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Abstract: With the rapid development of localization techniques and the prevalence of mobile devices,
massive amounts of trajectory data have been generated, playing essential roles in areas of user analytics,
smart transportation, and public safety. Measuring trajectory similarity is one of the fundamental tasks in
trajectory analytics. Although considerable research has been conducted on trajectory similarity, the majority
of existing approaches measure the similarity between two trajectories by calculating the distance between
aligned locations, leading to challenges related to uncertain trajectories (e.g., low and heterogeneous data
sampling rates, as well as location noise). To address these challenges, we propose Contra, a convolution-
based similarity measure designed specifically for uncertain trajectories. The main focus of Contra is to
identify the similarity of trajectory shapes while disregarding the time/order relevance of each record within
the trajectory. To this end, it leverages a series of convolution and pooling operations to extract high-level
geo-information from trajectories, and subsequently compares their similarities based on these extracted
features. Moreover, we introduce efficient trajectory index strategies to enhance the computational efficiency
of our proposed measure. We conduct comprehensive experiments on two trajectory datasets to evaluate
the performance of our proposed approach. The experiments on both datasets show the effectiveness and
efficiency of our approach. Specifically, the mean rank of Contra is 3 times better than the state-of-the-art
approaches, and the precision of Contra surpasses baseline approaches by 20–40%.

Keywords: trajectory similarity; uncertain trajectory; location noise; low data sampling; heterogeneous
data sampling

1. Introduction

With the prevalence of mobile devices and the rapid development of localization tech-
niques, object location could be extracted based on various ubiquitous signals, including
GPS, Wi-Fi, Bluetooth, video, etc. [1–3]. Furthermore, location data are collected when
individuals utilize different services, such as mobile payment methods (e.g., credit cards,
Apple Pay, WeChat Pay, etc.), navigation apps (e.g., Google Maps, Baidu Maps, AutoNavi,
etc.), and online-to-offline services (Didi, Dianping, Foursquare, etc.) [4]. Consequently,
trajectory data, which represent sequential records of locations, are being generated at an
unprecedented pace.

Due to its immense commercial and social significance, trajectory analytics has become
increasingly valuable in a wide range of domains, including user analytics, pandemic
prevention and control, urban planning, transportation, etc. [5–8]. At the core of trajectory
analytics lies the concept of trajectory similarity, which quantifies the spatial overlap
between trajectories.
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In the field of user analytics, trajectory similarity can be used to identify similar move-
ment patterns among users, which is valuable for personalized recommendations, targeted
marketing campaigns, and understanding user behavior [9]. Another crucial application is
pandemic prevention and control. Trajectory similarity can aid in contact tracing efforts,
identifying individuals who may have come into close proximity with an infected per-
son. By analyzing the trajectories of individuals, health authorities can identify high-risk
areas, track potential transmission routes, and implement targeted interventions [10,11].
Moreover, trajectory similarity plays a crucial role in urban planning by analyzing the
movement patterns of individuals within a city. By comparing trajectories, urban planners
can identify popular routes, understand commuting patterns, and optimize transportation
infrastructure accordingly. This information helps in designing efficient public transporta-
tion systems, identifying areas for new infrastructure development, and improving overall
urban mobility [12–14].

An uncertain trajectory refers to a trajectory with uncertainties, specifically location
noise, low data sampling rate, and heterogeneous rate. Comparing the similarity between
uncertain trajectories is significantly challenging, as it involves addressing the following
issues of spatial and temporal uncertainties:

• Heterogeneous sampling rates: Due to the nature of sensing devices and object ac-
tivities, trajectories are sampled from continuous paths of objects with time-varying
heterogeneous sampling rates, i.e., locations in a trajectory are collected randomly
and sporadically. As a result, trajectories sampled from the same path may not share
overlapping locations, making it challenging to accurately measure their similarity.

• Low sampling rates: Some trajectories could be very sparse due to the low data
sampling rate of the sensing system (e.g., call detail records in a telecommunication
system). The time interval between two consecutive locations could be large (such
as tens of minutes), and object locations are not observed during that time. The
infrequent observations of object locations introduce uncertainty when measuring
trajectory similarity.

• Location noise: The location in a trajectory is not always perfectly accurate because
of the device error or other environmental factors [15,16]. Consequently, objects that
are actually co-located may appear at different positions, affecting the measurement
of similarity.

Considerable research has been dedicated to trajectory similarity, as evident in refer-
ences [17–21]. Most existing methods measure similarity by aligning locations from two
trajectories and utilizing the distance between these locations as a measure of trajectory
similarity. Although effective in certain scenarios, their performance declines when encoun-
tering challenges associated with trajectory uncertainty. Furthermore, some techniques rely
heavily on extensive data for model training [22,23], which may not always be available.

To address the limitation of existing works, we propose Contra, a convolution-based
similarity measure specifically designed for uncertain trajectories with location noise, as
well as low and data sampling rates. Note that Contra focuses on identifying the similarity
of trajectory shapes while disregarding the time/order relevance of each record within
the trajectory. Unlike the conventional approaches that align locations in two uncertain
trajectories, Contra takes a different approach. It extracts high-level spatial features from
trajectories and evaluates their similarity based on these extracted features, thereby offering
a unique perspective.

The framework of Contra is illustrated in Figure 1. It begins by dividing the area
into non-overlapping grids and transforming a trajectory into a matrix using a location
mapping module. Subsequently, it applies a series of trajectory convolution and pooling
operations using carefully designed trajectory kernels to extract high-level features. Tra-
jectory similarity is then measured based on these extracted features. To accelerate the
feature extraction and facilitate similarity comparison, we propose an efficient trajectory
index for the trajectory matrix. This trajectory index enables linear-time processing of
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similarity comparison. Moreover, the convolution operation for trajectory representation
can be conducted offline, making Contra even more efficient.

