name, such as valley). And [0–24] time information is randomly generated for
each object in the above dataset. Table 1 shows the information table of the dataset used in
the experiment.

Table 1. Datasets used in the experiments.

Dataset GN Hotel Yelp

Number of objects 1,868,821 20,790 192,609
Number of unique words 222,409 602 2468

Number of words 18,374,228 80,645 788,841

Experiment 1. This part of the experiment aims to compare the efficiency of the EKTDG algorithm
with the CD-Exact algorithm, Unified-E algorithm and EXACT algorithm in terms of dataset size.
Specifically, each dataset is randomly selected in 2–12 M size increments with a tolerance of 2 for
comparison experiments and all other conditions are controlled equally. As the amount of data
increases, the CPU execution time of the four algorithms changes, as shown in Figure 5.

Figure 5 shows that the CPU execution time of the EKTDG algorithm does not increase
steeply as the amount of data increases and the scalability for the data set performs better
compared to other comparative algorithms because the EXACT and Unified-E algorithms
do not use indexing techniques and have fewer pruning methods. When the volume of
data increases, the query time increases dramatically by relying only on the spatial distance
pruning method. However, the EKTDG method proposed in this paper first uses indexing
techniques to efficiently filter keywords and temporal information to narrow the search
space and then prunes the search object in the space after the previous narrowing step to
query the results; most POIs are efficiently filtered out by the index in the first step, so the
algorithm has good scalability.

ISPRS Int. J. Geo-Inf. 2023, 12, 438 17 of 20

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 17 of 21

The environment used for the experiments is the Microsoft Windows 10 (64-bit),

Core(TM) i7-7500U CPU@2.70 GHz processor, with a running memory of 12 GB, and the

programming language is Java1.8.

The experimental data were obtained from the real data set with small data pro-

cessing to make it more suitable for the experimental needs. In this paper, we use three

datasets, Yelp, Hotel and GN, where Yelp is downloaded from the Yelp US dataset and

each POI has a location coordinate and a set of classification tags, which can be considered

as a set of keywords. The dataset Hotel contains information about some hotels in the

United States and each POI has unique location information and a set of keywords to de-

scribe the characteristics of the hotel. The dataset GN is from the U.S. Geographic Names

Commi7ee (geonames.usgs.gov), where each object has a location and a set of descriptive

keywords (e.g., a place name, such as valley). And [0–24] time information is randomly

generated for each object in the above dataset. Table 1 shows the information table of the

dataset used in the experiment.

Table 1. Datasets used in the experiments.

Dataset GN Hotel Yelp

Number of objects 1,868,821 20,790 192,609

Number of unique words 222,409 602 2468

Number of words 18,374,228 80,645 788,841

Experiment 1. This part of the experiment aims to compare the efficiency of the EKTDG algorithm

with the CD-Exact algorithm, Unified-E algorithm and EXACT algorithm in terms of dataset size.

Specifically, each dataset is randomly selected in 2–12 M size increments with a tolerance of 2 for

comparison experiments and all other conditions are controlled equally. As the amount of data

increases, the CPU execution time of the four algorithms changes, as shown in Figure 5.

Figure 5. The effect of dataset size on algorithm efficiency.

Figure 5 shows that the CPU execution time of the EKTDG algorithm does not in-

crease steeply as the amount of data increases and the scalability for the data set performs

be7er compared to other comparative algorithms because the EXACT and Unified-E al-

gorithms do not use indexing techniques and have fewer pruning methods. When the

volume of data increases, the query time increases dramatically by relying only on the

spatial distance pruning method. However, the EKTDG method proposed in this paper

first uses indexing techniques to efficiently filter keywords and temporal information to

narrow the search space and then prunes the search object in the space after the previous

narrowing step to query the results; most POIs are efficiently filtered out by the index in

the first step, so the algorithm has good scalability.

Experiment 2. This part of the experiment aims to compare the effect of a different number of query

forward keywords on the efficiency of various algorithms. Specifically, for each dataset, a certain

Figure 5. The effect of dataset size on algorithm efficiency.

