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Abstract: The artificial bee colony algorithm (ABC) is a promising metaheuristic algorithm for
continuous optimization problems, but it performs poorly in solving discrete problems. To address
this issue, this paper proposes a hybrid discrete artificial bee colony (HDABC) algorithm based on
label similarity for the point-feature label placement (PFLP) problem. Firstly, to better adapt to PFLP,
we have modified the update mechanism for employed bees and onlooker bees. Employed bees learn
the label position of the better individuals, while onlooker bees perform dynamic probability searches
using two neighborhood operators. Additionally, the onlooker bees’ selection method selects the most
promising solutions based on label similarity, which improves the algorithm’s search capabilities.
Finally, the Metropolis acceptance strategy is replaced by the original greedy acceptance strategy
to avoid the premature convergence problem. Systematic experiments are conducted to verify the
effectiveness of the neighborhood solution generation method, the selection operation based on
label similarity, and the Metropolis acceptance strategy in this paper. In addition, experimental
comparisons were made at different instances and label densities. The experimental results show that
the algorithm proposed in this paper is better or more competitive with the compared algorithm.

Keywords: artificial bee colony algorithm; point-feature label placement; label similarity; Metropolis
acceptance strategy

1. Introduction

Combinatorial optimization problems are one of the most challenging and widely used
mathematical problems today. Dealing with combinatorial optimization problems means
choosing the optimal solution to maximize or minimize the objective function under the
given conditions. There exist many practical application scenarios for this problem, such as
graph coloring problems [1], workshop scheduling [2], traveling salesman problems [3,4],
and label placement problems [5]. Solving such problems is significant in terms of pro-
ductivity improvement and cost reduction. Label placement is one of the most attractive
branches of discrete combinatorial optimization problems. In practical applications, its
solution size is usually very large, and the problem solution grows exponentially with
the problem dimension, which is a typical Non-deterministic Polynomial-hard (NP-hard)
problem [6]. Label placement can be understood as assigning labels to each feature on the
map according to cartographic rules and preferences while ensuring maximum freedom
from conflict, and ultimately obtaining a clear, beautiful, and easy-to-read map. According
to the type of map, features can be divided into three different kinds of labeling problems:
point features [7] (hospitals, travel spots, etc.), line features (rivers, roads, etc.) [8], and
area features [9] (continents, countries, oceans, etc.) [9]. Since all three types of problems
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can be abstracted as combinatorial optimization problems according to the label candidate
model and the label quality evaluation function, the number of labels for point features
is the largest. Thus, the most extensive research has been conducted on the placement of
point-feature labels.

The difficulties of point element label placement are label conflict, label feature conflict,
and label correlation. In addition, the difficulty of solving PFLP increases exponentially
with the size of the problem. Current methods for solving the PFLP can be solved by both
exact and metaheuristic algorithms, while exact algorithms are only suitable for small-scale
optimization problems and are extremely time-consuming in solving large-scale problems.
The metaheuristic algorithm can obtain optimal or near-optimal solutions in an acceptable
time and is a general heuristic strategy [10]. The rules of the metaheuristic algorithm can
use the current search information to adjust the search and form an intelligent iterative
search mechanism. Such rules can effectively avoid falling into local optima, improve
search efficiency, and have better efficiency and applicability compared to exact algorithms
for solving complex optimization problems, and have become the mainstream method for
solving the PFLP, such as simulated annealing [11,12], tabu search algorithms [13], genetic
algorithms [14], etc. Metaheuristic algorithms fall into two main categories: single solution-
based and population-based approaches. Population-based approaches are divided into
two categories: evolutionary algorithms and swarm intelligence algorithms. The most
common of the single solution-based approaches are tabu search and simulated annealing.
Alvim and Taillard [15] used POPMUSIC to divide the problem into subproblems solved
separately using tabu search. Rabello [16] combined a clustering search algorithm with
simulated annealing to solve the point-feature label placement problem. Araujo et al. [17]
improved Rabello’s clustering search algorithm by proposing a density clustering search
using three methods: density-based clustering (DBSCAN), natural group identification
(NGI), and label propagation (LP) to detect promising solutions. Guerine [18] combined
data mining techniques and clustering search to achieve faster convergence and better label
results than the previous clustering search. Cravo et al. [19] applied the greedy adaptive
random algorithm to the point-feature label placement for solving. In terms of evolutionary
algorithms, genetic algorithms, and differential evolutionary algorithms are two typical
examples, and Lu [20] proposed a differential evolution and genetic algorithm for the
multi-geographic feature label placement problem. Deng [21] improved the differential
and genetic algorithm for Lu in three aspects: selection of candidate positions, evaluation
of label quality, and sequential iteration. Li et al. [22] combined genetic algorithm and tabu
search to solve the point-feature label placement problem. The metaheuristic algorithm
for swarm intelligence is less applied in the label placement, and only the ant colony
algorithm [23] is applied to solve the point-feature label placement, mainly because most
swarm intelligence algorithms are used to solve continuous optimization problems, and
some improvements need to be made in solving discrete problems.