Figure 1. Overview of Contra.

In particular, to tackle the challenges of trajectory uncertainties, Contra compares
trajectory similarity based on their high-level shape features, rather than relying on point-
wise distance calculations between individual locations in the trajectories (such as prior
works [18,20,21,24,25]). To this end, it exploits trajectory convolution and trajectory pool-
ing to extract high-level features from a trajectory. The trajectory convolution technique
considers the spatial dependencies among neighboring grids by aggregating features from
these grids to capture high-level shape features. By doing so, this approach remains robust
even when a location is incorrectly mapped to a grid due to noise. Moreover, the extracted
high-level shape features could mitigate the effect of low data sampling rates. In terms of
heterogeneous data sampling rates, the trajectory pooling operation enables the extraction
of key features, hence mitigating the effect of data sampling rate imbalances.

Furthermore, based on the observation that a trajectory matrix could be sparse, we
devised an efficient trajectory index to accelerate trajectory feature extraction and similarity
computations. Compared with most existing approaches with a computation complexity
of O(M× N), where M and N represent the number of locations in the two trajectories,
our proposed approach achieves linear-time processing with the assistance of the trajectory
index strategy. Linear processing time is particularly advantageous when performing tasks
such as clustering, classification, or retrieval of similar trajectories. These operations often
involve comparing a target trajectory against a large number of reference trajectories.

We conduct comprehensive experiments on two real-world trajectory datasets to evalu-
ate the performance of Contra in comparison to state-of-the-art approaches. The evaluation
results from both datasets demonstrate that Contra surpasses the baseline methods in
terms of efficiency, robustness, and scalability for trajectory similarity measurement. The
mean rank of Contra demonstrates a remarkable improvement compared to state-of-the-art
approaches by up to three times, and its precision outperforms baseline approaches by an
impressive margin of 20% to 40%.

The remainder of this paper is organized as follows. Section 2 discusses related
works. Section 4 introduces the details of our proposed approach for trajectory similarity
measurements. The experimental settings and results are shown in Section 5. Section 6
concludes this paper.

2. Related Work

Measuring the similarity between two trajectories has attracted much attention since it
is the foundation for many research problems in trajectory mining [5]. Some works [26,27]
assume that the trajectory lengths are equal. However, this assumption renders these
metrics inapplicable in scenarios where there is heterogeneity in data sampling rates
and varying trajectory lengths. Most existing works measure trajectory similarity by
computing the distance between the aligned locations from trajectories, such as DTW [18],
Fréchet distance [24], EDR [21], LCSS [20], etc. They align a location in a trajectory to a
corresponding location in another trajectory using dynamic programming algorithms, and
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the similarity between two trajectories is then measured by the distance between these
aligned locations. However, the quadratic complexity of these approaches limits their
application for large-scale trajectory similarity computation. Moreover, these approaches
encounter challenges when dealing with location noise and variations in data sampling
rates, making it difficult to achieve accurate alignments.

To mitigate the effects of low and heterogeneous data sampling rates, some works
propose trajectory complement approaches. EDwP [19] and STED [28] employ linear in-
terpolation for trajectory complement, based on a strong assumption that objects do not
change their direction or speed between any consecutive locations in the trajectory. In
addition, CATS [25] introduces temporal and spatial parameters for location-pair map-
ping. However, its performance heavily relies on manual parameter setting. Furthermore,
APM [29] and some other works (such as [30,31]) use historical data to learn the transition
probability between locations, and utilize the Markov model to estimate object location for
trajectory complement. STS [32] employs a kernel density estimation method to estimate
the probability distribution of object locations. However, the computational complexity of
STS is high due to the need to compute a personalized transition model for each trajectory.
In comparison, our approach does not rely on any prior assumptions about the trajectories
and achieves efficiency through the proposed trajectory index strategies.

With the advancements of deep learning techniques in recent years, deep representa-
tion learning methods [22,23,33–36] have been successfully applied to address the issues of
trajectory uncertainty for measuring trajectory similarity. In particular, bidirectional long
short-term memory (Bi-LSTM) [35] and one-dimensional convolutional neural network (1D-
CNN) with a long short-term memory (LSTM) network [36] were employed in prior works
to model trajectory uncertainty. Moreover, t2vec [22] proposes a sequence-to-sequence
framework, while GTS [23] leverages the graph neural network and LSTM to learn trajec-
tory embedding and compare the similarity based on the learned embedding. Furthermore,
to capture the long-term dependencies for similarity computation, a novel graph-based
method called TrajGAT was proposed in a recent work [33]. However, these methods ignore
the point-level differences between trajectories and only capture the trajectory-level features.
To address this issue, CSTRM [34] proposes a novel contrastive model to learn trajectory
representations for similarity computation. It captures both trajectory-level and point-level
features while maintaining robustness to non-uniform sampling rates and data noise. While
these works demonstrate impressive results, they heavily rely on extensive training data,
which may not be available in certain scenarios. Moreover, the model must be retrained
when the data distribution changes. In contrast to existing approaches, our method is
training-free and does not rely on historical data, thereby expanding its applicability to a
wider range of scenarios.

3. Preliminary

In this section, we first define path and trajectory in Section 3.1, and then overview
our proposed Contra in Section 3.2.

3.1. Path and Trajectory

Definition 1. (Path) A path refers to the actual underlying route of a moving object over time. It
could be described as a continuous function f (t) = `, where t is a time stamp and ` is the object
location at t.