Experiment 2. This part of the experiment aims to compare the effect of a different number of query
forward keywords on the efficiency of various algorithms. Specifically, for each dataset, a certain
number of keywords are randomly generated from all the keyword information of POI in this dataset
as query positive keywords whose number variation interval is [1–5]. The CPU execution time
variation of the four algorithms is shown in Figure 6.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 18 of 21

number of keywords are randomly generated from all the keyword information of POI in this da-

taset as query positive keywords whose number variation interval is [1–5]. The CPU execution

time variation of the four algorithms is shown in Figure 6.

Figure 6. The effect of positive keywords number on algorithm efficiency.

As can be seen from Figure 6, the EKTDG algorithm does not change significantly

and is more efficient than the other algorithms as the number of query positive keywords

increases. This is because the EKTDG algorithm introduces the idea of Huffman encoding

on the index, which improves the hit rate of query keywords to a certain extent and is

more optimized compared to CD-Exact. The CD-Exact algorithm also uses the prepro-

cessing of keywords to calculate the frequency of keywords to improve the efficiency of

the algorithm, so it is more efficient overall than the Unified-E algorithm and the EXACT

algorithm. The Unified-E algorithm uses pruning methods, while the EXACT algorithm

is the least efficient because of the error in finding the exact result based on the approxi-

mation algorithm.

Experiment 3. This part of the experiment aims to compare the effect of a different number of query

exclusion keywords on the efficiency of various algorithms. Specifically, for each dataset, a certain

number of keywords are randomly generated from all of the keyword information of POI in this

dataset as exclusion keywords and their number varies in the interval [1–5]. For the other algo-

rithms that do not consider the exclusion keywords, a keyword dichotomous tree approach, com-

monly used in the field, is added to them. The CPU execution time variation of the four algorithms

is shown in Figure 7.

Figure 7. The effect of exclusion keywords number on algorithm efficiency.

As can be seen from Figure 7, there is li7le difference in the execution efficiency be-

tween the algorithms after adding the processing of the exclusion keyword to the three

compared algorithms. When the exclusion keyword changes in the next query, the binary

tree method needs to reconstruct the binary tree index and all the spatial indexes for the

exclusion keyword, so the running time of this method grows faster. However, the

EKTDG algorithm can be created once and used continuously with a low maintenance

Figure 6. The effect of positive keywords number on algorithm efficiency.

As can be seen from Figure 6, the EKTDG algorithm does not change significantly
and is more efficient than the other algorithms as the number of query positive keywords
increases. This is because the EKTDG algorithm introduces the idea of Huffman encoding
on the index, which improves the hit rate of query keywords to a certain extent and is more
optimized compared to CD-Exact. The CD-Exact algorithm also uses the preprocessing of
keywords to calculate the frequency of keywords to improve the efficiency of the algorithm,
so it is more efficient overall than the Unified-E algorithm and the EXACT algorithm. The
Unified-E algorithm uses pruning methods, while the EXACT algorithm is the least efficient
because of the error in finding the exact result based on the approximation algorithm.

Experiment 3. This part of the experiment aims to compare the effect of a different number of query
exclusion keywords on the efficiency of various algorithms. Specifically, for each dataset, a certain
number of keywords are randomly generated from all of the keyword information of POI in this
dataset as exclusion keywords and their number varies in the interval [1–5]. For the other algorithms
that do not consider the exclusion keywords, a keyword dichotomous tree approach, commonly used
in the field, is added to them. The CPU execution time variation of the four algorithms is shown in
Figure 7.

As can be seen from Figure 7, there is little difference in the execution efficiency
between the algorithms after adding the processing of the exclusion keyword to the three
compared algorithms. When the exclusion keyword changes in the next query, the binary
tree method needs to reconstruct the binary tree index and all the spatial indexes for the
exclusion keyword, so the running time of this method grows faster. However, the EKTDG

ISPRS Int. J. Geo-Inf. 2023, 12, 438 18 of 20

algorithm can be created once and used continuously with a low maintenance cost. The
algorithm introduces Bloom filters in the index, which are constructed for the keyword
information of the whole database space. Here, not only is the query speed fast, but the
space occupation is also small and subsequent maintenance is not required. Since the
EKTDG algorithm first prunes the space based on the exclusion keywords, its running time
slowly decreases as the number of exclusion keywords increases and the number of result
sets is smaller. Therefore, the running time of the EKTDG algorithm grows slowly and runs
faster as the number of excluded keywords increases.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 18 of 21

number of keywords are randomly generated from all the keyword information of POI in this da-

taset as query positive keywords whose number variation interval is [1–5]. The CPU execution

time variation of the four algorithms is shown in Figure 6.