This paper focuses on an innovative application of the artificial bee colony (ABC)
algorithm for point-feature label placement, which is an excellent swarm intelligence op-
timization algorithm for solving continuous optimization problems [24]. The renewal of
the solution cooperates with other bees, and the onlooker bees expand their reinforcement
capacity, while the scout bees ensure their diversity, with fewer parameters and easier im-
plementation. The algorithm was originally proposed to solve complex sequential problems
and outperformed many other algorithms when tested on complex mathematical bench-
marks. The method was subsequently well applied to similar combinatorial optimization
problems such as the traveling salesman problem [25,26] and job-shop scheduling [27], so
we believe that the method is equally well suited to solve the point-feature label placement
problem. Since this method was originally used to solve continuous problems and some
improvements are needed to apply it to combinatorial optimization problems, we propose
a hybrid discrete artificial bee colony algorithm (HDABC) based on label similarity to solve
the point-feature label placement problem. In HDABC, a new solution update method was
designed for employed bees and onlooker bees to avoid the loss of population diversity due
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to a single update formula. In addition, a combination of label diversity and the roulette
selection method was used to select more promising solutions for optimization in the selec-
tion phase of the onlooker bees. In addition, the greedy acceptance strategy was replaced
by the Metropolis acceptance strategy to further improve the balance between exploration
and diversity. The effectiveness of this paper’s algorithm is verified by comparing it with
other metaheuristics on the tested instances. Our main contributions are as follows:

1. A new discrete optimization algorithm (HDABC) is proposed for solving the point-
feature label placement problem;

2. The update methods for employed and onlooker bees are redesigned to suit the point
element label placement problem. The hired bee uses learning from good individuals,
and the scout bee searches alternately with two search operators based on dynamic
probabilities;

3. Onlooker bees select more promising solutions for updating based on label similarity
to improve the performance of the algorithm;

4. Replace the greedy acceptance strategy of employed bees and onlooker bees with the
Metropolis acceptance strategy to avoid the premature convergence problem.

The text continues here.

2. Point-Feature Label Placement Problem

Point-feature label placement refers to the assignment of label text to point features on
the map according to certain rules such as minimization of conflicts, label preference, and
non-ambiguity. The point-feature label placement based on the label candidate model and
the label quality evaluation function can be abstracted into a combinatorial optimization
problem. In the following, we focus on a brief description of the label candidate model and
the label quality evaluation function.

2.1. Label Candidate Model

The point-feature label placement requires a label candidate model to provide the label
position for it, and the merit of the label candidate model directly affects the result of point-
feature label placement, so it is important to select a suitable label model. Label candidate
models are mainly divided into fixed models [28] and sliding models [29]. The fixed
model can make full use of the label gap area by the sliding strategy but the computational
complexity is larger. The common fixed models are 4-orientation and 8-orientation models.
Zhou et al. [23] proposed a multi-level multi-orientation model. To fully utilize the blank
area of the label, multiple label orientations can be employed, but this approach may
increase the time required. To balance quality and efficiency, the label candidate model
used in this paper adopts eight orientations. As shown in Figure 1, the shaded part of the
figure is the point element symbol, the point feature symbol cannot exceed the minimum
outer circle of the set point feature, the rectangular area 0–7 represents the candidate
position of the point, each position has a priority size, the positive right side is the optimal
position, and the smaller the number represents its higher priority. The dashed rectangular
box in the figure is the smallest external rectangle containing the point feature and the label
candidate rectangle.
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2.2. Label Quality Evaluation Function

The point-feature label placement aims to obtain conflict-free, aesthetically pleasing,
and ambiguity-free point-feature label maps, and the quality evaluation function of point-
feature label placement is constructed mainly considering conflict, label priority, and label
correlation [30,31]. The label quality evaluation function for solution x is as follows. Label
quality evaluation function abstracts the PFLP problem into a minimization objective
function problem. Smaller function values indicate that the solution is better.

min f (x) =
n

∑
i=1

m

∑
j=1

Q(i, j)αij × 1000/n (1)

Q(i, j) = ω1Qcon(i, j) + ω2Qpri(i, j) + ω3Qass(i, j) (2)

Constraints:
m

∑
j=1

αij = 1 (3)

n is the number of point features, m is the number of label candidates, Q(i, j) is the
evaluation function when the i-th point feature is at the j-th label candidate position, αij is
the switch variable, when the i-th point-feature label is at the j-th label candidate position,
αij = 1, and vice versa αij = 0. Qcon(i, j) is the conflict score between the i-th point feature
and the other point features when the i-th point feature is located at the j-th candidate
position. It is set to 1 if there is a conflict with other points; otherwise, it is set to 0. Qpri(i, j)
is the label priority score when the i-th point feature is located at the j-th label candidate
position. Using the example of the 8 orientations label candidate model, Qpri(i,j) is assigned
as follows: the rightmost direction is 0, the top direction is 1/8, the leftmost direction is
2/8, the bottom direction is 3/8, the top-right direction is 4/8, the top-left direction is 5/8,
the bottom-left direction is 6/8, and the bottom-right direction is 7/8. Qass(i, j) is the label
relevance score when the i-th point feature is located at the j-th label candidate position.
ω1, ω2, ω3 represent the weight proportion of conflict, label priority, and label correlation,
respectively, which usually take the values of 0.5, 0.3, 0.2. Since label correlation is related
to the minimum distance that can be recognized by the human eye, the ambiguity distance
cannot be accurately measured. Therefore, in this paper, we do not consider the label
correlation and set it to 0.