A trajectory can be seen as a discrete representation of the movement of an object,
obtained through a sampling process from the object path:

Definition 2. (Trajectory) A trajectory is represented as a sequence of locations with the timestamp
Tra = {(`1, t1), (`2, t2), · · · , (`i, ti), · · · , (`n, tn)}, where `i is the object location collected at time ti.
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In contrast to a path, trajectories exhibit varying sampling rates and can be subject
to noise during the sampling process. Consequently, different trajectories may arise from
the same underlying path, reflecting the temporal irregularities and potential inaccuracies
inherent in the trajectory sampling.

3.2. Overview of Contra

We overview the proposed Contra in Figure 1. Contra consists of four components,
which are explained as follows.

• Location mapping: Given two trajectories, Contra first partitions the space into non-
overlapping grids. Then, it computes the grid position for each location to map the
locations into grids, generating two trajectory matrices for the two trajectories.

• Trajectory feature extraction: Based on the two trajectory matrices, Contra uses trajec-
tory convolution and pooling with a well-defined trajectory kernel to extract high-level
shape features for the two trajectories. This process generates two feature matrices that
capture crucial characteristics and spatial correlations presented in the trajectories.

• Similarity comparison: Contra compares the similarity between the two trajectories
based on their feature matrices. It computes the average difference between the two
feature matrices to represent their similarity.

• Trajectory index: To accelerate the feature extraction process, we developed innovative
trajectory index strategies for Contra. These strategies involve indexing the non-zero
elements within a trajectory matrix and determining the positions of affected elements
for each non-zero element. By utilizing the trajectory index, only the affected elements
need to be updated during trajectory convolution and pooling operations, resulting in
improved efficiency.

4. Methodology

In this section, we present the details of different components of our proposed ap-
proach. We first introduce the concept of location mapping in Section 4.1. Then, we present
the trajectory convolution and pooling operations that enable the extraction of high-level
features in Section 4.2, followed by the description of similarity comparison in Section 4.3.
Finally, we introduce the trajectory index in Section 4.4.

4.1. Location Mapping

By specifying the grid size as s meters, and considering a rectangular space with
size (p× s)× (q× s), we divide the space into p× q non-overlapping grids. These grids
are arranged in a matrix format, with p rows and q columns. This approach allows us
to represent the spatial area as a space matrix Sp×q, where each element in the matrix
represents a specific grid within the space. To ensure simplicity and consistency, we assume
a rectangular shape for the space, with a size of (p × s) × (q × s). In cases where the
space has an irregular shape or its size does not precisely match (p × s) × (q × s), we
utilize padding to convert irregular shapes into rectangular spaces with dimensions of
(p × s) × (q × s). When the space is already rectangular, no padding is necessary for
location mapping. Thus, the padded space has no effect on the similarity computation.

Next, we proceed to map each location (xi, yi) in the trajectory onto the corresponding
grid where it is located. This projection ensures that each location is associated with its
respective grid in the spatial matrix representation. Consequently, the trajectory itself is
transformed into a matrix format.

Given a trajectory Tra = {(`1, t1), (`2, t2), . . . (`n, tn)} and a space matrix Sp×q, the
trajectory matrix of the given trajectory is defined as a p× q matrix, the elements of which
are defined as

Mi,j =

{
1, if ∃ 0 < k < n, (xk, yk) locates in the Si,j.
0, otherwise.

(1)

where Si,j denotes the grid at the i-th row and j-th column in the space matrix.
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The elements in the trajectory matrix are represented by binary values rather than
the count of locations within a grid. The reason is that when comparing the similarity
of two trajectories with heterogeneous data sampling rates, a trajectory with a higher
data sampling rate is likely to have more locations in a grid. To alleviate the effect of
heterogeneous data sampling rates and to ensure a more equitable comparison of trajectory
similarity, we employ a binary value to indicate whether an object appears in a particular
region in the trajectory matrix. This binary representation simplifies the trajectory matrix
by focusing on the presence or absence of an object within a specific grid region.

Using a matrix to represent an uncertain trajectory for similarity comparison offers
two advantages over a location sequence representation. Firstly, the grid-based approach
is highly tolerant to noise. Even if a location contains noise or inaccuracies, it can still be
accurately projected into the corresponding grid. In cases where a location is mistakenly
assigned to a nearby grid, the trajectory convolution operation (discussed in Section 4.2)
will effectively alleviate the impact of location noise. Moreover, the matrix representation
preserves the spatial dependence of the locations within a trajectory. This characteristic
proves valuable in addressing challenges related to low and heterogeneous sampling rates.
By leveraging the spatial dependence information captured in the trajectory matrix, it
becomes possible to infer objects’ co-occurrences. This inference capability is particularly
useful when dealing with trajectories that have sparse or irregularly sampled data.

4.2. Trajectory Feature Extraction

Based on the trajectory matrix, we extract high-level features for an uncertain trajectory
using the trajectory convolution and pooling operations. We first define the trajectory kernel
as follows.

Definition 3. (Trajectory kernel) A trajectory kernel Kk×k is a k× k matrix with all elements as 1.

It is important to note that Contra differs from the canonical convolution neural
networks (CNNs) in that it is a training-free approach. In canonical CNN, a kernel’s values
are learnable parameters, which significantly rely on a huge amount of data for model
training. However, we define the trajectory kernel as a matrix with all elements set to
1. This design allows the kernel to indicate the presence or absence of an object within a
specific grid without relying on model training.