Figure 6. The effect of positive keywords number on algorithm efficiency.

As can be seen from Figure 6, the EKTDG algorithm does not change significantly

and is more efficient than the other algorithms as the number of query positive keywords

increases. This is because the EKTDG algorithm introduces the idea of Huffman encoding

on the index, which improves the hit rate of query keywords to a certain extent and is

more optimized compared to CD-Exact. The CD-Exact algorithm also uses the prepro-

cessing of keywords to calculate the frequency of keywords to improve the efficiency of

the algorithm, so it is more efficient overall than the Unified-E algorithm and the EXACT

algorithm. The Unified-E algorithm uses pruning methods, while the EXACT algorithm

is the least efficient because of the error in finding the exact result based on the approxi-

mation algorithm.

Experiment 3. This part of the experiment aims to compare the effect of a different number of query

exclusion keywords on the efficiency of various algorithms. Specifically, for each dataset, a certain

number of keywords are randomly generated from all of the keyword information of POI in this

dataset as exclusion keywords and their number varies in the interval [1–5]. For the other algo-

rithms that do not consider the exclusion keywords, a keyword dichotomous tree approach, com-

monly used in the field, is added to them. The CPU execution time variation of the four algorithms

is shown in Figure 7.

Figure 7. The effect of exclusion keywords number on algorithm efficiency.

As can be seen from Figure 7, there is li7le difference in the execution efficiency be-

tween the algorithms after adding the processing of the exclusion keyword to the three

compared algorithms. When the exclusion keyword changes in the next query, the binary

tree method needs to reconstruct the binary tree index and all the spatial indexes for the

exclusion keyword, so the running time of this method grows faster. However, the

EKTDG algorithm can be created once and used continuously with a low maintenance

Figure 7. The effect of exclusion keywords number on algorithm efficiency.

Experiment 4. This part of the experiment aims to compare the query accuracy of different
algorithms on three datasets. Specifically, for each dataset, the four algorithms are applied with the
same number of control query keywords and the same other metrics. The accuracy of algorithm
execution is shown in Figure 8.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 19 of 21

cost. The algorithm introduces Bloom filters in the index, which are constructed for the

keyword information of the whole database space. Here, not only is the query speed fast,

but the space occupation is also small and subsequent maintenance is not required. Since

the EKTDG algorithm first prunes the space based on the exclusion keywords, its running

time slowly decreases as the number of exclusion keywords increases and the number of

result sets is smaller. Therefore, the running time of the EKTDG algorithm grows slowly

and runs faster as the number of excluded keywords increases.

Experiment 4. This part of the experiment aims to compare the query accuracy of different algo-

rithms on three datasets. Specifically, for each dataset, the four algorithms are applied with the same

number of control query keywords and the same other metrics. The accuracy of algorithm execution

is shown in Figure 8.

Figure 8. Algorithm accuracy.

As can be seen from Figure 8, the accuracy of the EKTDG algorithm execution can

reach more than 90% for either dataset. This is due to the fact that the algorithm uses a

backward index and Bloom filter technique that would have allowed for the accurate que-

rying of keywords, but the Bloom filter can feature false positives resulting in a less than

100% accuracy. In contrast, CD-Exact and Unified-E can achieve about 80% accuracy,

while the EXACT algorithm can only reach about 75% accuracy due to the large error

caused by using an approximation algorithm to reduce the search space in the early stage.

7. Conclusions

For the traditional spatial keyword group query that does not take into account the

temporal information and exclusion intention proposed by users, this paper proposes a

new query problem, i.e., a time-aware group query problem with exclusion keywords. In

order to solve the problem efficiently, this paper proposes a query method based on an

EKTIR-tree index and dominating group. The experimental results show that the algo-

rithm proposed in this paper has good scalability and efficiency. Future research work

will focus on the following aspects:

1. A study of spatial keyword group queries in road network environments.

2. A study of spatial keyword group queries under privacy protection.

3. A study of spatial keyword group queries in a dynamic environment with a stream-

ing data style.