3. A Hybrid Discrete Artificial Bee Colony Algorithm
3.1. Standard Artificial Bee Colony Algorithm

The artificial bee colony (ABC) algorithm is a swarm intelligence optimization al-
gorithm derived from the social behavior of honey bees and is used to solve numerical
optimization problems. The solution to the problem to be optimized represents the location
of the food source, and the amount of nectar in the food source represents the adaptation
value of the corresponding solution. The artificial bee colony algorithm consists of a combi-
nation of employed bees, onlooker bees, and scout bees, with equal numbers of employed
and observation bees. The algorithm is divided into four phases, namely: initialization
phase, employed bee phase, onlooker bee phase, and scout bee phase.

1. Initialization phase

Randomly initialize the population p, consisting of a total of N individuals, each of
which is a d-dimensional vector. It is constructed as follows:

xij = lj + r(uj − lj) (4)

where xij is the jth dimension of the ith solution, i ∈ {1, 2, . . . N} and j ∈ {1, 2, . . . d}. N
is the population size. lj represents the lower and uj represents the upper bound of the
parameter xij, and r is a random number between [0, 1].
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2. Employed bee phase

Employed bees play a vital role in searching for food sources, gathering information on
their location and quality, and sharing this information with other bees. Each employed bee
is assigned to a specific food source, meaning that there are an equal number of employed
bees and food sources. Neighborhood search can be performed according to Equation (5)
to generate new solutions to find better food sources.

vij =

{
xij i f j 6= q

xij + ϕ(xij − xkj) else
(5)

xi represents the food source to be updated, xk is a randomly selected food source,
and vi is a newly generated food source. vij corresponds to the jth dimension of vi, xij is
the jth dimension of xi, and xkj is the kth dimension of xk. i ∈ {1, 2, . . . N}, k ∈ {1, 2, . . . N},
j ∈ {1, 2, . . . d}, and k 6= i. q is a randomly chosen dimension and q ∈ {1, 2, . . . d}. ϕ is a
random number between [−1, 1]. After producing the new candidate food source vi, its
label quality evaluation function is calculated. Then, a greedy selection is applied between
vi and xi. At this stage, each solution has the opportunity to be improved.

3. Onlooker bee phase

When all the employed bees have completed their search, they share information about
the food source in the dance area, and the onlooker bees evaluate the information provided
by the employed bees to select the food source by roulette. The higher the adaptation
value of the nectar source, the greater the probability of selection by the onlooker bees.
The adaptation value is calculated as follows, and the selection probability is given in
Equation (7), with N being the number of employed bees. After selecting a food source (xi),
the onlooker bee performs a search to generate a new solution based on Equation (5) and
greedily accepts the new solution. Some solutions may receive multiple opportunities
for improvement during this phase, while some solutions may not have the opportunity
for improvement.

f it(xi) =
1

f (xi)
(6)

pi =
f it(xi)

N
∑

i=1
f it(xi)

(7)

where f (xi) is the label quality evaluation function value of the ith solution, and fit(xi) is the
fitness of xi. Since the label quality evaluation function is a minimization problem, smaller
values indicate better solutions. Therefore, it is necessary to take the inverse of f (xi) to get
fit(xi) for roulette selection. The larger the fit(xi) value, the better the solution. pi is the
choice probability of the ith solution.

4. Scout bee phase

During this phase, scout bees are used to find new food sources not found by the
employed bees and onlooker bees, avoiding the search process from falling into a local
optimum. When the quality of the solution exceeds the set number of searches limit L, the
solution is considered to be fully explored and the employed bee is transformed into a scout
bee that uses Equation (4) to generate a random solution to replace the current solution.
This is why onlooker bees choose the better solution for exploration with higher probability.

3.2. A Hybrid Discrete Artificial Bee Colony Algorithm Based on Label Similarity
3.2.1. Coding and Initialization

In the algorithm proposed in this paper, a real number encoding is used to represent
the solution of PFLP. In this paper, we have chosen an 8-orientation label candidate model,
where the 8 label candidate positions of each point feature are encoded using numbers from
0 to 7. In addition, the standard artificial bee colony algorithm uses Equation (4) to initialize
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the colony; however, PFLP is a typical discrete optimization problem, and Equation (4)
is no longer suitable. Therefore, in this paper, the swarm is initialized randomly. The
initial swarm is generated by randomly selecting candidate positions from the eight label
candidate positions of the point features.

