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Abstract: Recent times have witnessed wildfires causing harm to both ecological communities and
urban–rural regions, underscoring the necessity to comprehend wildfire triggers and assess measures
for mitigation. This research hones in on Cartagena del Chairá, diving into the interplay between
meteorological conditions and land cover/use that cultivates a conducive environment for wildfires.
Meteorologically, the prevalence of wildfires is concentrated during boreal winter, characterized
by warm and dry air, strong winds, and negligible precipitation. Additionally, wildfires gravitate
toward river-adjacent locales housing agriculture-linked shrubs, notably in the northern part of
the zone, where a confluence of land attributes and meteorological factors synergize to promote
fire incidents. Employing climate scenarios, we deduced that elevated temperature and reduced
humidity augment wildfire susceptibility, while wind speed and precipitation discourage their prop-
agation across most scenarios. The trajectory toward a warmer climate could instigate fire-friendly
conditions in boreal summer, indicating the potential for year-round fire susceptibility. Subsequently,
via machine-learning-driven sensitivity analysis, we discerned that among the scrutinized socio-
economic variables, GINI, low educational attainment, and displacement by armed groups wield
the most substantial influence on wildfire occurrence. Ultimately, these findings converge to shape
proposed wildfire mitigation strategies that amalgamate existing practices with enhancements or
supplementary approaches.

Keywords: meteorology; climate change; land cover analysis; mitigation strategies; wildfires;
socio-economic drivers; machine learning

1. Introduction

The Amazon Basin holds immense significance on a global scale due to its exceptional
biodiversity, vital role as a carbon sink, and its contribution to climate regulation [1]. The
Intergovernmental Panel on Climate Change (IPCC) has projected that temperatures in
tropical forests could potentially rise by up to 4.8 ◦C by the end of this century [2], a
change exacerbated by both direct and indirect drivers of deforestation influenced by a
complex interplay of factors, including land use, demographics, economics, politics, and
institutions [3]. In Colombia, approximately 40% of the land is covered by Amazonian
rainforest, spanning an area of roughly 483,164 km2 divided into three sub-regions with
distinct relief patterns [4]. The ecosystems and environment of the Colombian Amazon
encompass various biomes, with the tropical rainforest biome being dominant at 64.9% [5],
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followed by Litobiomas at 14.5%, Helobiomas at 12%, and Peinobiomas at 12% [4]. The
Peinobiomas cover an additional 3.4%, while the Orobiomas cover 4.7% across the low,
medium, and high mountain areas of the three sub-regions [4].

The climate of the Colombian Amazon is shaped by the Intertropical Convergence
Zone (ITCZ), as pointed out by [5]. Within this region, the typical temperature ranges
between approximately 24 ◦C and 29 ◦C, accompanied by a relative humidity surpassing
85%. Sunlight exposure lasts around 4 h per day [6]. While the government has monitored
the Amazon area as a protective buffer to safeguard national sovereignty, as highlighted
by [7], challenges have arisen due to the considerable geographical separation between the
central governing body and the obstructive mountainous terrain, resulting in inadvertent
neglect of the zone in terms of governance. The aforementioned meteorological factors
play an essential role in comprehending the underlying forces behind forest fires, which
leads to enhanced policy-making and planning strategies. However, in isolation, they
fall short of fully elucidating the genesis of wildfires. Their interpretation necessitates
a synergistic consideration alongside land cover, land use, and, notably, socio-economic
factors, as emphasized by [8]. The occurrence of fires is predominantly contingent upon
the intricate interplay of these four dimensions, which is why wildfires should be studied
in a framework that includes these four dimensions.

Understanding the meteorological factors that drive forest fires is of utmost impor-
tance for comprehending the origins, patterns, and dynamics of these catastrophic incidents.
A myriad of factors can initiate forest fires, spanning from natural occurrences like light-
ning strikes to human actions, including negligence, deliberate ignition, and industrial
operations. Meteorology plays a central role in shaping the behavior, progression, and
intensity of forest fires. Weather elements like temperature, humidity, wind velocity, and
atmospheric stability exert a direct influence on fire conduct, ignition potential, and the
extent of fire spread [9]. The nature of the land’s covering significantly guides the course of
forest fires by directly molding the conditions and mechanics of fire propagation. Certain
attributes of land covering, such as thick vegetation, desiccated fuel loads, and proximity
to human habitations, frequently exacerbate forest fires ([10,11]). Regions with copious fuel
sources like fallen leaves, branches, and dense undergrowth supply ample material for fires
to ignite and rapidly extend [12].

Furthermore, socio-economic aspects, encompassing population growth and Gross
Domestic Product (GDP), are critical to incorporate, as they contribute to the expansion
of human settlements into fire-prone areas, leading to what is termed the wildland–urban
interface. This juncture amplifies the fire potential, as human structures intermingle with
flammable vegetation. Additionally, economic incentives like timber demand, agricultural
yields, and land requisition for diverse purposes can drive practices that escalate fire suscep-
tibility, including subpar forest management and unsustainable land utilization ([13,14]).
Factors like colonization trends, drug-related influences, and the aftermath of peace agree-
ments also warrant consideration ([8,15]). All these facets assume significance because
forest fires in the Amazon rainforest predominantly stem from both natural and human
causes, forming a multi-layered process. The emergence and progression of uncontrollable
fires disrupt the ecosystem [15], with far-reaching consequences for both the ecosystem
and the global climate. In general, although natural forces, such as lightning strikes, can
initiate fires in dense vegetation during arid periods, the majority of Amazon Forest fires
are a consequence of human activities, particularly deforestation and the expansion of
agriculture and livestock grazing (highlighting the importance of land cover). Practices
like slash-and-burn land clearance, coupled with extended droughts and the use of fire for
pasture management, intensify the susceptibility and dissemination of fires [16].

These factors would become more pronounced in a climate change context, as changes
in atmospheric conditions might create a more conducive environment for the initiation
and propagation of fires. This underscores the importance of comprehending the current
triggers of wildfires to establish effective policies, develop strategies, and mitigate the
occurrence of fires. Something that can be achieved by employing Machine Learning (ML)
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models offers a method to assess the significance of these triggers and appraise policy
effectiveness. Ref. [13] designed three distinct land cover scenarios to gauge potential
impacts on the Amazon Forest. These endeavors lay a foundation not only for evaluating
diverse scenarios that encompass socio-economic factors, land cover characteristics, and
meteorological conditions but also for discerning the potency of each variable in influencing
the likelihood of wildfire ignition. On the other hand, Ref. [17] evaluated the incidence
of spatial and temporal patterns of vegetation burning in Colombia with regional and
climatic variations. The results indicated a strong climatic and fire seasonality, as well
as a marked regional difference. In Amazonia, they established a high impact of small
fires in the tropical rainforest present in this transition zone, and the Amazon rainforest
deserves more attention in Colombia due to its lack of attention prior to its contribution to
climate change.

Taking into account all the significant factors discussed earlier, our primary focus
shifts towards (i) identifying the specific meteorological and land cover/use conditions
prevailing during the onset of wildfires in Cartagena del Chairá, which is located in
the Amazon and has one of the largest number of fires in the region. (ii) Recognizing
the role of meteorology, it is imperative to assess its potential alterations in a warmer
climate. This has driven us to undertake a climate change analysis aimed at quantifying
the extent of meteorological deviations projected for 2049. This endeavor aims to provide a
foundational understanding of governmental actions to mitigate fire-related risks. (iii) In
tandem with the preceding analysis, we ascertain the most influential socio-economic
variables (among those examined) that contribute to the propensity for fire ignition. By
grasping the intricate interplay between meteorology, land cover/use, socio-economic
factors, and climate dynamics, we then (iv) propose strategies that align with governmental
plans. These strategies are designed either to enhance existing plans or to be synergistically
combined with already established approaches.

2. Materials and Methods
2.1. Study Area

Colombia, situated in Northern South America, as shown in Figure 1, stands as the sec-
ond most populous country in its region, with an approximate population of 50.88 million
residents. The nation encompasses the Andes Mountains across its expanse, spanning a
wide range of altitudes from 0 to 5000 m above sea level (m.a.s.l.) These mountain ranges,
referred to as cordilleras, in conjunction with the Inter-Tropical Convergence Zone (ITCZ),
exert significant influence over the country’s weather and climatic patterns. The research
by [18] illustrates the profound impact of the cordilleras and the extensive network of
rivers and basins within the country on convective patterns and their spatial distribution.
Colombia’s precipitation patterns are intricately linked to the ITCZ, which interacts with
convection and shapes both its intensity and frequency.