Author Contributions: Conceptualization, Liping Zhang and Jing Li; methodology, Liping Zhang

and Jing Li; investigation, Liping Zhang; writing—original draft preparation, Jing Li; writing—re-

view and editing, Jing Li, Liping Zhang and Song Li; project administration, Song Li. All authors

have read and agreed to the published version of the manuscript.

Figure 8. Algorithm accuracy.

As can be seen from Figure 8, the accuracy of the EKTDG algorithm execution can
reach more than 90% for either dataset. This is due to the fact that the algorithm uses
a backward index and Bloom filter technique that would have allowed for the accurate
querying of keywords, but the Bloom filter can feature false positives resulting in a less than
100% accuracy. In contrast, CD-Exact and Unified-E can achieve about 80% accuracy, while
the EXACT algorithm can only reach about 75% accuracy due to the large error caused by
using an approximation algorithm to reduce the search space in the early stage.

7. Conclusions

For the traditional spatial keyword group query that does not take into account the
temporal information and exclusion intention proposed by users, this paper proposes a
new query problem, i.e., a time-aware group query problem with exclusion keywords. In

ISPRS Int. J. Geo-Inf. 2023, 12, 438 19 of 20

order to solve the problem efficiently, this paper proposes a query method based on an
EKTIR-tree index and dominating group. The experimental results show that the algorithm
proposed in this paper has good scalability and efficiency. Future research work will focus
on the following aspects:

1. A study of spatial keyword group queries in road network environments.
2. A study of spatial keyword group queries under privacy protection.
3. A study of spatial keyword group queries in a dynamic environment with a streaming

data style.

Author Contributions: Conceptualization, Liping Zhang and Jing Li; methodology, Liping Zhang
and Jing Li; investigation, Liping Zhang; writing—original draft preparation, Jing Li; writing—review
and editing, Jing Li, Liping Zhang and Song Li; project administration, Song Li. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant num-
ber 62072136, the Natural Science Foundation of Heilongjiang Province, grant number LH2023F031,
and the National Key R&D Program of China, grant number 2020YFB1710200.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, L.; Li, S.; Guo, Y.; Hao, X. A Method for k Nearest Neighbor Query of Line Segment in Obstructed Spaces. J. Inf. Process.

Syst. 2020, 16, 406–420. [CrossRef]
2. Zhang, L.; Ren, L.; Hao, X.; Li, S. Query Method for Nearest Region of Spatial Line Segment Based on Hilbert Curve Grid. Int. J.

Innov. Comput. Inf. Control 2019, 15, 1287–1307. [CrossRef]
3. Yang, R.; Niu, B. Continuous k Nearest Neighbor Queries over Large-Scale Spatial–Textual Data Streams. ISPRS Int. J. Geo-Inf.

2020, 9, 694. [CrossRef]
4. Li, S.; Hu, Y.; Hao, X.; Zhang, L.; Hao, Z. Approximate k-Nearest Neighbor Query of High Dimensional Data Based on Dimension

Grouping and Reducing. J. Comput. Res. Dev. 2021, 58, 609–623.
5. Dias de Almeida, J.P.; Durão, F.A. Personalizing the Top-k Spatial Keyword Preference Query with Textual Classifiers. Expert Syst.

Appl. 2020, 162, 113841. [CrossRef]
6. Wang, J.; Xiong, Z.; Han, Q.; Han, X.; Yang, D. Top-k Socially Constrained Spatial Keyword Search in Large SIoT Networks. IEEE

Internet Things J. 2022, 9, 9280–9289. [CrossRef]
7. Zhang, D.; Tan, K.-L.; Tung, A.K.H. Scalable Top-k Spatial Keyword Search. In Proceedings of the 16th International Conference

on Extending Database Technology—EDBT’13, Genoa, Italy, 18–22 May 2013; ACM Press: Genoa, Italy, 2013; p. 359.
8. Pan, X.; Yu, Q.-D.; Ma, A.; Sun, Y.; Wu, L.; Guo, J. Efficient algorithm of top-k spatial keyword search with OR semantics. J. Softw.