4.2.1. Trajectory Convolution

During the trajectory convolution operation, a trajectory kernel traverses the trajectory
matrix from left to right and top to bottom. Every time the kernel is hovering on the
trajectory matrix, a matrix multiplication will be performed between the kernel and the
hovered portion of the trajectory matrix. The resulting matrix from each multiplication
is stored in a new matrix, which is then passed to the subsequent phase of the operation.
Given a trajectory matrix M with size p× q and a trajectory kernel Kk×k, the size of the
new trajectory matrix M

′
after a convolution operation will be (p− k + 1)× (q− k + 1),

and the element in M
′

is calculated as

M
′
i,j =

u=i+k−1

∑
u=i

v=i+k−1

∑
v=i

Mu,v. (2)

The trajectory operation process is illustrated in Figure 2. As depicted, a trajectory
kernel initiates from the top-left corner of the trajectory matrix and moves horizontally to
the right until it reaches the right side of the matrix. It then hops down to the left side of the
next row and repeats the process until the entire trajectory matrix has been traversed. Each
element in the new trajectory matrix is the summation of k× k elements in the trajectory
matrix from the last phase. Consequently, every element in the new trajectory matrix
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represents a latent region, and its value indicates the likelihood of an object being present
in that specific region.

(a) A kernel (size = 2) starts from the top-left of the
trajectory matrix.

(b) The kernel moves to the right end of the trajec-
tory matrix.

(c) The kernel hops down to the left of the trajectory
matrix.

(d) The kernel repeats the process until the entire
trajectory matrix is traversed.

Figure 2. Illustration of the convolution operation on the trajectory matrix.

Due to the low and heterogeneous sampling rates, it is less likely for co-located objects
to be located at the exact same locations. Fortunately, the high-level features extracted
through trajectory convolution contain latent region information, and similar trajectories
tend to exhibit co-occurrence in certain latent regions (i.e., elements in a new trajectory
matrix), even when the data sampling rates are low and heterogeneous. Moreover, the
trajectory convolution operation helps alleviate the impact of location noise. When a
location contains noise, it may be incorrectly projected into a nearby grid, which is in
close proximity to the correct one. As the trajectory kernel considers multiple nearby grids
during the convolution process, the location can still be represented in several correct latent
regions. This reduces the effect of location noise as the convolution operation takes into
account the spatial dependence among neighboring grids.

4.2.2. Trajectory Pooling

During the convolution operation, the elements in a trajectory matrix are summed if
they intersect with the trajectory kernel. However, a trajectory with a higher data sampling
rate will have more non-zero elements in its trajectory matrix compared to trajectories with
lower data sampling rates. As a result, the values of elements in the new trajectory matrix
after the trajectory convolution will be larger for trajectories with higher data sampling
rates. This imbalance will potentially lead to incorrect measurements.

To address this issue, we draw inspiration from the pooling operation in CNNs, and
introduce the concept of trajectory pooling. Similar to trajectory convolution, trajectory
pooling involves the traversal of a trajectory kernel over the trajectory matrix. Instead of
using the summation operation in trajectory convolution, trajectory pooling employs the
maximization operation.

During trajectory pooling, when the kernel intersects with elements in the trajectory
matrix, it will select the max element from the set of hovered elements. This pooling
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approach allows the extraction of key features while mitigating the impact of data sampling
rate imbalances.

Given a trajectory matrix M
′
p×q after convolution, and a trajectory kernel Kk×k, the

new trajectory matrix M̂(p−k+1)×(q−k+1) after the pooling is

M̂i,j =

{
1

1+e−xi,j
, if xi,j > 0.

0, otherwise.
(3)

where xi,j is the maximum element from {M
′
u,v|i ≤ u ≤ i + k− 1, j ≤ q ≤ j + k− 1}. In this

representation, each element in the trajectory matrix signifies the likelihood of an object
being present within a latent region.

4.3. Similarity Computation

Considering two trajectories Trai and Traj in the same spatial space, they are repre-

sented as two matrices M̂i
p×q and M̂j

p×q respectively after the trajectory convolution and
pooling operations. Each element in the trajectory matrix indicates the possibility that an
object is located in a latent region, and we can compute the similarity of two trajectories
based on the co-occurrence in the latent regions. To quantify the distance between the two
trajectories, we utilize the expression ∑

p
u=1 ∑

q
v=1(M̂i

u,v − M̂j
u,v). This calculation captures

the distance between the corresponding elements of the trajectory matrices. However, it is
important to note that the lengths of the trajectories may differ. A longer trajectory would
yield more locations, resulting in a trajectory matrix with a greater number of non-zero
elements.

To address this discrepancy in trajectory lengths, we propose employing the average
distance to reflect the similarity between the two trajectories:

Dis(Trai, Traj) =
∑

p
u=1 ∑

q
v=1(M̂i

u,v − M̂j
u,v)

S
, (4)

where S = |{(u, v)|M̂i
u,v 6= 0 or M̂i

u,v 6= 0}| is the size of the union of non-zero elements in
the two trajectory matrices. By taking the average, it ensures that the similarity assessment
is not biased toward trajectories of different lengths. In our work, the distance between two
trajectories ranges from 0 to 1. Two trajectories are more similar if the distance between
them is closer to 0 and less similar if the distance is closer to 1.

4.4. Trajectory Index

During trajectory convolution and pooling, we observe that an element in the trajectory
matrix only affects the result of the new trajectory matrix when it intersects with the
trajectory kernel. Given a trajectory kernel Kk×k, an element in a trajectory matrix will only
affect at most k× k elements in the new trajectory matrix. Thus, it is not necessary to apply
the convolution operation at each location or to compare the difference of elements at each
location. For example, the convolution operations in Figure 2a,d are unnecessary as the
elements interacting with the trajectory kernel are all 0 and, thus, have no effect on the new
trajectory matrix. To improve the computational efficiency of convolution and similarity
measurement, we devise a trajectory index based on these characteristics.