In the capital city, Bogotá, convection appears to be primarily driven by local thermo-
dynamics, with a majority of intense precipitation events occurring after noon, as noted
by [19]. In contrast, in the northeastern region and along the Pacific coast, convection
predominantly occurs during the night due to the interplay between the wind and the
cordilleras [18]. Moving to the Amazonian area, weather patterns are primarily governed
by radiative processes, similar to those in Bogotá. However, the considerable humidity
generated by the forest amplifies the strength and duration of precipitation events, resulting
in their prolonged nature [20].

Colombia comprises 1122 municipalities and spans an area of 1143 million square
kilometers, according to data from the Instituto Nacional de los Recursos Naturales Ren-
ovables y del Ambiente in 1985. Among these municipalities lies Cartagena del Chairá,
situated at coordinates Lat: 1.34 and Lon−74.85. This municipality falls within the Caquetá
Department, situated in the southern part of Colombia within the broader Colombian
Amazon region, as depicted in Figure 1. Within its confines, the region accommodates
a population of 32,000 residents across an expanse of 12,826 km2. The Caquetá River
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courses through the municipality, while the Caguán River encircles it to the east. The area
is characterized by three distinct morphological units: the eastern slopes of the Eastern
Mountain Range, the foothills, and the Amazon plain, as elucidated by [21]. This diverse
landscape fosters wetlands and tropical rainforests, serving as primary ecosystems that
foster remarkable biodiversity and endemism, as attested by [22]. The climate in this
area maintains an average temperature of 25 ◦C, coupled with an annual precipitation of
2500 mm. The precipitation pattern follows a unimodal regime attributed to the ITCZ and
biological factors that drive elevated rates of evaporation and humidity. Notably, the dry
season spans from December to February, while the wettest months are April, May, and
June [23].
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The Serranía del Chiribiquete National Natural Park holds a position of utmost im-
portance within the realm of protected areas in the Colombian Amazon. In Cartagena del
Chairá, a significant portion of land measuring 303,981 hectares (which constitutes 10%
of the entire area) is encompassed by this park. Additionally, there are other ecologically
significant zones within the region, lending exceptional importance to this specific area,
as acknowledged by UNESCO [24]—United Nations Educational, Scientific and Cultural
Organization. Nevertheless, there exists an allocated area within the municipality where
settlement has been officially legalized, encompassing a vast expanse of 16,200,000 hectares
within the forest reserve. This designated zone was initially intended for a thoughtful, bal-
anced, and respectful engagement with the natural environment. The aim was to facilitate
a productive coexistence with human settlements while maintaining ecological integrity.
Consequently, there was contemplation of modifying the land usage within the forest
reserve based on considerations of public necessity and social or economic interests [25].
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This specific legal status opened the door to human colonization and the subsequent
expansion of both legitimate and unlawful agricultural zones. As a result, this area gained
significant relevance within the context of the armed conflict, and its role remained sub-
stantial during the period following the peace agreement. According to data from the
DANE (National Administrative Department of Statistics), Cartagena del Chairá emerges
as the second-largest contributor to the department’s economic activities. Its economy is
predominantly anchored in the primary sector, encompassing activities such as agriculture,
hunting, silviculture, fishing, and mining. Additionally, the tertiary sector, involving the
generation of gas, electricity, water, and various services, also plays an important role.
Impressively, these combined efforts contribute approximately 6% to the national Gross
Domestic Product (GDP), as reported by [26]. Given this intricate interplay of factors, a
complex web of socio-economic dynamics, land usage patterns, and forest fire occurrences
take shape within this municipality. These dynamics hold the potential to serve as critical
determinants of the drivers behind the incidence of forest fires in this region.

2.2. Datasets
2.2.1. Hotspots, Meteorological, and Climatological

Hotspot data were gathered from the Fire Information for Resource Management
System (FIRMS), utilizing measurements from both the Moderate Resolution Imaging
Spectroradiometer (MODIS) with a spatial resolution of 1 km2 and the Visible Infrared
Imaging Radiometer Suite (VIIRS) spanning from 1 January 2013 to 31 December 2022 [27]
and with a spatial resolution of 375 m2. The identification of a wildfire event required a
measurement reliability surpassing 80% and a brightness temperature exceeding 360 K,
following the criteria established by [28]. Additionally, alternative thresholds of 370 K,
350 K, and 340 K were tested and yielded comparable outcomes.

Meteorological data pertaining to the study region were procured from the European
Centre for Medium-Range Weather Forecasts (ECMWF). The ERA5 dataset (Version 5 of
the ECMWF ReAnalysis), featuring single-level variables [29], was acquired with a spatial
resolution of 0.25◦ and an hourly temporal resolution for the period from 31 January 2013 to
31 December 2022. This encompassed parameters such as precipitation, 2 m air temperature,
2 m dew-point temperature, surface pressure, wind speed, and Total Column Water Vapor
(TCWV). The relative humidity (RH) was subsequently calculated employing the surface
pressure, 2 m air temperature, and 2 m dew-point temperature, adhering to the approach
outlined by [30]. It is important to mention that no meteorological stations are available for
these regions, which is why we use ERA5 and not weather stations for the analysis.

Furthermore, climate projections were also sourced from the Climate Data Store (CDS).
These projections were derived from the Climate Model Intercomparison Project sixth
version (CMIP6). Acknowledging the substantial uncertainties across various models as
illustrated by the [31]—Intergovernmental Panel on Climate Change, an ensemble approach
was adopted to mitigate errors. In this context, three models—CANESM5-CANOE [32],
CNRM-ESM2-1 [33], and IPSL-CMGA-LR [34]—were employed as ensemble members
(calculations presented in this research are based on the ensemble mean, not individual
members). Four climatological scenarios were analyzed, which incorporated Representative
Concentration Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs): SSP1-RCP2.6,
SSP2-RCP4.5, SSP3-RCP7.0, and SSP5-RCP8.5. These scenarios, as detailed by the [31],
account for diverse radiative forcing and socio-economic contexts. RCPs signify end-
of-century radiative forcing relative to pre-industrial conditions (e.g., RCP2.6 implies a
2.6 W m−2 increase). Meanwhile, the SSPs denote varying challenges for mitigation and
adaptation, ranging from low (SSP1) to high (SSP5), based on the nomenclature described
by [35].

The selection of models and scenarios was meticulous, considering data availability
for key variables such as air temperature, relative humidity, wind speed, and surface
precipitation. The chosen models and scenarios spanned two timeframes: the historical
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period (1984–2014) and the simulated future (2015–2049). These data were acquired with a
monthly temporal resolution and a spatial resolution of 0.5 × 0.5.

2.2.2. Socio-Economic

Socio-economic variables were sourced from various data repositories. Table 1 pro-
vides an overview of the 12 studies encompassing socio-economic variables in Cartagena
del Chairá (Table 1), along with their respective sources. All datasets are converted to a
municipal spatiality so that they can be evaluated in the same way as the meteorology and
land cover. Worth noting is the compilation of a comprehensive database encompassing
all variables spanning the years 2013 to 2021, organized on a monthly basis, tailored for
utilization in this research and shown in Table 1.

Table 1. Socio-economic variables studied between 2013 and 2021 in Cartagena del Chairá, Caquetá,
associated with forest fire drivers.

Category Variable Time Resolution Expression Definitions Source

Demographic Urban Population
Annual Number of People Number of people living in CdC in

rural and urban areas
Population and
back projectionsRural Population

Economic

GDP Quarterly -

Combined value generated by all
domestic producers in an economy,

including product taxes and
excluding subsidies that are not

accounted for in the product value

Quarterly GDP

Informal Work Annual Percentage

Percentage of the total population that
fills in one or more of the following
categories (i) Private employees and
laborers working in establishments,

businesses, or enterprises that employ
up to five persons in all their agencies
and branches, including the partner,

(ii) unpaid family workers,
(iii) unpaid workers in enterprises or

businesses of other households,
(iv) domestic employees, (v) day

laborers or laborers, and
(vi) self-employed workers working
in establishments up to five persons

Informal Work Indicator

Long-Term
Unemployment Annual Percentage People who have been unemployed

for 12 months or more
Long-Term

Unemployment Indicator

Education Low Educational
Level Annual Percentage Percentage of the population with less

than 9 years of education
Low Educational
Level Indicator

Poverty GINI Annual -
A GINI index of 0 represents perfect
equality, while an index of 1 implies

perfect inequality
Monetary Poverty

Victims Due to
Arm Conflict

Massacres

Daily Number of People

The first variable, related to massacres,
is understood as the intentional

homicide of four (4) or more people

Victims Database

Forced
Disappearance

Deprivation of freedom against the
will by agents of the State, members of
illegal armed groups that take part in

the armed conflict, or with their
authorization or support followed by
their concealment and/or refusal to

provide information on
their whereabouts

Child and
Adolescent
Recruitment

When minors under 18 years of age
are forced to participate directly or

indirectly in hostilities or armed
actions for the purpose of

armed conflict

Displacement

Situation where a person has been
forced to migrate within the national
territory, abandoning their home or
usual economic activities because

their life, physical integrity, personal
safety or freedom have been violated

or are directly threatened

CEDE and OCHA
Datasets
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2.2.3. Land Cover

Landsat 8 images of Cartagena del Chairá were procured using the Google Earth
Engine (GEE) API [36]. Within the time frame of 2013 to 2021, a multi-scene mosaic
approach was adopted, focusing on yearly snapshots. These snapshots were confined
to regions encompassed by red rectangles, as indicated in Figure 1 for spatial reference.
Specific details regarding the satellite paths can be found in Table S1. The criterion for
selection was a cloud cover of less than 20%. This choice of 20% as the cloud cover
threshold is grounded in the fact that tropical areas frequently exhibit high cloud prevalence,
rendering data selection challenging, regardless of satellite data resolution [21].