2020, 31, 3197–3215. [CrossRef]
9. Cheong, O.; Vigneron, A.; Yon, J. Reverse Nearest Neighbor Queries in Fixed Dimension. Int. J. Comput. Geom. Appl. 2011, 21,

179–188. [CrossRef]
10. Allheeib, N.; Islam, M.S.; Taniar, D.; Shao, Z.; Cheema, M.A. Density-Based Reverse Nearest Neighbourhood Search in Spatial

Databases. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 4335–4346. [CrossRef]
11. Islam, M.S.; Shen, B.; Wang, C.; Taniar, D.; Wang, J. Efficient Processing of Reverse Nearest Neighborhood Queries in Spatial

Databases. Inf. Syst. 2020, 92, 101530. [CrossRef]
12. Pan, X.; Nie, S.; Hu, H.; Yu, P.S.; Guo, J. Reverse Nearest Neighbor Search in Semantic Trajectories for Location-Based Services.

IEEE Trans. Serv. Comput. 2022, 15, 986–999. [CrossRef]
13. Cao, X.; Cong, G.; Jensen, C.S.; Ooi, B.C. Collective Spatial Keyword Querying. In Proceedings of the 2011 International

Conference on Management of Data—SIGMOD’11, Athens, Greece, 12–16 June 2011; ACM Press: Athens, Greece, 2011; p. 373.
14. Song, X.; Xu, J.; Zhou, R.; Liu, C.; Zheng, K.; Zhao, P.; Falkner, N. Collective Spatial Keyword Search on Activity Trajectories.

Geoinformatica 2020, 24, 61–84. [CrossRef]
15. Chan, H.K.-H.; Long, C.; Wong, R.C.-W. On Generalizing Collective Spatial Keyword Queries. IEEE Trans. Knowl. Data Eng. 2018,

30, 1712–1726. [CrossRef]
16. Zhang, D.; Chee, Y.M.; Mondal, A.; Tung, A.K.H.; Kitsuregawa, M. Keyword Search in Spatial Databases: Towards Searching by

Document. In Proceedings of the 2009 IEEE 25th International Conference on Data Engineering, Shanghai, China, 29 March–2
April 2009; IEEE: Shanghai, China, 2009; pp. 688–699.

https://doi.org/10.3745/JIPS.04.0167
https://doi.org/10.24507/ijicic.15.04.1287
https://doi.org/10.3390/ijgi9110694
https://doi.org/10.1016/j.eswa.2020.113841
https://doi.org/10.1109/JIOT.2021.3114155
https://doi.org/10.13328/j.cnki.jos.005810
https://doi.org/10.1142/S0218195911003603
https://doi.org/10.1007/s12652-018-1103-x
https://doi.org/10.1016/j.is.2020.101530
https://doi.org/10.1109/TSC.2020.2968309
https://doi.org/10.1007/s10707-019-00358-x
https://doi.org/10.1109/TKDE.2018.2800746

ISPRS Int. J. Geo-Inf. 2023, 12, 438 20 of 20

17. Guo, T.; Cao, X.; Cong, G. Efficient Algorithms for Answering the M-Closest Keywords Query. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne, Australia, 31 May–4 June 2015; ACM: Melbourne,
Australia, 2015; pp. 405–418.

18. Deng, K.; Li, X.; Lu, J.; Zhou, X. Best Keyword Cover Search. IEEE Trans. Knowl. Data Eng. 2015, 27, 61–73. [CrossRef]
19. Choi, D.-W.; Pei, J.; Lin, X. Finding the Minimum Spatial Keyword Cover. In Proceedings of the 2016 IEEE 32nd International

Conference on Data Engineering (ICDE), Helsinki, Finland, 16–20 May 2016; IEEE: Helsinki, Finland, 2016; pp. 685–696.
20. Li, J.; Xu, M. A Parametric Approximation Algorithm for Spatial Group Keyword Queries. IDA 2021, 25, 305–319. [CrossRef]
21. Singh, V.; Zong, B.; Singh, A.K. Nearest Keyword Set Search in Multi-Dimensional Datasets. IEEE Trans. Knowl. Data Eng. 2016,

28, 741–755. [CrossRef]
22. Gao, Y.; Zhao, J.; Zheng, B.; Chen, G. Efficient Collective Spatial Keyword Query Processing on Road Networks. IEEE Trans. Intell.