3.2.2. Generation of Neighborhood Solutions

The standard ABC solution update equation is used to solve continuous optimization
problems. For discrete combinatorial optimization problems like PFLP, the update equation
needs to be redesigned to accommodate PFLP. First is the redefinition of subtraction,
assuming that ei and gi are the i-th dimension of the solutions e and g, respectively.

ei − gi =

{
gi ,i f ei 6= gi and f (e) > f (g)

rand, else
(8)

The standard ABC algorithm is essentially learning from other solutions and therefore
defines subtraction as learning the label positions of other solutions. If the learned label
position is different from the original and the learned bee has a better fitness, the label
position of the better bee is learned, and vice versa, a random label position is given.
Combined with the above subtraction operation, the updated formula of the solution is
shown in Equation (9), and the addition indicates replacing the original label position value
in the i-th dimension of e with the newly learned label position value.

e = e + (ei − gi) (9)

However, if both employed bees and onlooker bees update the label position by
Equation (9), the way of updating the label position is too single to fully explore the
solution space. Therefore, we integrate some transformation operators into the proposed
algorithm for neighborhood solution generation, and use Equation (9) for the employed
bees to update, while two operators, shift and conflict-shift, are used for the onlooker bees
to enhance the search. The generation of neighboring solutions can result in changes in the
label positions of points, all of which may potentially lead to a reduction in conflicts and
changes in label priorities, thereby decreasing the label quality evaluation function.

Shift: A point pi is randomly selected from 1-n dimensions and a new label position
is randomly generated instead of the original one. This operator is the most commonly
used operator to generate new solutions for point-feature label placement. The shift
operator updates only one dimension, and the update of one dimension guarantees that
the solution space is explored at a finer granularity. Figure 2 is a schematic diagram of the
shift neighborhood transformation operator. There are a total of 8 points, and the point at
index 2 is selected to transform the label position 5 into the label position 4.
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Conflict-shift: randomly select a point pi from 1-n dimensions, determine the set
C of point features that conflict with the point, and generate a new label position of pi
and all points in the set C to replace the original position. The conflict-shift operator is
more perturbed for the update of the solution compared to the shift operator, which can
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effectively jump out of the local optimum. Figure 3 is a schematic diagram of the conflict-
shift transformation operator. There are eight points in total. Select the point with index 4.
Compute its set of conflicting point features C. The point features in C are indexed 1 and 3.
Randomly generate label orientations to replace the original positions for point features
indexed 1, 3, 4 in an attempt to eliminate conflicts between point features.

1 
 

 

Figure 3. Schematic diagram of the conflict-shift neighborhood transformation operator (The value
on the box is the index of the point, the value in the box is the label position).

For neighborhood solution generation, a higher degree of perturbation is required
to generate neighborhood solutions at the beginning of the iteration to help improve the
quality of the solution quickly and jump out of the local optimum, while a higher pertur-
bation later in the iteration may fail to produce a more optimal solution. This is because
the solution is very close to the approximate global optimum late in the iteration, and a
larger perturbation will move the solution away from the approximate global optimum.
Therefore, for the two operators, we use the same probability of random selection for
use in the initial stage, and the conflict-shift is more perturbing for the solution, and we
keep reducing the selection probability of the conflict-shift operator and increasing the
selection probability of the shift operator in the iterative process, but the probability of the
conflict-shift operator cannot be lower than a certain threshold. In summary, the selection
probability of the operator should be adjusted dynamically with the number of iterations
of the algorithm, which is an adaptive parameter, and the dynamic probabilities of the two
operators are as follows:

Dcs = mincs + (
maxcs −mincs

itermax
)(itermax − iter) (10)

Dc = 1− Dcs (11)

where Dcs is the dynamic selection probability of the conflict-shift operator, Dc is the
selection probability of the shift operator, itermax is the maximum number of iterations, iter
is the current number of iterations, and maxcs and mincs are the maximum and minimum
selection probabilities of the conflict-shift operator.

3.2.3. Selection Operation Based on Label Similarity

Onlooker bees are used to enhance their search capabilities in standard ABC algo-
rithms, where roulette selection is commonly used to select food sources associated with
employed bees. However, the difference between the fitness values of each solution is
not very large, so the difference in the selection probability between each solution is not
large. The key to ABC is that the neighborhood of good solutions has a higher chance
of finding a better solution compared to the neighborhood of poor solutions, and more
exploration of good solutions is needed. Therefore, the roulette selection method cannot
cause selection pressure and thus weaken the performance of the artificial bee colony
algorithm. To improve the performance of the artificial bee colony algorithm, we select the
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most promising solutions to generate neighborhood solutions based on the label similarity
between individual solutions to enhance the search capability of the onlooker bees. We
classify solutions into superior and inferior food solutions according to the mean size of
their fitness values. Those with fitness values below the mean are classified as superior
solutions, and vice versa as inferior solutions. Based on the solution information shared by
the employed bees, if the food source is inferior, it will visually inspect the surrounding
food sources based on a certain detection probability pb to select the most suitable food
source, i.e., the onlooker bees will evaluate similar food sources to select the best one. The
method puts more improvements on more promising solutions effectively improving the
algorithm search capability. Since the encoding of our solutions is the label position of each
point, we can choose the Hamming distance to measure the similarity between solutions.
Use Equations (12) and (13) to measure the similarity between the solutions xi and xj.

dvij(k) =
{

1, i f Si[k] = Sj[k]
0, else

(12)

d(i, j) =
n

∑
k=1

dvij(k) (13)

where d(i, j) is the similarity of solutions xi and xj, n is the dimension of the point-feature
label placement, k is the kth dimension of the solution, d is the similarity of solutions xi and
xj in the kth dimension, and Si[k], Sj[k] are the label positions of solutions xi and xj in the
kth dimension, respectively. Label positions are abstracted into a 0–7 encoding.