For our analysis, we employed Landsat 8 Level 2, Collection 2, Tier 1 images sourced
from the United States Geological Survey [36]. These images offered atmospherically
corrected surface reflectance and land surface temperature information derived from data
acquired by the Landsat 8 OLI/TIRS sensors [36]. The primary goal of this data selection
was to minimize cloud interference. The pertinent bands were selected, namely Blue (B2),
Green (B3), Red (B4), Near Infrared (NIR) (B5), Shortwave Infrared bands SWIR1 (B6) and
SWIR2 (B7), and the Normalized Difference Vegetation Index (NDVI). These data were
procured at a resolution of 30 m, subsequently processed, and finally classified based on
the land cover classification established by [37].

2.3. Data Processing
2.3.1. Meteorological and Climatological

Each of the meteorological variables was partitioned into two distinct categories: days
characterized by the occurrence of wildfires (where a minimum of 5 hotspots manifested
on that day) and days devoid of wildfire activity. This stratification aimed to facilitate
the creation of box plots, allowing for a comparative analysis of the variable disparities
across various seasons throughout the year. This approach is rooted in the recognition
that Colombia’s rainfall and humidity patterns are intrinsically tied to the seasonal shifts,
owing to the varying location of the ITCZ [23]. Furthermore, a statistical assessment was
undertaken to ascertain the significance of differences in each variable when comparing
days with and without wildfires. The Student’s t-test was employed for this purpose,
encompassing all the meteorological variables, as outlined by [38]. However, it is worth
noting that the variable of precipitation, being non-parametric in nature, was not treated
in this way ([39,40]). In tandem with these analyses, a wildfire anomaly was computed.
This anomaly was defined as the disparity in means for each meteorological variable,
except for precipitation, between days featuring wildfires and those without. As for
precipitation, it was daily accumulated for both categories of days (with and without
wildfires). and then the average was determined, resulting in two distinct values. The
difference between these values was then computed, mirroring the approach undertaken
for other meteorological variables.

Climate projections were harnessed to compute disparities in selected variables be-
tween the historical and simulated future periods, referred to as anomalies henceforth.
These anomalies are established as the distinction between the climatic patterns of the
historical period and those of the future simulation period. This entails calculating tem-
perature, RH, and wind speed anomalies through the subtraction of the mean values for
each pixel across corresponding historical and simulated periods. Notably, this approach is
adapted for all variables except for precipitation. In the case of precipitation, a seasonal
accumulation is initially performed, followed by averaging for each respective period,
before the subtraction procedure is executed [41]. These anomalies are then utilized as
input to generate maps, enabling the examination of spatial disparities and the magnitudes
of alterations that can be juxtaposed against the atmospheric conditions during wildfire
occurrences. This facilitates insight into the potential future behavior of wildfires in the
region of interest. It is important to mention that to be more certain in the climatological
data, the historical period between 2010 and 2014 was compared with ERA5 data (not
ground base stations since they are not available in the region—[41]), and the results are
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highly similar (R = 0.86 ± 0.16, RMSE for temp of 0.18 ± K, for RH of 5 ± 1.2%, and for
precipitation of 7 ± 5 mm) on a monthly basis.

2.3.2. Land Cover

The subset images for each year underwent the mosaic classification process utilizing
the Phenology-based Land Cover Classification (PBLCC) technique, as outlined in [37].
The choice of the PBLCC method stemmed from its proven efficacy in previous Landsat
classification endeavors within tropical regions, particularly in Colombia, where it adeptly
addresses seasonality considerations ([11,37]). This approach ensures accurate analysis,
facilitating the precise identification of influential factors. Comprising thirteen distinct
classes (as detailed in Table S2), the PBLCC was employed to pixel-wise classify each
mosaic based on their respective values. Subsequent to the classification, a cross-tabulation
analysis was conducted on an annual basis, quantifying percentage and area changes across
categories, thus furnishing a comprehensive overview of “from-to” transitions.

2.4. Machine Learning
2.4.1. Feature Selection

Forest fires are difficult to simulate due to the large number of variables that are
related to them. Several studies (e.g., [9,42]) have shown that fires are highly affected by
meteorological conditions such as air temperature, humidity, and wind speed, with the
former two being the most important since the amount of humidity and the temperature
can produce favorable conditions for a fire to develop and start. In fact, in Colombia,
seasonal changes are the ones that produce the largest modification to the number and
location of wildfires since the humidity and temperature change depending on the ITCZ.
This means that places far from the ITCZ develop a larger number of fires since there are
not many moisture sources, the temperature is stronger, and not many convective events
develop, leading to small amounts of precipitation [23]. This is the reason why we included
the wind speed, air temperature, RH, and total column water vapor. The last two are
included to account for the amount of moisture but also its relative value. The fires not
only depend on meteorology but also fuel (land cover) and socio-economic variables.

On the one hand, land cover is important since the type of vegetation can be favorable
to the development of forest fires (e.g., [1,21]), which is why we include the land cover
categories in the model. On the other hand, fires in Colombia are highly related to socio-
economic variables since the socio-economic dynamic could produce enormous changes
in the dynamics of the fire ([43–45]). Socio-economic data were selected based on the
monthly available data and representative ones for 2013–2021 from governmental agencies,
taking into account those variables studied in previous studies related to land changes and
forest fires ([43–45]). Various demographic variables have been used in distinct studies
(e.g., [8,15,17,43]). These investigations were conducted in municipalities exhibiting socio-
economic and political similarities, revealing a significant correlation between wildfires
and population dynamics. In terms of population, Ref. [46] show that population can affect
fires due to colonization or abandonment of the territory. Following this, Refs. [8,43] show
that segregating populations into rural and urban categories is important for colonization
and, subsequently, for fire dynamics. Refs. [47,48] studied the GDP as a proximate cause
and underlying driving force of forest decline, which is tightly related to forest fires in the
Amazon [49]. Regarding the GINI, Refs. [50,51] found a significant relationship between
low GINI and an increase in wildfires in the Brazilian Amazon, so we decided to include it.

Long-term unemployment (e.g., [52–55]) has been shown to positively impact the
occurrence, density, and average size of fires. Elevated unemployment rates in municipal-
ities with frequent and recurrent fires further underscore the direct association between
economically disadvantaged socio-economic contexts and fire occurrence. Additionally,
factors such as informal work and low educational level, previously unexplored in isola-
tion, are now considered in the context of their potential impact on wildfires. Refs. [47,56]
identified vulnerabilities associated with wildfire governance, with a particular emphasis
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on reduced employee rates and limited monetary resources. In the Colombian context,
armed conflict-related violence (e.g., [3,8,44]) introduces a complex interplay that affects the
dynamics of management, monitoring, and enforcement. In tandem, there are variables that
could have an incidence on wildfires that were not considered due to their high uncertainty
and lack of data availability in Cartagena del Chairá.

2.4.2. Input/Output Matrix Description

We perform the Variance Inflation Factor (VIF) (e.g., [57]) on the meteorological and
socio-economic variables, with the idea of excluding the input variables with multicollinear-
ity larger than 5, as proposed by [58,59], since multicollinearity can reduce ML precision
(e.g., [60]). After the VIF method is performed, five meteorological variables (air tem-
perature, relative humidity, precipitation, TCWV, and wind speed), eight socio-economic
variables (population, GDP, informal work, long-term unemployment, low educational
level, GINI, displacement, and victims of armed conflict), and the land cover are selected
as inputs for the ML technique.