Given a trajectory matrix Mp×q and a trajectory kernelKk×k, for each element Mi,j > 0,
it will affect the value of M

′
i−k+a,j−k+b, where M

′
is the new trajectory matrix initialized

with a zero matrix, 1 ≤ a ≤ 2k − 1 and 1 ≤ b ≤ 2k − 1, 1 ≤ i − k + a ≤ p− k + 1 and
1 ≤ j− k + b ≤ q− k + 1. Thus, we can continue indexing the elements that are non-zero in
a trajectory matrix, and only update the value of elements in a new trajectory matrix, which
are affected. During trajectory convolution, for an element Mi,j > 0, Mi,j will be added to
M
′
i−k+a,j−k+b in the new trajectory matrix. In the trajectory pooling layer, when visiting a

element M
′
i,j > 0, if M

′
i,j > M̂i−k+a,j−k+b, M̂i−k+a,j−k+b will be replaced by M

′
i,j, where M̂ is
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a zero matrix with size (p− 2k− 2)× (q− 2k− 2). After visiting all the non-zero elements
in M̂, we transform the non-zero element into

M̂u,v =
1

1 + e−M̂u,v
. (5)

When calculating the distance between two trajectories, we only consider the dif-
ferences between the non-zero elements in the respective trajectory matrices. Since the
non-zero elements have been indexed, it is not necessary to traverse all elements in the tra-
jectory matrix. This indexing strategy significantly improves the efficiency of both feature
extraction operations and similarity comparison.

Given two trajectories Ta and Tb, assume that their trajectory matrices are Ma and
Mb, respectively. There are O(k2(|Ta|+ |Tb|)) summation or maximization operations for a
trajectory matrix, where k is the size of the trajectory kernel in the Contra. Similarly, there
are O(k2(|Ta|+ |Tb|)) difference operations when computing the distance between two
trajectory matrices. Since k is set to be a small constant for the Contra (k = 3 in this work),
the time complexity for trajectory convolution and similarity computing is O(|Ta|+ |Tb|).
Notably, the feature extraction can be performed offline to further improve efficiency.
Consequently, the similarity between two trajectories can be compared in linear time.

5. Illustrative Experimental Results

In this section, we evaluate the effectiveness, efficiency, and scalability of our pro-
posed approach on two real trajectory datasets. We introduce the datasets and the base-
line approaches used for experiments in Section 5.1. To evaluate the effectiveness of the
approaches, we conduct the experiments from two aspects—self-similarity and cross-
similarity—which were widely adopted in the previous works [19,22,29]. Performance
results for self-similarity and cross-similarity are are shown in Sections 5.2 and 5.3. More-
over, we present the evaluation results for the efficiency and scalability of our approach
in Section 5.4. The effects of parameters for the proposed approach are discussed in
Section 5.5.

5.1. Datasets and Baselines

We conducted our experiments on two real-world taxi datasets. The statistics of the
datasets are shown in Table 1. The first dataset (Porto dataset) (https://www.kaggle.com/
datasets/crailtap/taxi-trajectory accessed on 17 October 2023) contains 1,233,766 trajectories,
collected by 422 taxis running in the city of Porto, Portugal, over 12 months. Each taxi
reports its location every 15 seconds. The average duration of these trajectories is 783.45 s.

The second dataset (the Beijing dataset) [37,38] consists of GPS trajectories from
10,257 taxis over a one-week period in Beijing. The average sampling interval for this
dataset is 174.36 s. We partition a trajectory into two if the time gap between two consecutive
points is more than 15 min, leading to 333,948 trajectories. The average duration of these
trajectories is 8473.26 seconds. To ensure meaningful analysis, trajectories with a length of
less than 30 data points were excluded, allowing us to sample sub-trajectories at different
rates and evaluate the effect of low and heterogeneous data sampling rates. Following the
experimental settings in prior works [19,22], we conducted experiments using a subset of
100,000 trajectories in our work.

Table 1. Dataset statics.

Number of
Trajectory

Average Time
Interval (s) Average Duration (s)

Porto dataset 1,233,766 15.00 783.45

Beijing dataset 333,948 174.36 8473.26

https://www.kaggle.com/datasets/crailtap/taxi-trajectory
https://www.kaggle.com/datasets/crailtap/taxi-trajectory
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We compare our proposed approach, Contra, with three existing works, namely
EDwP [19], CATS [25] and LCSS [20]. LCSS is a widely adopted approach for measuring
sequence similarity and has been extensively used in trajectory similarity analysis. EDwP
and CATS are state-of-the-art methods specifically designed to address challenges posed
by heterogeneous and low sampling rates in trajectory similarity analysis. We excluded
EDR [21] from our comparison since EDwP is an extension of EDR and has shown superior
performance compared to the traditional EDR approach. Similarly, we did not include
DTW [18] as it has been demonstrated to have similar performance to EDR in trajectory
similarity measurements [19].

For the evaluation, we set the parameter ε in LCSS and EDR to 0.0025 based on our
experimental results. The spatial threshold in CATS was set to 0.002, as it achieved the best
performance in our experiments. In the case of Contra, we configured the trajectory kernel
size as 3, and the default grid size as 100 m. The effect of grid sizes will be discussed in
subsequent experiments. Contra, CATS, and LCSS were implemented in Python, while the
authors of EDwP provided the implementation in Java, which can be obtained from their
website (http:www.cse.iitd.ac.in/~sayan/software.html accessed on 17 Ocotber 2023).

5.2. Effectiveness of Self-Similarity

An effective trajectory similarity measure should identify trajectories sampled from
the same path. Thus, we evaluate the performance of Contra and other baseline approaches
using self-similarity, which is widely discussed in prior works [22,32].