Figure 4 gives a simple example of the label similarity measure. In this example, a
PFLP problem with dimension 10 is given. The similarity generated by each dimension of xi
and xj is calculated according to Equation (12). If the label position of the same dimension
is the same then set it to 1, otherwise set it to 0. Finally, the total similarity degree d(i,j) = 2
is calculated according to Equation (13).
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The selection operation based on the label similarity (SOLS) is specified as follows:
firstly, the food sources are classified into superior food sources and inferior food sources
based on the fitness of the solutions. Assume that xi is the solution obtained by the roulette
selection method selection, and if the selected solution is an inferior food source, the
similarity between xi and the remaining solutions is calculated with a certain detection
probability pb to solve its similarity. Then the solutions are ranked according to their
similarity from largest to smallest, and the top p number of solutions are selected and
added to the candidate table of that solution. If there is a solution in the candidate table
with fitness less than xi, the best solution xl in that solution set is used instead of the solution
xi obtained from roulette, which is updated with dynamic probability using two operators.

3.2.4. Metropolis Acceptance Strategy

In the standard ABC algorithm, both employed bees and onlooker bees use a greedy
strategy to decide whether to accept a new solution. However, in solving combinatorial
optimization problems like PFLP, greedy acceptance strategies usually lead to premature
convergence problems due to their discrete character. Therefore, this paper uses the
Metropolis acceptance criterion to determine whether to accept poor solutions to increase
the diversity of solutions. Suppose f (A) is the evaluation function of the current solution A
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and f (B) is the evaluation function of the new solution B. If the new solution is better than
the old solution, the new solution directly replaces the old solution, and vice versa, the
Metropolis acceptance criterion is used to determine whether to accept the poor solution.
The probability formula for accepting the poor solution is as follows:

p =

{
1, i f f (B) < f (A)

e−( f (B)− f (A))/T , else
, T = T × α (14)

where T is the current temperature and α is the cooling parameter, which usually requires
setting an initial temperature T0 that is continuously cooled down during the iterative
process. As the number of iterations reaches the predefined annealing length (SAmax),
the temperature undergoes a reduction. Cooling continues until the specified minimum
temperature (Tmin) is attained, at which point the cooling process ceases.

3.2.5. Reset the Scout Bee

In a standard ABC, when there is no improved bee solution within a certain number of
times, the employed bee abandons the nectar source to become a scout, and the scout ran-
domly generates a new solution to replace the original one. However, for PFLP, randomly
generating a new solution to the scout bees is not a good strategy because the way the new
solution of PFLP is generated is not suitable for improving the randomly generated new
solution quickly. Thus, we try to use t times multiple conflict-shift operators on the solution
to be dropped. Try to jump out of the current stagnant state using the conflict-shift operator.

The overall flowchart of the hybrid discrete ABC algorithm based on label similarity
is shown in Figure 5.
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4. Experimental Results and Analysis

This section focuses on presenting the experimental results of the HDABC based
on label similarity. We compare the performance of our algorithm with some existing
algorithms in the literature to evaluate the effectiveness of HDABC. Furthermore, we
analyze and discuss several essential components of HDABC.

4.1. Instance and Parameter Settings

To verify the performance of HDABC, we employed web crawling techniques to
retrieve POI data from both Kaifeng and Beijing in China. A portion of this data was
then selected to create actual point feature datasets consisting of 103, 266, and 525 points,
respectively. We compared HDABC with genetic algorithm (GA) [14], simulated annealing
(SA) [32], tabu search (TS) [13], and discrete differential evolution and genetic algorithm
(DDEGA) [21]. The specific experimental parameters are listed in Table 1. The maximum
number of iterations for HDABC, GA, TS, and DDEGA is 10,000. The iteration ends when
the algorithm reaches the maximum number of iterations or the optimal solution reaches
2000 repetitions. For SA, the iteration ends when the maximum temperature drops to the
minimum temperature, or when the number of repetitions of the optimal solution reaches
30,000. When the specified maximum number of repetitions is reached, the algorithm
continues to iterate without any changes. The symbol size r and the distance from the
coordinate point to the label are 5 and 10 pixels, respectively, and the label font is 12 pixels.
All methods are implemented by Microsoft Visual Studio in C++, and experiments were
carried out on an Intel (R) Core (TM) i5-8500 3.0 GHz processor with 8 GB of RAM.

Table 1. Parameter setting.