Meteorological variables are at an hourly resolution, unlike socio-economic data, which
vary in temporal resolution. Within the model, meteorological variables change dynamically,
while socio-economic variables remain static at an hourly level but adapt based on their
specific temporal resolution. This approach aligns with the methodology by [13], where a
variable remains constant until updated by new input data occurring monthly or annually,
depending on the variable. Land cover data, available annually, remains static within the
model, receiving yearly updates. Before integrating them into the model, all variables are
adjusted to match the spatial resolution of ERA5 data, socio-economic variables remain
spatially constant across the study area, and their temporal aspects shift according to their
respective temporal resolutions. In summary, the X-tensor (input) contains meteorology—land
cover variables, each maintaining its unique temporal and spatial resolution. This temporal
flexibility offers a significant advantage, allowing variables to update independently based on
their data sources without requiring simultaneous adjustments, as detailed in the described
method. The Y-matrix (output) is created by the air temperature from the ERA5 data, including
the brightness temperature from the hotspots of the MODIS dataset (Figure 2). In other words,
we took the brightness temperature from the hotspot data and its position and replaced it
with the same position of the ERA5 data to be sure that the output includes forest fires values
for detection, meaning that, for the ML model analysis, the native resolution of the hotspots is
changed to match the ERA5 grid.
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2.4.3. Structure, Training, and Validation

The neural network model structure is shown in Figure 2 with its inputs and output.
The model is constructed using Tensorflow-2.4.1 [61] and Keras-2.4.3 [62] Libraries from
Python-3.9. Its structure and type of networks are shown in Figure 2 and were identified
by using grid-search, and it is based on the convolution network structure by [38]. The
loss selected is the Mean Square Error (MSE), Adam [63] is used as an optimizer, and for
the activation, the dense layer used the Rectified Linear Unit (ReLU) [64]. Meanwhile,
the Long-Short Term Memory (LSTM) layers [65] used sigmoidal [66]. To select these
hyper-parameters, we use a grid-search technique [67] as in [38].

For the training, we use 100 epochs, and it is declared that the variables are semi- or
fully- dynamic in order for the training to produce the best results, following the work
of [13], which reported precise results. The training set consists of 80% of the data, and
the remaining 20% is used for validation. From this 20%, we make sure to include days
with and without wildfires and at least 5 days per month, with emphasis on days from
DJF and MAM season. To prevent overfitting, we include dropouts but also an early
stopping method [68]. To validate the model, we calculate the Root Mean Square Error
(RMSE), the Mean Bias (MB), and the Pearson Correlation (r) from the domain mean so
that we only have a time series of data in which the wildfires can be identified (the reader
is referred to the Supplementary Material (hereafter SM) of [38] for a detailed description
of the statistical parameters).

As a caveat, it is important to clarify that our analysis does not directly encompass
human-induced fires (i.e., ignition events). Instead, we incorporate variables that have the
potential to influence the likelihood of wildfires occurring. For instance, education can be a
modifying factor in wildfire probability. Communities with higher levels of education are
typically less likely to engage in illegal activities that could lead to fires. Moreover, they
tend to be better prepared in terms of agricultural practices and soil management, which
can serve as protective measures against wildfires. These collective actions effectively
reduce the probability of wildfire development ([8,15]).

2.5. Proposing Strategies to Improve Wildfire Mitigation

ML models have been used for a large number of applications, some of which have
focused on the prediction of meteorological variables [69], air quality [38], and wildfires
(e.g., [70]), producing reliable forecasts and showing their potential to be used to understand
the importance of several variables [71], and also to create sensitivity experiments that
could be used to evaluate strategies or scenarios ([13,41]). Ref. [41] performed sensitivity
analyses to understand the tropospheric ozone variations due to the COVID-19 lockdowns,
showing the potential of ML to process understanding. Following this research road,
Ref. [13] used an ML model to create scenarios of land cover change depending on possible
future conditions and evaluate their possible impacts on the Amazon. Here, we use a
hybrid of these two approaches to determine which meteorological and socio-economic
variables must be measured, evaluated, and, in the case of the socio-economic variables,
improved by, for example, enacting policies or creating employment.

In this sense, we modify all the input variables of the ML model (Figure 2) except
the air temperature. To do this, we increase/decrease each input variable by 30% (other
percentages lead to the same conclusions), then quantify the change between the control
prediction and the experiments using Bland–Altman plots ([72,73]), with the idea of identi-
fying the variables that produce the largest sensitivities to the wildfires, and also in order to
create strategies that could help to efficiently mitigate the number of wildfires. Regarding
the aforementioned strategies, they are developed based on the already existing policies
and plans of the study region (e.g., [14]), but they are also designed to complement them.
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3. Results and Discussion

This section commences with an account of the progression of wildfires in Cartagena
del Chairá (hereafter referred to as CdC). Subsequently, our focus shifts to illustrating the
meteorological conditions prevalent during wildfire occurrences in the region, aimed at
comprehending the driving factors behind these incidents. While wildfires are closely
intertwined with meteorology, they also bear connections to human activities and land
cover. We proceed to elucidate the vegetation cover that exhibits a stronger correlation with
fire development in the region, as well as the interplay between vegetation and human
practices. Following this, a climatological examination is undertaken for the near future (up
to 2049) to discern potentially heightened wildfire risks arising from atmospheric conditions.
Concluding this section, we subject an ML model to assessment and subsequently employ
it to appraise strategies. These strategies illuminate potential avenues for mitigating the
risk associated with fires in the region.

3.1. Wildfires’ Temporal Evolution in Cartagena del Chairá

Situated within the Amazonian sector of Colombia, CdC holds substantial ecological
significance, particularly in relation to the susceptibility of the region to wildfires. This
area exhibits over 200 hotspots annually, with instances occasionally escalating to 800, as
witnessed in both 2018 and 2022 (depicted in Figure 3). This pattern of hotspots follows
a pronounced seasonality, predominantly emerging during boreal winter, as showcased
in Figure 3 and Table S1. This recurring seasonal trend underscores the substantial influ-
ence exerted by meteorological conditions on the initiation and progression of wildfires
within the region, a premise well-supported by previous research (e.g., [9,74]). Figure 3
distinctly illustrates an upward trajectory in wildfire occurrences since 2018, a phenomenon
potentially linked to Colombia’s peace agreement, which facilitated expanded agricultural
practices within the municipality. Furthermore, from years before the peace agreement,
illicit activities such as illegal cultivation, including illegal crops occurring more often and
to a larger extent, might be contributing to the proliferation of wildfires [8]. Notably, the
geographical distribution of wildfires is in close proximity to rivers, primarily situated in
the northern and central-western sectors of the municipality, as delineated in Figure 4. This
spatial correlation suggests a strong association between agricultural endeavors and the
prevalence of wildfires within the region.
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These findings underscore the combined impact of meteorological conditions, land
cover (with ties to agriculture), and socio-economic factors in shaping the frequency of
wildfires in the area. In the ensuing sections, our focus shifts to dissecting the individual
roles played by each of these three driving forces.
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3.2. Meteorological Analysis

Wildfires are closely tied to meteorological conditions, particularly air temperature
and RH. When the air temperature is high and both the air and soil have low RH, wildfires
tend to develop more readily [9]. In Colombia, various studies (e.g., [43,75]) have indicated
that meteorological conditions characterized by high temperatures, coupled with low RH,
minimal rainfall, and strong winds, create favorable circumstances for the emergence of
wildfires. These fires not only impact vegetation and ecosystems ([10,17,46]) but also affect
the air quality of many cities in the country due to long-range transport ([41,76,77]). These
findings align with Figure 5, which illustrates the distinctions between days with wildfires
(dark red boxes) and those without (green boxes).

In terms of air temperature (Figure 5a), days with wildfires exhibit temperatures 3–4 K
higher than non-wildfire days throughout each season, with the most notable difference
occurring during boreal winter months, as expected considering the greater occurrence
of wildfires in DJF and MAM compared to JJA and SON. The heightened surface air
temperature during wildfire days triggers a decrease in surface air pressure, resulting in
increased wind speed (Figure 5b) due to the necessity to balance out the disparities (by
continuity) caused by the expanding, ascending warm air, which reduces pressure [30]. This
increase in wind not only lowers humidity through advection but increases temperature
through surface fluxes and also intensifies the spread and duration of fires [12].