Given two sets of trajectories D1 and D2, consider any trajectory pair Tra1
i ∈ D1 and

Traj2i ∈ D2. Tra1
i and Tra2

i are sampled from the same path. We measure the similarity
of Tra1

i and any trajectories in D2. Then we sort the trajectories in D2 with respect to the
similarity in descending order, and use ri to denote the rank of Tra2

i . If ri = 1, the precision
for Tra1

i is defined as pi = 1, and pi = 0 otherwise. Then, the precision P for all testing
trajectories is defined as

P =
∑n

i=1 pi

n
. (6)

Furthermore, the mean rank is defined as the average of all ri:

MR =
∑n

i=1 ri

n
. (7)

Both metrics could reveal the effectiveness of similarity measures in finding similar
trajectories, assessing the measures from different aspects. The precision metric cares about
whether a measure could identify the exact trajectory sampled from the same path for a
trajectory, while the mean rank metric considers the ranking among the trajectory dataset.
The higher precision and lower mean rank indicate the better effectiveness of the measure.
The mean rank will be 1 when the precision is 100%.

Data construction. To overcome the lack of ground truth, we constructed the eval-
uation dataset following prior works [22,32]. As shown in Figure 3, for each trajectory
Trai in a dataset, we generated two sub-trajectories, Tra1

i and Tra2
i , by alternately taking

points from it, and used them to construct two new datasets, D1 = {Tra1
i |i = 1, 2, · · · , n}

and D2 = {Tra2
i |i = 1, 2, · · · , n}. In the two new datasets, Tra1

i ∈ D1 and Tra2
i ∈ D2 are

sampled from the same trajectory Trai. We first randomly selected 6000 trajectories from
the Porto dataset and the Beijing dataset. Next, we constructed the evaluation datasets
based on the selected Porto dataset DP and the Beijing dataset DB, and obtained two pairs
of new datasets, (D1

P, D2
P) and (D1

B, D2
B).

Effects of different data sampling rates. We assessed the performance of various
methods under different sampling rates. To achieve this, we applied downsampling to the
trajectories in both D1 and D2 using dropping rates of [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6], resulting
in trajectories with varying sampling rates. As a result, we obtained a total of 14 datasets,
comprising 7 pairs, where each pair consists of two datasets downsampled with the same
data-dropping rate. Next, we conducted a comparison of trajectory similarity within

http:www.cse.iitd.ac.in/~sayan/software.html
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each pair. For every trajectory in the dataset downsampled from D1, we calculated its
similarity with all trajectories from the dataset downsampled from D2 at the corresponding
data-dropping rate.

Figure 3. Sample two sub-trajectories from a trajectory for ground truth construction.

The precision and mean rank on the Porto dataset for different data sampling rates are
depicted in Figures 4a and 5a, respectively. The experimental results clearly demonstrate
that our proposed approach consistently outperforms all other methods in terms of preci-
sion and mean rank. For trajectories without downsampling (dropping rate = 0), Contra
achieves an impressive precision of up to 96% and a mean rank of approximately 1.06,
showing significant improvements compared to the state-of-the-art methods, EDwP and
CATS. EDwP and CATS exhibit precision values of 85% and 61%, respectively, with mean
ranks of 1.67 and 5.18. Notably, Contra demonstrates an 11% improvement in precision
over EDwP and a remarkable 35% improvement over CATS. Furthermore, Contra surpasses
EDwP by 50% and CATS by nearly five times in terms of the mean rank. In contrast, LCSS
performs significantly worse, with precision values of approximately 5% and mean ranks
of around 30.
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Figure 4. Precision versus low data sampling rates.
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Figure 5. Mean rank versus low data sampling rates.
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In this experiment, a higher dropping rate indicates a lower sampling rate. As shown
in Figures 4a and 5a, with the increase in the dropping rate, the performance of all methods
decline since the data sampling rates become lower. However, even at low sampling rates,
our approach maintains higher precision and lower mean rank compared to any other
methods. The experimental results for the Beijing dataset, depicted in Figures 4b and 5b,
are consistent with those of the Porto dataset. Contra also achieves the best performance
in both metrics for the Beijing dataset, indicating the robustness of our approach across
different datasets and varying data sampling rates.

Effect of heterogeneous data sampling rates. In real-world applications, data sam-
pling rates across different devices often vary, leading to heterogeneity. Therefore, we
investigate the effect of heterogeneous data sampling rates on the performance of different
methods. To accomplish this, we apply downsampling to the trajectories in D2 using
data-dropping rates of [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6], while trajectories in D1 remain without
downsampling. As a result, we obtained six new datasets, each downsampled from D2
and featuring a heterogeneous sampling rate compared to D1. Subsequently, we calculate
the similarity between each trajectory in D1 and any trajectories from the datasets down-
sampled from D2 at different data-dropping rates. We use precision and mean rank as
evaluation metrics.