Algorithm Parameter Parameter Definition Value

HDABC

N Number of employed bees and
onlooker bees 50

L Scout bee activation threshold 500
T0 Initial temperature 1
α Cooling speed 0.95

Tmin minimum temperature 0.01

GA

NP Population size 100
p Candidate table size 4
pb Detection probability 0.5

SAmax Annealing length 20
pm Elite Probability 0.1
pe Crossover probability 0.8
pv Mutation probability 0.1

SA

T0 Initial temperature 40,000
α Cooling speed 0.95

SAmax Annealing length 4000
Tc Termination temperature 0.01

mv
Label transformation

probability 0.001

cn Conflict count /
CL Candidate Table Size 2 + 0.2 × n

TS TL Contraindicated table size 5 + 0.2 × cn
pDE Weight of DE 0.7

DDEEGA

pGA Weight of GA 0.3
F DE variation probability 0.5
Cr DE hybridization probability 0.8

CGA Genetic variation probability 0.1
NP Population size 100
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4.2. Experimental Results and Comparison with Other Algorithms

To verify the effectiveness of the proposed algorithm in this paper, HDABC was
compared with GA, SA, TS, and DDEGA. The experiment was conducted with eight
commonly used label densities: 5%, 10%, 15%, 20%, 25%, 30%, 35%, and 40%. Label density
ρ refers to the ratio of the sum of the symbol and label area in the map to the total map
area, reflecting the density of feature and label distribution. The comparison is mainly
conducted from two aspects: the number of labels and the label quality evaluation function.
To ensure the reliability of the results, each algorithm was independently run 10 times and
the data was averaged. Tables 2 and 3 present the comparison of the number of labels
without conflicts between HDABC and GA, SA, TS, and DDEGA for label densities from
5% to 40%. A higher number of conflict-free labels indicates a better result. Tables 4 and 5
show the comparison of the evaluation function of label quality between HDABC and GA,
SA, TS, and DDEGA for label densities from 5% to 40%. In this comparison, a smaller
value indicates a better result. In these tables, “Instance” represents the test case, where I1,
I2, and I3 correspond to acquired test cases with 103, 266, and 525 test cases, respectively.
“Algorithm” denotes the algorithm used, and “Best” indicates the best result obtained from
ten runs for each algorithm. “Average” represents the average result obtained from the ten
runs for each algorithm. Figure 6 shows the ranking graph of the average label number
and quality evaluation function for each algorithm.

In terms of the number of labels, Tables 2 and 3 show that the differences between
algorithms are not significant for the 103-point dataset, and in some cases, the average
and best numbers of labels are the same. The label situation for small datasets is relatively
simple, so the differences between algorithms are not significant. However, as the dataset
size increases, the differences between algorithms become apparent. For the 266-point
and 506-point datasets, the proposed algorithm achieved more average and best numbers
of labels compared to GA, TS, and DDEGA. Compared to SA, HDABC outperformed
SA in terms of the average and best numbers of labels in most cases, and only slightly
underperformed SA in certain instances and label densities. Overall, HDABC provided
higher quality solutions for PFLP for the vast majority of test cases and label densities in
terms of the number of labels. Additionally, Figure 6a displays the rankings of various
algorithms based on label number, with lower values indicating superior performance of
the algorithm. As shown in Figure 6a, HDABC had the highest overall rank, followed by
SA, TS, and GA, while DDEGA had the lowest rank.

Table 2. Comparison of the number of labels for HDABC and other algorithms under 5–20% la-
bel densities.

Instance Algorithm
ρ = 5% ρ = 10% ρ = 15% ρ = 20%

Best Average Best Average Best Average Best Average

I1

HDABC 88 87 84 83 79 78 77 77
GA 88 87 84 82 78 77 77 76
SA 88 87 84 83 79 78 77 76
TS 88 87 84 83 79 78 77 76

DDEGA 88 86 83 82 79 77 77 76

I2

HDABC 213 211 189 186 172 170 157 154
GA 210 208 185 180 168 163 153 147
SA 212 210 190 185 172 169 157 153
TS 212 210 187 185 169 166 153 150

DDEGA 206 205 182 177 163 160 149 145

I3

HDABC 438 435 398 395 366 363 347 341
GA 433 429 382 387 356 352 333 327
SA 437 434 397 393 366 363 344 341
TS 436 434 397 392 366 361 341 338

DDEGA 425 422 377 381 351 344 323 317
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Table 3. Comparison of the number of labels for HDABC and other algorithms under 25–40%
label densities.

Instance Algorithm
ρ = 25% ρ = 30% ρ = 35% ρ = 40%

Best Average Best Average Best Average Best Average

I1

HDABC 77 75 75 74 71 69 68 66
GA 76 74 74 71 69 67 66 63
SA 77 75 74 73 70 68 67 65
TS 76 74 74 72 70 68 67 65

DDEGA 73 71 69 72 68 65 64 62

I2

HDABC 147 144 138 134 128 125 123 119
GA 141 137 134 127 121 118 115 110
SA 147 144 139 134 129 125 120 117
TS 144 141 134 130 123 120 118 114

DDEGA 138 134 127 124 120 116 115 109

I3

HDABC 322 317 301 294 283 276 263 259
GA 306 300 282 278 267 260 248 242
SA 320 316 297 293 279 275 267 261
TS 316 313 296 290 277 272 261 256

DDEGA 297 291 279 272 261 253 245 238

Table 4. Comparison of the label quality evaluation functions for HDABC and other algorithms
under 5–20% label densities.