In terms of RH, wildfire days exhibit lower RH (Figure 5c) as anticipated, given the
inverse relationship between RH and air temperature according to the Clasius–Clapeyron
relation. Stronger winds also contribute to decreased RH through advection. Furthermore,
Figure 5d depicts reduced atmospheric moisture during wildfire days, particularly evident
in boreal winter, where the median humidity of wildfire days falls below the second
quartile of non-wildfire days. Conversely, this difference is less pronounced during boreal
summer, highlighting the greater significance of RH over total regional moisture during this
season. The dryness of the atmosphere on wildfire days inhibits convective activity ([78,79]),
resulting in decreased precipitation, as indicated in Figure 5e.
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In essence, wildfire days are marked by dry and warm conditions, lacking rainfall and
characterized by strong winds. In fact, when subjecting the variables to a Student’s t-test
to assess the statistical significance of differences between wildfire and non-wildfire days
(except for precipitation due to its non-parametric nature), most variables and seasons ex-
hibit statistically significant disparities (except for wind speed during JJA). The subsequent
paragraphs dive into the geographical distribution of wildfires and the corresponding at-
mospheric characteristics. To facilitate this, we combine DJF with MAM seasons (hereafter
boreal winter), as well as JJA with SON (hereafter boreal summer), due to their similar
atmospheric conditions and the predominant occurrence of wildfires during boreal winter.

In the context of boreal summer, the region experiences a relatively low incidence of
wildfires, averaging less than two occurrences per season, as depicted by the gray contours
in Figure 6. This could be attributed to the comparatively milder anomalies in temperature
(Figure 6a) and moisture levels (Figure 6d–f) compared to those observed during boreal
winter (Figure 6). Wind speed (Figure 6h) displays positive anomalies in the southern part
of the study area during boreal summer, yet these anomalies seemingly have limited impact
on wildfire development, given that most fires arise in the northern region. However,
precipitation stands out as the sole variable with notably negative anomalies (Figure 6j),
indicating that a lack of rainfall is a critical factor for wildfire initiation. Broadly speaking,
boreal summer is characterized by a scarcity of fires, and those few fires are primarily
associated with warm air conditions, a significant dearth of rainfall, and dry conditions in
the northern portion of the region ([9,42]).

In stark contrast, boreal winter showcases a substantial number of hotspots (>30)
emerging in the northern part of CdC (Figure 6). This season is characterized by markedly
strong anomalies across all the studied meteorological variables. The northern region
displays a robustly positive anomaly in air temperature (Figure 6a), aligning with hotspot
locations, and a corresponding negative anomaly in relative humidity (Figure 6c). This
reduction in humidity is in line with the strong relationship between these variables [30]
and their connection to wildfires ([46,80]). This moisture-related negative anomaly is
equally evident in the TCWV (Figure 6e), reflecting drier conditions across the entire region,
particularly in the north. Such arid conditions discourage convection [20], contributing to
negative anomalies in terms of precipitation (Figure 6i). Turning to wind speed anomalies
(Figure 6g), a pronounced positive anomaly emerges in the northern region, correlating
with the location of wildfires and the positive temperature anomaly in accordance with the
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continuity principles previously discussed. It is noteworthy that elevated temperatures
lead to reduced RH, triggering a pressure gradient that intensifies wind. As wind velocity
increases, it further diminishes RH, which in turn inhibits convective processes, resulting
in a lack of precipitation events [12].
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In summary, wildfire occurrences are concentrated in the northern and central sectors
of the region, closely tied to positive anomalies in temperature and wind speed, along
with negative anomalies in RH, TCWV, and precipitation during boreal winter. Conversely,
boreal summer experiences fewer wildfires in the northern region, linked to elevated air
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temperatures, a dry environment characterized by reduced RH and TCWV levels, and a
shortage of rainfall. The fact that wildfires emerge in specific zones within our study area
suggests that the type of land cover may significantly influence wildfire development. This
drives our focus in the subsequent section on analyzing the land cover characteristics of
the region.

3.3. Land Cover Analysis

In the preceding section, we underscored the significance of meteorological variables
and the spatial distribution of wildfires. It was evident that these fires tend to emerge in
proximity to rivers (Figure 4), hinting at their connection to agricultural regions. Within this
section, we focus on the relationship between fires and areas populated by shrubs, which are
notably influenced by the agricultural landscape of the region. Commencing with Figure 7,
we present the proportional representation of land cover categories as defined by [37]. To
ensure the accuracy of this classification, we computed the classifications through two
methods: (i) a procedure aligned with the methodology of [37] and (ii) a random forest
classification technique [82]. The outcomes displayed remarkable consistency between the
two approaches. Consequently, we opted to employ the classification methodology itself
due to its reduced computational demands.
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CdC exhibits a predominant land cover of shrubs (≈80± 5%) and a smaller proportion
of trees (≈15 ± 5%) consistently across the evaluated years, as depicted in Figure 7 and
Table S2. While the percentage composition of each land cover category remains relatively
stable over the years, specific years demonstrate notable fluctuations in both shrubs and
trees. For instance, there was a reduction of 6000 km2 in shrub coverage between 2014 and
2015, followed by recovery between 2015 and 2016. Similarly, trees experienced a significant
decline (1600 km2) in the 2019–2018 period, followed by a rebound in the 2020–2019 period.
These changes indicate that while the land cover undergoes considerable alterations over
time, the overall percentage composition remains relatively consistent. These fluctuations
could arise due to factors such as variations in satellite image sampling timing, local shifts
linked to socio-economic activities, and potentially the influence of fires on land cover
evolution. However, while a detailed investigation of CdC’s land cover evolution is not the
primary objective of this paper, it suggests avenues for further research. In the subsequent
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paragraphs, we concentrate on elucidating the spatial distribution of trees and shrubs to
establish connections with hotspot locations.

Depicted in Figure 8 is the spatial distribution of land cover categories across four
years, juxtaposed with hotspot locations tied to wildfires. While land cover data span from
2013 to 2021, the similarity in land cover locations across these years renders a four-year
span suitable as an example for the analysis. The northern region of CdC is primarily
characterized by shrubs extending through the central part along the Caquetá River’s
trajectory (as visible in Figure 4). Shrubs also line the eastern boundary along the Caguán
River (Figure 4), as well as the southeastern zone. The remaining sectors of CdC are marked
by the presence of trees, constituting part of the Amazon rainforest.
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It is crucial to underscore that the origin of wildfires in the northern CdC is closely
linked to shrub locations (R = 0.8, with a p-value < 0.05). Conversely, despite the abun-
dance of shrubs near the border and southern sections, wildfire occurrences are limited
(Figure 8). This disparity arises due to less favorable meteorological conditions in these
areas compared to the more conducive conditions in the north and center, as evident
from Figure 6. During wildfire events, the northern CdC experiences high temperatures,
arid humidity levels, strong winds, and scant rainfall—factors that significantly promote
wildfire development [9]. Notably, this region features shrubs tightly intertwined with agri-
cultural endeavors (Figure 9), which have progressively expanded over time, augmenting
the likelihood of wildfire occurrence as farmers resort to controlled burns for harvesting
purposes (e.g., [12,83]), or even to shift crop types, such as illegal crops [8]. Notably, this
evolving agricultural landscape has been shaped by both local dynamics and national
policies enacted by the government, which have precipitated the expansion of Caqueta’s
agricultural frontier. This trajectory raises significant concerns, given that CdC is situated
within the Amazon rainforest—an area that warrants protection. Regrettably, the intrusion
extends beyond local farmers, driven also by national policies and a decline in international
law enforcement of deforestation and, consequently, occurrence of biomass burning and
forest degradation, which increased carbon emissions and enhanced the drying of the
Amazon region [84].
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In summary, it is crucial to emphasize that both agricultural-related shrubland and
meteorological factors play pivotal roles in determining wildfire occurrence and intensity in
CdC. The presence of both these conditions is essential for wildfires to develop. In regions
where both variables align to favor fires, wildfires are more likely to occur and intensify,
particularly in the northern areas. Conversely, in southern areas where meteorological
conditions are less conducive to fires, the incidence of fires is significantly reduced or absent.
The significance of meteorology gains further prominence in the context of a changing
climate, especially as agricultural policies appear to drive the expansion of the agricultural
frontier. This expansion has the potential to influence the intricate relationships between
water ecosystems and carbon cycles in the region. Consequently, the next section of this
study delves into an extensive examination of temperature, humidity, wind speed, and
precipitation patterns over the “near-future” period, spanning from 2015 to 2049.