The precision and mean rank versus heterogeneous data sampling rates on the Porto
dataset are presented in Figures 6a and 7a, respectively. In both figures, the data-dropping
rate indicates the difference in the data sampling rates of the two compared trajectories.
The larger the data-dropping rate, the larger the difference in the data sampling rates of
two trajectories. The figures demonstrate that Contra consistently outperforms all other
baseline approaches across all data sampling rates, highlighting its superior performance
in addressing the issue of heterogeneous data sampling rates. In Figure 6a, the precision
of Contra is above 75%, even with a data-dropping rate of 0.3. Notably, state-of-the-art
methods, such as EDwP and CATS, perform better than the traditional approach LCSS,
which is consistent with the results in previous works. As the data-dropping rate increases,
indicating a larger disparity in sampling rates between trajectories, the performance of
all approaches declines. This decline occurs because a larger difference in sampling rates
makes it more challenging to measure the similarity between trajectories. Similar trends
can be observed in the mean rank results, as depicted in Figure 7a. Contra consistently
outperforms other approaches in terms of mean rank, while EDwP shows comparable
performance when the data sampling rate of trajectories in dataset D2 is low.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6

p
re

c
is

io
n

data dropping rate

 ConTra
 EDwP
 CATS
 LCSS

(a) Porto.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6

p
re

c
is

io
n

data dropping rate

 ConTra
 EDwP
 CATS
 LCSS

(b) Beijing.

Figure 6. Precision versus heterogeneous data sampling rates.
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Figure 7. Mean rank versus heterogeneous data sampling rates.

The results of precision and mean rank over the Beijing dataset are shown in
Figures 6b and 7b. Contra significantly outperforms other approaches on the Beijing dataset.
In Figure 6b, Contra maintains precision values above 80% even at a high data-dropping
rate (e.g., 0.6), whereas both EDwP and CATS fall below 70%. Similarly, in Figure 7b,
Contra achieves a mean rank below 10 at a data-dropping rate of 0.6, outperforming EDwP
and CATS by a factor of three and LCSS by a factor of six. The consistent results across both
datasets demonstrate the robustness and general applicability of Contra for trajectories
with heterogeneous data sampling rates.

Effect of location noise. A reliable similarity measure should be able to accurately
identify similar trajectories even in the presence of location noise. To evaluate the perfor-
mance of methods under different degrees of location noise, we distort the location in a
trajectory by adding Gaussian noise with a different location noise w(m), as follows,

xi = xi + w · dx, dx ∼ Gaussian(0, 1),

yi = yi + w · dy, dy ∼ Gaussian(0, 1).
(8)

We distort each trajectory in datasets D1 and D2 using location noise values of [0 m,
5 m, 10 m, 15 m, 20 m, 25 m, 30 m]. This process results in two new sets of distorted datasets,
namely D1

i and D2
i , for each location noise value wi. Consequently, we obtain a total of

14 datasets comprising 7 pairs, where trajectories in each pair are distorted by the same
location noise level. Next, we proceed to compare the similarity between each trajectory in
D1

i and all trajectories within D2
i .

The precision and mean rank results for the Porto dataset are presented in Figure 8a
and Figure 9a, respectively. Among all the approaches, Contra achieves the highest perfor-
mance on both metrics. As shown in Figure 8a, with even the most severe noise of 30 m,
the precision is up to 92.7%. Notably, Contra achieves approximately a 20% improvement
in precision compared to EDwP and a remarkable 40% improvement compared to CATS.
Conversely, the precision of the LCSS approach performs poorly in the experiment. Figure 9a
illustrates the mean rank results, where Contra consistently achieves a mean rank close
to 1 for all levels of location noise. Even in the worst-case scenario with a location noise
of 30 m, Contra maintains a mean rank of less than 1.13. In terms of mean rank, Contra
consistently outperforms EDwP by 20% and CATS by approximately 30 times. As the
severity of the location noise increases, the decline in performance on both metrics is not
significant, highlighting the robustness of Contra in the presence of location noise.

The experiment results over the Beijing dataset are presented in Figures 8b and 9b,
demonstrating the superior performance of Contra on both metrics. These results clearly
indicate that our proposed approach, Contra, is more effective and robust in handling
location noise compared to existing approaches.
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Figure 8. Precision versus location noise.
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Figure 9. Mean rank versus location noise.

5.3. Effectiveness of Cross-Similarity

An effective trajectory measure should preserve the distance between two distinct
trajectories (cross-similarity), regardless of variations in data sampling rate and location
noise [22,29]. In this experiment, we randomly select 10,000 pairs of trajectories from the
dataset. For each trajectory pair, denoted as Trai and Traj, we calculate the ground truth
distance Dis(Trai, Traj) between them. Subsequently, we calculate the distance between
Trai and a modified version of Traj, referred to as Tra

′
j. The modification involves either

removing locations from Traj with a data-dropping rate denoted as θi or adding location
noise denoted as wi. We use the cross-similarity deviation as the metric, which is defined
in prior work [29] as follows,

CD =
|dis(Trai, Tra

′
j)− dis(Trai, Traj)|

dis(Trai, Traj)
. (9)

A smaller cross-similarity deviation indicates closer proximity to the ground truth
distance, highlighting better preservation of cross-similarity.

Effect of the data sampling rate. To evaluate the cross-similarity for heterogeneous
data sampling rates, the data-dropping rate θi is set to be [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] for
the experiment. The corresponding results for the Porto dataset and the Beijing dataset
are presented in Figure 10a and Figure 10b, respectively. The cross-similarity deviation
of Contra is much smaller than that of CATS and LCSS on both datasets. The difference
between Contra and EDwP is not significant on the Porto dataset, while Contra outperforms
EDwP slightly on the Beijing dataset. As the data-dropping rate increases, the cross-
similarity deviation of CATS and LCSS increases dramatically, while that of Contra and
EDwP increases slowly. The consistency of these results across both datasets reinforces
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the effectiveness of Contra in accurately preserving distances even when confronted with
varying data sampling rates.
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Figure 10. Cross-similarity deviation versus different data sampling rates.