Instance Algorithm
ρ = 25% ρ = 30% ρ = 35% ρ = 40%

Best Average Best Average Best Average Best Average

I1

HDABC 153.6 157.6 163.2 169.1 187.1 190.4 201.4 206.7
GA 154.4 161.4 171.1 177.1 195.4 200.1 204.7 213.9
SA 152.1 158.7 167.0 172.6 188.6 194.7 199.5 205.8
TS 161.0 167.3 173.2 180.2 192.7 196.3 205.7 209.1

DDEGA 161.7 169.6 175.7 181.6 193.6 203.4 214.2 217.7

I2

HDABC 246.6 249.3 266.2 268.1 280.8 285.1 294.8 297.7
GA 256.0 260.3 268.7 278.7 290.5 296.5 304.8 310.4
SA 245.3 250.3 264.4 268.1 278.4 285.1 296.1 297.6
TS 250.3 255.6 272.7 276.8 289.9 293.9 300.9 305.0

DDEGA 258.1 263.0 276.8 281.7 293.0 298.3 307.0 311.8

I3

HDABC 217.5 221.5 240.3 242.1 256.5 259.7 269.9 273
GA 231.0 235.6 253.6 257.2 269.1 273.3 283.2 289.3
SA 219.4 221.9 241.8 244.3 257.1 260.3 269.1 272.6
TS 222.5 225.1 244.5 247.1 260.2 263.7 274.6 278.2

DDEGA 232.3 237.5 255.2 259.4 271.1 275.1 286.8 288.9

Based on Tables 4 and 5, it can be seen that in the majority of cases, HDABC outper-
forms other algorithms in terms of both the average label quality evaluation function and
the best label quality evaluation function, regardless of the label and instances. At the 5%
label density scenario of the 103-point dataset, HDABC, GA, SA, and DDEGA all achieved
good results in terms of the optimal label quality evaluation function. As the dataset size
and label density increase, the label placement becomes more complex and dense, and the
advantages of the proposed algorithm become more apparent. The algorithm provides
a higher quality solution for PFLP for the vast majority of instances and label density
scenarios. In terms of the average label quality, HDABC is only inferior to SA at the 40%
label density, while in all other scenarios, it is superior or equal to all other algorithms.
From the perspective of the best label quality, HDABC is slightly inferior to SA in only
a few cases, while in all other scenarios, it is superior or equal to all other algorithms.
Figure 6b displays the rankings of various algorithms based on the label quality evaluation
function, with lower values indicating superior performance of the algorithm. According to
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Figure 6b, HDABC has the highest ranking in terms of performance across various datasets
and label densities, followed by SA, TS, and GA, with DDEGA having the lowest ranking.

Table 5. Comparison of the label quality evaluation functions for HDABC and other algorithms
under 25–40% label densities.

Instance Algorithm
ρ = 25% ρ = 30% ρ = 35% ρ = 40%

Best Average Best Average Best Average Best Average

I1

HDABC 153.6 157.6 163.2 169.1 187.1 190.4 201.4 206.7
GA 154.4 161.4 171.1 177.1 195.4 200.1 204.7 213.9
SA 152.1 158.7 167.0 172.6 188.6 194.7 199.5 205.8
TS 161.0 167.3 173.2 180.2 192.7 196.3 205.7 209.1

DDEGA 161.7 169.6 175.7 181.6 193.6 203.4 214.2 217.7

I2

HDABC 246.6 249.3 266.2 268.1 280.8 285.1 294.8 297.7
GA 256.0 260.3 268.7 278.7 290.5 296.5 304.8 310.4
SA 245.3 250.3 264.4 268.1 278.4 285.1 296.1 297.6
TS 250.3 255.6 272.7 276.8 289.9 293.9 300.9 305.0

DDEGA 258.1 263.0 276.8 281.7 293.0 298.3 307.0 311.8

I3

HDABC 217.5 221.5 240.3 242.1 256.5 259.7 269.9 273
GA 231.0 235.6 253.6 257.2 269.1 273.3 283.2 289.3
SA 219.4 221.9 241.8 244.3 257.1 260.3 269.1 272.6
TS 222.5 225.1 244.5 247.1 260.2 263.7 274.6 278.2

DDEGA 232.3 237.5 255.2 259.4 271.1 275.1 286.8 288.9
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ing of each algorithm based on label quality evaluation function.