3.4. Climatological Analysis

In this section, our focus shifts to the analysis of anticipated climatological changes for
the year 2049 and their interrelation with wildfire development. However, it is essential to
acknowledge that this analysis remains localized and, thus, several identified phenomena
and changes may lack comprehensive explanations. A broader regional analysis, con-
sidering factors such as ITCZ displacement, low-pressure system dynamics, and moist
thermodynamics, would be required to offer a complete understanding, although such an
endeavor falls beyond the scope of this paper.
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For the SSP1-RCP2.6 scenario, ensemble mean anomalies reveal that during boreal
winter (Figure 10a–d), rising temperatures would foster conditions conducive to wildfire
growth. In contrast, anomalies in RH, wind speed, and precipitation would deter such
conditions. Particularly in the north of CdC, the most significant RH increase transpires.
These anomalies might be linked to ITCZ behavior and the Amazon’s usual low-pressure
systems [23], though a comprehensive analysis is necessary to fully comprehend the
underlying causes. In boreal summer (Figure 11a–d), temperature and RH anomalies would
favor wildfire development, while wind speed and precipitation would impede it. Notably,
the southern and eastern CdC regions experience the most prominent RH and temperature
anomalies, as well as a positive wind speed anomaly, indicating a favorable environment
for wildfires. While precipitation anomalies are positive, they are less pronounced than in
other regions.
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Figure 10. Climatological anomalies between the near-future and the historical period for boreal-
winter for (a,e,i,m) the surface air temperature, (b,f,j,n) surface RH, (c,g,k,o) surface wind speed, and
(d,h,l,p) precipitation. Additionally, each row represents a different scenario: (a–d) SSP1-RCP2.6,
(e–h) SSP2-RCP4.5, (i–l) SSP3-RCP7.0, and (m–p) SSP5-RCP8.5. The plot was constructed using the
Cartopy Python package [81].
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Figure 11. Climatological anomalies between the near-future and the historical period for boreal
summer for (a,e,i,m) the surface air temperature, (b,f,j,n) surface RH, (c,g,k,o) surface wind speed,
and (d,h,l,p) precipitation. Additionally, each row represents a different scenario: (a–d) SSP1-RCP2.6,
(e–h) SSP2-RCP4.5, (i–l) SSP3-RCP7.0, and (m–p) SSP5-RCP8.5. The plot was constructed using the
Cartopy Python package [81].

Considering the SSP2-RCP4.5 scenario, boreal winter anomalies (Figue 10e–h) in
temperature and wind speed align to encourage wildfire development in the north, while
RH and precipitation anomalies hinder it. The significance of the RH anomaly is notably less
compared to the SSP1-RCP2.6 scenario, underscoring the critical importance of minimizing
radiative forcing, as even a 3 Wm−2 alteration can have a substantial impact on wildfire
probability. In boreal summer (Figure 11e–h), temperature and RH anomalies align more
favorably for ignition, yet wind speed and precipitation work against it. Notably, the
southern and southeastern CdC experience negative precipitation anomalies, coupled with
significant temperature and RH anomalies, suggesting an elevated wildfire probability—a
concerning prospect for this previously fire-scarce region—and actions must be taken to
reduce the risk associated with fires in this zone.
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Turning to the SSP3-RCP7.0 scenario, boreal winter anomalies (Figure 10i–l) in temper-
ature, RH, and wind speed favor wildfire ignition, particularly in the south and southeast
of CdC. Precipitation, however, discourages wildfire onset, albeit less significantly com-
pared to the previous scenarios, likely due to larger-scale dynamics. Similarly, boreal
summer (Figure 11i–l) temperature, RH, and wind speed anomalies establish favorable
conditions for wildfires, while precipitation anomalies are unfavorable. Nevertheless, the
southern and southeastern CdC regions exhibit either negative or nearly zero precipitation
anomalies, indicating heightened susceptibility to wildfires, particularly in conjunction
with agricultural expansion.

In the context of the SSP5-RCP8.5 scenario, boreal winter (Figure 10m–p) presents
notable anomalies favoring increased fires in terms of air temperature, RH, and wind
speed, while precipitation anomalies are unfavorable despite being positive. Boreal sum-
mer (Figure 11m–p), however, yields the most disconcerting ensemble mean anomalies
compared to other scenarios and periods. Anomalies in temperature, RH, wind speed, and
precipitation contribute to elevated hotspot occurrences, especially in the northern part
of the country. This implies that under this scenario, boreal summer’s wildfire frequency
could approach that of boreal winter, as these anomalies closely align with those observed
during wildfire days (Figure 6). Robust policies would be imperative to safeguard the soil,
ecosystems, and populace, as such meteorological conditions throughout the year would
yield profound ramifications for the region’s population, ecosystems, economy, and the
Amazonian Forest it is integral to.

In this section, we examine the projected impact of meteorological variables on
2050 wildfire development. A key finding emerges: any radiative forcing increase sur-
passing 2.6 Wm−2 could profoundly affect the region, particularly during boreal summer,
potentially fostering year-round favorable wildfire conditions, a departure from the current
boreal winter dominance. Intriguingly, while wildfire conditions may intensify in the north,
they could also extend to the south, where flammable vegetation currently experiences
fewer fires. Although most scenarios indicate increased precipitation, a potential wildfire
mitigator, rising temperatures and reduced RH in most scenarios emphasize the urgent
need to acknowledge climate change. This underscores the importance of implementing
comprehensive strategies and policies for adaptation and mitigation. These measures are
critical, as urban areas, ecosystems, and essential economic activities remain vulnerable to
the far-reaching impacts of climate change and wildfires. The subsequent section of this
study endeavors to assess potential mitigation strategies. We employ an ML approach
similar to the one developed by [13] to explore these strategies in depth.

3.5. Model Evaluation and Proposed Strategies
3.5.1. Model Results and Sensitivity Experiments

Before diving into the details of the conducted sensitivity experiments, it is essential to
assess the performance of the ML model to ascertain its capacity to accurately depict wildfire
occurrences [11]. Figure 12a illustrates the temporal progression of both observed data and
ML model outcomes over a span of 10.5 consecutive days, while validation encompassed
20% of the dataset (refer to the Method section for comprehensive information). During
periods devoid of active wildfires, the model exhibits exceptional precision; however, this
precision diminishes during instances of fire occurrence (days 3 to 5). Nonetheless, the
model is able to capture the upsurge in temperature and the associated peaks correlated
with fires. Evidently, statistical metrics (depicted in Figure 12a) corroborate the model’s
robust performance in representing both the magnitude (RMSE = 0.47 K and MSE = 0.22 K)
and temporal evolution (R = 0.85) of temperature.



ISPRS Int. J. Geo-Inf. 2023, 12, 436 21 of 32ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 23 of 33 
 

 

 
Figure 12. (a) ML model evaluation of three months of data. Here, a subset of 10.5 days that includes 
wildfires is plotted. Notice that the R, MSE, and RMSE are also plotted in the figure but are calcu-
lated for the three months and not only for the subset. Bland–Altman plots for experiments increas-
ing (blue stars) and decreasing (green stars) by 30% the socio-economic variables: (b) total popula-
tion, (c) GDP, (d) GINI, (e) informal work, (f) low education level, (g) displacement, (h) unemploy-
ment, and (i) victims armed conflict. For plotting purposes, each star represents the mean of 10 
wildfire events that present similar temperatures. 

Figure 12. (a) ML model evaluation of three months of data. Here, a subset of 10.5 days that includes
wildfires is plotted. Notice that the R, MSE, and RMSE are also plotted in the figure but are calculated
for the three months and not only for the subset. Bland–Altman plots for experiments increasing
(blue stars) and decreasing (green stars) by 30% the socio-economic variables: (b) total population,
(c) GDP, (d) GINI, (e) informal work, (f) low education level, (g) displacement, (h) unemployment,
and (i) victims armed conflict. For plotting purposes, each star represents the mean of 10 wildfire
events that present similar temperatures.
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Given the ML model’s capacity to faithfully depict both temperature magnitude and
evolution, including temperature peaks linked to wildfires (e.g., [11]), we leverage this
capability to investigate the variables exerting the most substantial influence on tempera-
ture values during wildfire occurrences (temperature > 304, with consistent conclusions
for alternative thresholds) when these variables are altered (refer to the Method section
for details). In the realm of meteorology, RH, TCWV, and precipitation emerge as potent
determinants of the model’s output [9]. Notably, an increase in these three parameters leads
to temperature moderation, thereby diminishing the favorability of wildfire conditions
(Figure S4a–c). Moreover, wind speed influences temperature, causing a decrease when it
diminishes; however, with a comparatively lesser impact relative to other meteorological
variables (Figure S4d). These findings align with theoretical expectations and the outcomes
of prior sections and with the results of [85,86], reinforcing the model’s accurate representa-
tion of the interconnectedness between meteorology and fires. This suggests that the model
could also aptly incorporate socio-economic variables, although this relationship might be
less transparent.