Effect of location noise. The location noise wi is set to be [5 m, 10 m, 15 m, 20 m, 25 m,
30 m] to investigate the effect of location noise on cross-similarity. Figure 11a,b show the
results on the Porto dataset and the Beijing dataset. On both datasets, as the severity of
location noise increases, there is a rapid escalation in the cross-similarity deviation for CATS
and LCSS. Conversely, the increment in cross-similarity deviation for Contra and EDwP is
not as significant. The deviation of both Contra and EDwP is much smaller than that of
CATS and LCSS, which reveals the remarkable ability of Contra and EDwP to effectively
preserve distances even when confronted with varying levels of location noise.
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Figure 11. Cross-similarity deviation versus different location noise.

5.4. Efficiency and Scalability

To evaluate the efficiency and scalability of Contra, we conducted a comparative
analysis between Contra and other baseline approaches. The evaluation focused on the
running time required to calculate the similarity of a varying number of trajectory pairs,
specifically n = {20, 000, 40, 000, 60, 000, 80, 000, 100, 000}. The results obtained from the
Porto dataset and Beijing dataset are presented in Figure 12a and Figure 12b, respectively.

As observed in Figure 12a, the running time on the Porto dataset increases propor-
tionally with the growth in data size. Notably, Contra consistently outperforms all other
baseline approaches in terms of computational efficiency across the different data sizes.
Moreover, the performance gap between Contra and the baselines becomes more significant
as the data size increases. The trends are similarly reflected in the results obtained from
the Beijing dataset (Figure 12b). These results show the efficiency and robustness of our
proposed approach, as demonstrated on both the Porto and Beijing datasets.
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Figure 12. Running time versus different data sizes.

5.5. Effects of Different Parameters

We evaluate the effects of grid size, trajectory kernel size, and data size on the perfor-
mance of our proposed approach in our experiments.

Effect of grid size. Contra uses sequences of grids to represent trajectories. Intuitively,
using large grid sizes enhances the tolerance to noise and low sampling rates for measuring
trajectory similarity. However, employing excessively large grids may lead to the misclassi-
fication of dissimilar trajectories as similar, as a majority of their locations might be mapped
to the same grids. To evaluate the performance of Contra under different grid sizes, we
conducted experiments using grid sizes of [50 m, 60 m, 70 m, 80 m, 90 m, 100 m, 110 m,
120 m] and evaluated Contra using the metrics of precision and mean rank. Figure 13a
illustrates the precision results for both datasets as the grid size varies. It can be observed
that precision initially increases with larger grid sizes, reaching a peak point. Subsequently,
precision begins to decline. For the Porto dataset, Contra achieves the best performance
when the grid size is set to 80 m, and for the Beijing dataset, the optimal grid size for Contra
is 100 m. Notably, Contra maintains consistently high precision across different grid sizes,
indicating its robustness in handling variations in grid size. Similar trends can be observed
in the mean rank metric, as depicted in Figure 13b. These results further reinforce the
findings from the precision metric, highlighting the effectiveness of Contra across different
grid sizes.
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Figure 13. Performance versus different grid sizes.

Effect of kernel size. During the trajectory convolution and pooling operations,
Contra employs a trajectory kernel to extract high-level features. To investigate the effects
of different kernel sizes on Contra’s performance, we conducted experiments using a range
of kernel sizes, including [2, 3, 4, 5, 6, 7, 8]. Precision and mean rank are used as evaluation
metrics. The experimental findings are presented in Figure 14a,b. The performance of
Contra exhibits a trend of initially increasing and then declining as the kernel size varies.
Figure 14a illustrates the precision results, indicating that Contra achieves the highest
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precision when the kernel size is set to 3 for the Porto dataset and 5 for the Beijing dataset.
Remarkably, Contra maintains consistently high precision even when the filter size changes.
Similar trends can be observed in the mean rank metric, as depicted in Figure 14b.
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Figure 14. Performance versus different kernel sizes.

Effect of data size In order to evaluate the robustness of Contra’s performance with
increasing data size, we conducted experiments to evaluate its effectiveness in handling
varying dataset sizes. The data size was systematically set to [2000, 4000, 6000, 8000, 10,000]
for our evaluation, with precision and mean rank serving as the evaluation metrics.

The results, presented in Figure 15a,b, reveal important insights. As depicted in
Figure 15a, the precision of Contra exhibits a decline as the data size increases. Nevertheless,
it is noteworthy that Contra consistently maintains a high level of precision, even with
larger datasets. Additionally, the rate of decline in precision becomes slower as the data
size increases. This indicates that the performance degradation is less pronounced as the
dataset grows in size. Similarly, Figure 15b demonstrates a comparable trend in the mean
rank metric. The growth in mean rank decelerates with the increment of data size, and
Contra consistently achieves a low mean rank across different data sizes.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 2000  4000  6000  8000  10,000

p
re

c
is

io
n

data size

 Beijing dataset
 Porto dataset

(a) Precision.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 2000  4000  6000  8000  10,000

m
e
a
n
 r

a
n
k

data size

 Beijing dataset
 Porto dataset

(b) Mean rank.

Figure 15. Performance versus different data sizes.

6. Conclusions

This paper introduces Contra, a novel and highly effective similarity measure specif-
ically designed to address the challenges associated with uncertain trajectories. Contra
measures trajectory similarity by quantifying the spatial overlap between trajectories, where
two trajectories are considered similar if their shapes are similar. By extracting high-level
spatial features from the trajectories, Contra enables accurate and efficient comparisons, ef-
fectively handling issues of location noise, low data sampling rates, and heterogeneous data
sampling rates. Furthermore, the incorporation of an efficient trajectory index in Contra
significantly enhances the efficiency of both feature extraction and similarity comparison
processes. The extensive experiments conducted on two taxi datasets have demonstrated
the effectiveness, efficiency, and robustness of our proposed Contra.
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