4.3. Analysis and Discussion
4.3.1. Analysis of Neighborhood Solution Generation

In the traditional artificial bee colony algorithm, employed bees and onlooker bees
mainly generate new solutions by Equation (5), which is too single and not well suited
for discrete problems. Therefore, we use Equation (9) for the employed bee for updating
and two search operators for the onlooker bee with dynamic probability to better fit the
discrete problem of PFLP. To verify the effectiveness of the proposed neighborhood solution
generation, we compare the proposed neighborhood solution generation method with
Equation (5) in this paper, and the results are shown in Figure 7. The results indicate that
the HDABC update approach for different instances and densities produces significantly
better results than the traditional ABC solution update method using Equation (5), with
an average reduction of 20.6 in the average label quality. The employed bees learning
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from good food sources is consistent with the features of PFLP while maintaining the
good properties of the original update equation. The dynamic and alternating use of two
neighborhood operators by the onlooker bees provides a certain amount of randomness to
the algorithm and effectively avoids getting stuck in local optima traps.
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4.3.2. The Role of Selection Operations Based on Label Similarity

The main purpose of the ABC algorithm is to enhance the development ability of
the onlooker bees, so a suitable selection operation is needed. The traditional selection
operation is roulette selection, and we compare the selection operation based on the label
similarity (SOLS) proposed in this paper with roulette selection. The specific comparison
results are shown in Table 6. Firstly, in terms of label quality scores, the selection operation
based on label similarity performs better than the original roulette wheel selection in most
instances and label densities. Moreover, on the 525-point dataset, the average label quality
of the selection operation based on label similarity is superior to that of the roulette wheel
selection. The selection based on label similarity updates the solution with more promising
ones, leading to better label results in most instances and label densities. Additionally, we
can observe that in the case of 103 data, the running time of the selection operation based on
label similarity is similar to that of the roulette wheel selection method. However, as the size
of the dataset increases, the running time of the selection operation based on label similarity
decreases by 45.1% compared to the roulette wheel selection method. As the size of the
dataset increases, the difficulty of solving the point-feature label problem also increases.
The termination condition of the iteration in this study is when the optimal solution remains
unchanged for a certain number of iterations or reaches the maximum number of iterations.
Compared to the roulette wheel selection method, the selection operation based on label
similarity provides more opportunities for more promising solutions, thus accelerating the
convergence speed of the algorithm.

4.3.3. The Role of Metropolis Acceptance Strategy

In the standard artificial bee colony algorithm, the employed bees and onlooker bees
accept new solutions through a greedy acceptance criterion. However, this acceptance
strategy can quickly lead to premature convergence in discrete problems. Therefore,
we replaced the greedy acceptance criterion with the Metropolis acceptance criterion to
avoid this issue. We then compared the traditional artificial bee colony algorithm with
the greedy acceptance criterion and the honey bee dance algorithm with the Metropolis
acceptance criterion. The specific results are shown in Figure 8. The results indicate that the
Metropolis acceptance strategy is significantly better than the greedy acceptance strategy,
with an average decrease of 14.6 in average label quality. This suggests that the acceptance
of lower quality solutions facilitated by the Metropolis acceptance criterion enhanced
the algorithm’s ability to escape local optima and effectively avoided issues related to
premature convergence. Furthermore, the Metropolis acceptance criterion was able to
achieve a good balance between exploration and exploitation.
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Table 6. Comparison of selection operation based on label similarity and roulette wheel selection.

Instance ρ
SOLS Roulette Selection

Best Average Time Best Average Time

I1

5% 84.5 85.9 25 84.5 86.1 27
10% 108.6 109.8 29 108.6 111.5 27
15% 132.9 133.9 26 132.9 135.8 25
20% 141.5 143.6 28 141.5 143 29
25% 153.6 157.6 28 153.2 156.7 30
30% 163.2 169.1 31 166.6 170.6 33
35% 187.1 190.4 31 186.2 189.1 33
40% 201.4 206.7 27 203.3 205.5 30

I2

5% 116.8 119.6 73 116.5 118.7 158
10% 166.5 169.1 71 167.7 170.5 133
15% 199.2 201.2 60 200.8 202.2 130
20% 228.1 231.7 75 230.7 232.8 124
25% 246.6 249.3 68 247 249.7 107
30% 266.2 268.1 56 264.9 267.7 115
35% 280.8 285.1 62 282.1 284.6 115
40% 294.8 297.7 58 294.9 297.9 111

I3

5% 96.0 98.2 183 97 98.4 413
10% 139.3 141.1 200 139.2 142.3 370
15% 170 172 173 170.5 172.2 358
20% 196.6 198.4 222 195.5 198.6 351
25% 217.5 221.5 166 220.9 223 313
30% 240.3 242.1 204 243.4 244.8 299
35% 256.5 259.7 188 259.1 261.3 300
40% 269.9 273 172 271.2 274.5 287
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5. Conclusions and Future Outlook

In this paper, we propose a hybrid discrete artificial bee colony algorithm based on
label similarity to solve point-feature label placement problems. Originally designed for
continuous problems, we adapted some steps of the ABC algorithm to better suit discrete
problems. Specifically, the neighborhood solution generation was modified by introducing
a learning mechanism in the employed bees and dynamic probability-based use of two
neighborhood search operators for onlooker bees. The selection operation was improved
by label similarity to identify more promising solutions for updating. Lastly, the Metropolis
acceptance criterion was implemented in place of the original greedy acceptance criterion
for a better balance between exploration and exploitation. To validate the effectiveness of
our method, we compared it with other algorithms on various instances and label densities.
The experimental results demonstrate that our approach is a qualified and competitive
solution for point-feature label placement problems. In future work, we will devise a
more reasonable ambiguity factor in the label quality evaluation function and explore the
application of ABC to other combinatorial optimization problems.
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