Turning to the socio-economic experiments (Figure 12), the variables inducing the most
substantial impacts on wildfires are GDP, GINI (of paramount significance) (e.g., [47,50],
and armed conflict victims, closely followed by displacement of people, unemployment,
and lower education levels. Informal work and total population also generate changes
in wildfire patterns [44], albeit with less pronounced effects. The salience of the total
population (Figure 12b) stems from the tendency of newcomers to colonize various areas,
engaging in informal work and individual planting practices lacking in best practices.
Elevating GDP (Figure 12c) tends to suppress wildfire incidents, as increased financial
resources imply enhanced technologies and practices for soil protection and harvesting.
This alignment with GINI outcomes (Figure 12d) underscores a decrease in wildfires with
reduced inequality [51], as equity entails job creation, a decline in informal labor, and better
agricultural practices and infrastructure.

The GINI experiment underscores that reducing unemployment (Figure 12h) and
informal work (Figure 12e) diminishes wildfire favorability (e.g., [52,54,56]). This can be
attributed to fewer potential ignition sources, decreased involvement in illegal activities
like illegal crops (linked to fires, as per [8]), and improved conditions due to reduced
inequality. Education’s significance is also apparent in GINI results, where diminishing
low educational levels (Figure 12f) disfavors wildfires ([51,56]). Multiple factors contribute
to this: (i) educated individuals are less prone to ignite forests or crops, (ii) they are
less inclined towards illegal activities, i.e., illegal crops, and (iii) enhanced agricultural
knowledge fosters better practices, safeguarding soil and discouraging fires [15].

Conversely, displacement and armed conflict victimization are closely intertwined,
with displacement primarily arising from Colombia’s internal conflict. Interestingly, an
increase in conflict victims and displacement leads to decreased fires. This is because
heightened agricultural activity is curtailed, as people are reluctant to enter forests or
agricultural areas due to the risk of encountering armed groups overseeing illegal crops [8].
These findings emphasize the government’s responsibility to not only conclude the conflict
but also integrate displaced individuals into groups that contribute to CdC’s educational,
economic, and agricultural progress. Ceasing hostilities could yield unintended benefits,
transforming challenges into opportunities to enrich lives, enhance agricultural practices,
bolster connectivity, expand job opportunities, and develop technologies. Such growth
would be personally and communally transformative, aiding CdC’s advancement and
concurrently diminishing GINI while bolstering GDP, thus reducing wildfire vulnerability
from multifaceted angles.

3.5.2. Proposed Strategies

Our approach first presents existing strategies as a foundation, followed by new
proposals, enhancing transparency in their development. Assessing the socio-economic
analysis and CdC’s recent government program [14] focused on forest fires, we find the
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proposed strategies fundamental to shaping our approach. The plan emphasizes boosting
technical and non-formal education for adults in non-formal jobs and implementing integral
farms in schools for agricultural practices. It also emphasizes rural advancement and
agricultural production for food sovereignty.

Apart from agricultural production, it is important to emphasize the immense po-
tential of the bioeconomy within the Colombian Amazon region, closely aligned with the
Colombian Green Growth Policy [87]. This presents an opportunity to transition towards a
production and food sovereignty paradigm that intricately connects culture, biodiversity,
and sustainability. Furthermore, this vision resonates with the National Development
Plan (2022–2026), which is centered around productive transformation, and bio-based
enterprises have an essential role to play here [88]. They can make substantial contributions
by implementing sustainable and inclusive production models that harness the region’s
unique endemic resources. These innovative business models may encompass a wide range
of offerings, from direct-to-consumer products sourced from sustainable agriculture and
aquaculture to items derived from responsibly managed wildlife, as well as nature-based
tourism services and various other ecosystem services [89]. This holistic approach holds
the promise of catalyzing positive change across multiple dimensions.

The central focus on fire-related issues lies in agriculture. Strategies concentrate on
providing technical aid, training, and assessing the environmental and societal impacts of
new practices. Land tenure is prioritized to enable farmers to improve their livelihoods
through agriculture [14]. Financing comes from municipal, regional, and national budgets,
agricultural yield, and external sources. The plan supports local farmer associations
and initiatives to enhance livestock security. Economic diversification includes creating
poultry and fish farms managed by local producers. Funding family farming aims to
support small-scale producers’ income, aligned with post-conflict efforts and environmental
conservation [14].

While the government plan’s strategies offer valuable insights, some diverge from
fire mitigation needs and sustainable Amazonian goals ([90,91]). We propose preliminary
measures considering meteorological, vegetation, and socio-economic findings and near-
term climate projections (2050), focusing on land cover and economic and social aspects to
sustainably mitigate forest fires in CdC.

Land Cover Strategies

i. Since the municipality shows a strong susceptibility to fires where vegetation is dry
and small. It is imperative to maintain hydrated soil, using plants that retain moisture
and evaporate slowly to disfavor very dry conditions that could promote wildfires.
These can be done by using nanomaterials and hydrogels that retain humidity in the
vegetation cover (e.g., [92,93]).

ii. To reduce vulnerability to forest fires, proactive measures include planning of areas,
monitoring land cover changes (to shrubs), and preventing illegal settlements (popu-
lation through colonization) [94]. Integrating the identification of Wildland–Urban
Interface (WUI) zones into planning tools serves as a guideline for fire prevention
and risk reduction. This strategy is applied in municipalities with varying levels
of socio-economic vulnerability, aiming to safeguard populations from fire-related
risks ([95–99]).

iii. To protect the deforested border (ecotone), we propose granting monitored con-
cessions to small landowners with significant forest areas in their plots. These
concessions would be located within the deforested portions and accompanied by
integrating value chains for endemic fruits and high-value agroforestry products
(e.g., acai, camu-camu, buriti, etc.), disallowing the proliferation of shrubs. This ap-
proach represents a significant policy shift, moving from encouraging deforestation
to promoting sustainable agroecology and natural forests. While unprecedented in
Colombia, similar bioeconomy strategies [100] and effective land market manage-
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ment offer a potential pathway for conserving Amazonian forests and biodiversity
(reducing shrubs and improving temperature conditions through shading).

iv. Holistic forest fire management spans prevention through impact reduction, encom-
passing individual responsibility, community engagement, resident training, and
fire mitigation equipment provision (tackling low-level education and unemploy-
ment). This strategy also entails deploying fire detection systems and communication
networks and protecting strategic ecosystems in the region (e.g., [11,101]). This
comprehensive approach strives to avert fire incidents and minimize their adverse
repercussions on both communities and ecosystems. The strategy encompasses situa-
tional awareness, long-term evaluation, monitoring and control, as well as post-fire
assessment [101].

v. The convergence of community and ecological networks is crucial for (i) guiding
land management choices, (ii) comprehending the area’s social, environmental, and
economic context, and (iii) forging an innovative framework to interconnect social
and ecological systems [102]. This calls for prioritizing practices that harmoniously
blend these dimensions. Creating agroecological training collaborations across public,
private, and non-profit sectors can facilitate education, implementation, support, and
adaptation of these practices (improving community knowledge).

vi. Evaluating positive and negative incentive policies is essential. Prohibitions need
counterbalancing with rewards. For example, investing in social initiatives could
offset the costs of practices like pasture rotation and trial verge management, aligning
with the national development plan’s rural sustainability goals (affecting the GDP
and GINI). This approach could catalyze the adoption of agroecological methods.

vii. Strengthening government-led territorial consolidation requires a dual focus on
infrastructure and culture (pursuing inequality). Notably, collaborative small-scale
clearances by peasant families contribute significantly to deforestation. To mitigate
this, a comprehensive approach addressing environmental and social dimensions
is crucial.

viii. Given that our results indicate the significance of RH and temperature as robust
predictors of fires, it is crucial for the municipality to prioritize the measurement
and monitoring of these variables. This proactive approach is essential for both fire
prevention and timely response (nowcasting).