Transport. Syst. 2016, 17, 469–480. [CrossRef]
23. Cao, X.; Chen, L.; Cong, G.; Xiao, X. Keyword-Aware Optimal Route Search. Proc. VLDB Endow. 2012, 5, 1136–1147. [CrossRef]
24. Zhao, S.; Cheng, X.; Su, S.; Shuang, K. Popularity-Aware Collective Keyword Queries in Road Networks. Geoinformatica 2017, 21,

485–518. [CrossRef]
25. Su, S.; Zhao, S.; Cheng, X.; Bi, R.; Cao, X.; Wang, J. Group-Based Collective Keyword Querying in Road Networks. Inf. Process.

Lett. 2017, 118, 83–90. [CrossRef]
26. Zhang, P.; Lin, H.; Yao, B.; Lu, D. Level-Aware Collective Spatial Keyword Queries. Inf. Sci. 2017, 378, 194–214. [CrossRef]
27. Chan, H.K.-H.; Liu, S.; Long, C.; Wong, R.C.-W. Cost-Aware and Distance-Constrained Collective Spatial Keyword Query. IEEE

Trans. Knowl. Data Eng. 2021, 35, 1324–1336. [CrossRef]
28. Xu, H.; Gu, Y.; Sun, Y.; Qi, J.; Yu, G.; Zhang, R. Efficient Processing of Moving Collective Spatial Keyword Queries. VLDB J. 2020,

29, 841–865. [CrossRef]
29. Chen, G.; Zhao, J.; Gao, Y.; Chen, L.; Chen, R. Time-Aware Boolean Spatial Keyword Queries. IEEE Trans. Knowl. Data Eng. 2017,

29, 2601–2614. [CrossRef]
30. Chen, Z.; Zhao, T.; Liu, W. Time-Aware Collective Spatial Keyword Query. ComSIS 2021, 18, 1077–1100. [CrossRef]
31. Chan, H.K.-H.; Liu, T.; Li, H.; Lu, H. Time-Constrained Indoor Keyword-Aware Routing. In Proceedings of the 17th International

Symposium on Spatial and Temporal Databases, online, 23 August 2021; pp. 74–84.
32. Feng, Z.; Jin, C.; Kim, H.; Cui, X. Time-Aware Approximate Collective Keyword Search in Traffic Networks. Knowl.-Based Syst.

2021, 229, 107367. [CrossRef]
33. Rustam, F.; Mehmood, A.; Ahmad, M.; Ullah, S.; Khan, D.M.; Choi, G.S. Classification of Shopify App User Reviews Using Novel

Multi Text Features. IEEE Access 2020, 8, 30234–30244. [CrossRef]
34. Long, C.; Wong, R.C.-W.; Wang, K.; Fu, A.W.-C. Collective Spatial Keyword Queries: A Distance Owner-Driven Approach. In

Proceedings of the 2013 International Conference on Management of Data—SIGMOD’13, New York, NY, USA, 22–27 June 2013;
ACM Press: New York, NY, USA, 2013; p. 689.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TKDE.2014.2324897
https://doi.org/10.3233/IDA-195071
https://doi.org/10.1109/TKDE.2015.2492549
https://doi.org/10.1109/TITS.2015.2477837
https://doi.org/10.14778/2350229.2350234
https://doi.org/10.1007/s10707-017-0299-9
https://doi.org/10.1016/j.ipl.2016.10.008
https://doi.org/10.1016/j.ins.2016.10.033
https://doi.org/10.1109/TKDE.2021.3095388
https://doi.org/10.1007/s00778-019-00583-8
https://doi.org/10.1109/TKDE.2017.2742956
https://doi.org/10.2298/CSIS200131034C
https://doi.org/10.1016/j.knosys.2021.107367
https://doi.org/10.1109/ACCESS.2020.2972632

	Introduction
	Related Work
	Definitions and Symbol Descriptions
	Pruning Filtering Method Based on the EKTIR-Tree Index
	EKTIR-Tree Index
	Pruning Query Method Based on EKTIR-Tree Index

	Spatial Keyword Group Query Method Based on Distance Domination Group
	Experiment Analysis
	Conclusions
	References