Economic Strategies

i. Securing research funding is a challenge for institutions in the Global South ([103,104]).
Navigating grant applications and subsidies can be complex, delaying scientific
projects and international collaborations [105]. Urgently, transparent funding man-
agement policies are needed to ensure equitable access to research funds, reducing
administrative burdens and benefiting researchers from both national and interna-
tional contexts (improving GDP, unemployment, GINI, and education). However,
implementing such policies may require new administrative structures, like ethics
committees, entailing financial and time investments ([106,107]). Nevertheless, this
effort can raise awareness among administrators about funding opportunities and
contribute to institutional growth [108].

ii. Certain funding opportunities prioritize international collaborations, allowing ecolo-
gists and conservationists from the Global South to lead research grant applications,
ensuring fair access and benefits for all collaborators [109]. Taking charge of funding
applications may involve more work, including identifying suitable funding sources
and aligning proposals with standards. Despite the added workload, it enables
well-structured collaborations with global researchers and widens funding options.
Moreover, it helps funding agencies appreciate the needs of Global South recipi-
ents, leading to more inclusive grant requirements [110]. Currently, limited funding
supports joint research between the Global South and international researchers,
hampering collaboration based on shared interests. Increasing research awards for
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early international agreements holds potential for nurturing cross-cultural scientific
partnerships [108].

iii. Regarding funding, it is noteworthy that private financing is lacking due to the
non-commercial nature of rainforest conservation and restoration endeavors. These
initiatives lack appeal to financial institutions. Nevertheless, livestock ownership may
align with financial institutions’ interests, offering lending opportunities compared
to voluntary-based rainforest conservation efforts (private donations).

Social Strategies

i. We must acknowledge that parachute research practices also exist within countries
of the Global South, especially when access to higher education and capacity devel-
opment is concentrated in large cities [111]. Research and the practice of tropical
ecology and conservation can greatly benefit from diverse teams (improving edu-
cational level), including local specialists, such as “paraecologists”, who possess
empirical knowledge of local ecosystems and biodiversity ([112,113]). Collaborative
project development and results discussion with local communities maximize ap-
plicability and impact while respecting local communities’ sovereignty over their
territory and resources and ensuring enduring trust-based relationships ([108,114]).

ii. Respectful engagement of local communities entails their active participation and
input at multiple stages, securing permissions, co-developing research questions,
collaborating with and hiring locals, and building capacities during data collection
and processing. Open discussions of interim and final research findings and adaptive
refinement of participatory research and practices are crucial (e.g., [108,114,115]).

iii. In the future, a significant challenge for integrating social and ecological networks
revolves around appropriate data collection. Specifically, gathering and aligning
data of the correct type (i.e., weighted links with comparable or interactable units)
and at the correct resolution (e.g., seasonal management decisions and knowledge
exchange by farmers) is vital. Many methods exist to generate social data for network
construction; however, current methods are qualitative (i.e., using ecosystem service
provision as a node linked to species without measuring the species’ impact on
service provision) and/or collect data at spatial or temporal resolutions inappropriate
for integration with ecological networks [102].

4. Conclusions

This study explores the meteorological factors driving wildfires in Cartagena del
Chairá. Wildfires result from a combination of elements, including high temperatures, arid
conditions, strong winds, and minimal precipitation. These conditions are particularly
favorable for wildfires in the northern region during boreal winter. However, it is essential
to emphasize that these climatic conditions must align with areas featuring shrubland,
often associated with agricultural activities. Farmers frequently use controlled burns for
soil preparation, but issues arise due to insufficient adherence to safety standards in many
plantations. The problem is exacerbated by the presence of illegal plantations that replace
legal ones using fires, intensifying wildfire challenges. Furthermore, precise identification
of the specific vegetation species most susceptible to wildfires is vital. However, this
requires higher-resolution data on ecological units and biomes, which are currently lacking.

Conversely, a thorough analysis of climate change is conducted by gauging the magni-
tude of meteorological variable anomalies for the year 2049 across four diverse scenarios
encompassing different SSPs and RCPs. The findings reveal that during boreal winter when
wildfires typically emerge, temperature and RH primarily contribute to favorable wildfire
conditions, whereas wind speed and precipitation hinder their development. It is crucial
to highlight that certain scenarios depict conditions wherein both precipitation and wind
speed at the south and southeast of CdC could foster fires, while temperature and RH in the
same scenarios favor them more pronouncedly. This dual concern underscores the necessity
for the government to not only mitigate existing fire-prone zones but also prevent new fire
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outbreaks in previously unaffected areas. Additionally, in boreal summer, temperature, RH,
and wind speed promote wildfires, with precipitation offering a counteracting influence
(albeit less potent than in boreal winter) across most scenarios. Nonetheless, at the south
and southeast of CdC, all variables align to elevate the likelihood of wildfires, raising
two alarming aspects: (i) regions previously untouched by fires could become susceptible,
and (ii) boreal summer could evolve into a season conducive to wildfires, extending the
fire-prone period beyond just boreal winter.

Given the ominous climate change scenarios threatening the region, an ML model
is devised to (i) discern the meteorological and socio-economic factors influencing fires
and (ii) develop strategies to address the variables wielding the most significant impact on
fire occurrences. The results underscore the significance of RH, TCWV, and precipitation
in wildfire dynamics, emphasizing the importance of maintaining a moist environment
and hydrated soil to curtail fires. On the socio-economic front, the GINI index and lower
education levels exhibit the potential to diminish wildfires, while heightened displacement
trends could amplify fire risks. This underscores the government’s imperative to not
only resolve conflicts but also foster opportunities, employment, and education, with the
overarching goal of reducing inequality (GINI), thereby mitigating fire incidents.

At last, we create strategies that combine all the results and are based on already
designed plans and policies. Our comprehensive approach encompasses land cover and
economic and social strategies to address the complex challenges posed by forest fires and
sustainable land management in the Amazon region:

i. Land Cover Strategies: Our approach focuses on mitigating wildfire risk by pro-
moting well-hydrated soil through the cultivation of moisture-retaining plants, dis-
couraging arid conditions. We propose innovative concessions to small landowners,
positioning them within deforested zones. These concessions, accompanied by value
chains for endemic produce and premium agroforestry goods, represent a paradigm
shift towards sustainable agroforestry and forest preservation. This novel strategy,
akin to Brazilian bioeconomy success, underscores the potential of robust land market
management to safeguard Amazonian biodiversity.

ii. Fire Vulnerability Reduction: To lower forest fire vulnerability, we propose proac-
tive steps, including meticulous area planning, ongoing land cover monitoring, and
thwarting unauthorized settlements. Incorporating WUI zones into planning tools
serves as a strategic directive for fire prevention, shielding populations in municipali-
ties with diverse socio-economic vulnerabilities from fire-associated risks.

iii. Holistic Fire Management: Our approach encompasses prevention through impact
reduction, weaving together individual and community roles, training, and fur-
nishing fire mitigation equipment. Anchored in this strategy is the deployment of
fire detection systems, resilient communication networks, and safeguarding critical
ecosystems. By embracing a comprehensive framework that embraces situational
awareness, long-term assessment, monitoring, control, and post-fire evaluation,
our aim is to avert fire events and alleviate their repercussions on communities
and ecosystems.

iv. Harmonizing Community Ecological Networks: Recognizing their role in guid-
ing land management, understanding local contexts, and linking social–ecological
systems, we advocate seamless practices. Collaborative agroecological training initia-
tives across sectors can educate, implement, and support sustainability.

v. Balanced Incentive Policies for Sustainability: We highlight the need for balanced
incentives, combining restrictions with rewards. Social investments could offset
expenses linked to practices such as pasture rotation and trial verge management.
This aligns with the national development plan’s rural sustainability objectives,
promoting broader adoption of agroecological methods.
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vi. Government-Led Territorial Consolidation: To bolster government-led efforts, we
propose a dual focus on infrastructure and culture. Collaborative deforestation by
local families requires a comprehensive approach that addresses both environmental
and social aspects

In conclusion, our comprehensive approach, encompassing land cover and economic
and social aspects, highlights the significance of sustainable measures in curbing forest
fires and fostering prudent land management in the Amazon. By embracing a holistic
framework that integrates stakeholder views and engages local communities, we aspire to
facilitate a balanced coexistence between society and nature in this vital ecosystem.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijgi12100436/s1, Table S1: Satellite data specifications used in
Cartagena del Chairá, Caquetá-Colombia; Table S2: PBLCC classification; Figure S1: Seasonal number
of hotspots in Cartagena del Chairá from 2010 to 2022. Notice that the y-axis has a logarithmic
scale; Figure S2: Area in km2 of each land cover category from [37]. The nomenclature of the x-axis
is described in Table S2; Figure S3: Land cover category changes per year in km2. The categories
are from [37]. The nomenclature of the x-axis is described in Table S2; Figure S4: Experiments
increasing (blue stars) and decreasing (green stars) by 30% the meteorological variables: (a) RH,
(b) TCWV, (c) precipitation, and (d) wind speed. For plotting purposes, each star represents the mean
of 10 wildfire events that present similar temperatures.
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