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Abstract: Room usage semantics in models of large indoor environments such as public buildings
and business complex are critical in many practical applications, such as health and safety regulations,
compliance, and emergency response. Existing models such as IndoorGML have very limited
semantic information at room level, and it remains difficult to capture semantic knowledge of rooms
in an efficient way. In this paper, we formulate the task of generating rooms usage semantics
as a special case of room classification problems. Although methods for room classification tasks
have been developed in the field of social robotics studies and indoor maps, they do not deal with
room usage and occupancy aspects of semantics, and they ignore the value of furniture objects in
understanding room usage. We propose a method for generating room usage semantics based on the
spatial configuration of room objects (e.g., furniture, walls, windows, doors). This method uses deep
learning architecture to support a room usage classifier that can learn spatial configuration features
directly from semantically labelled point cloud (SLPC) data that represent room scenes with furniture
objects in place. We experimentally assessed the capacity of our method in classifying rooms in
office buildings using the Stanford 3D (S3DIS) dataset. The results showed that our method was able
to achieve an overall accuracy of 91% on top-level room categories (e.g., offices, conference rooms,
lounges, storage) and above 97% accuracy in recognizing offices and conference rooms. We further
show that our classifier can distinguish fine-grained categories of of offices and conference rooms
such as shared offices, single-occupancy offices, large conference rooms, and small conference rooms,
with comparable intelligence to human coders. In general, our method performs better on rooms
with a richer variety of objects than on rooms with few or no furniture objects.

Keywords: 3D Models; indoor environment; room semantics; point clouds processing; deep learning

1. Introduction

Indoor spaces are artificial constructs designed to support human activities [1]. With
rapid urbanization, large indoor environments such as high-rise business complexes, pub-
lic buildings, airports, and train stations are increasingly important as infrastructure to
serve urban populations. Keeping such spaces functional, efficient, and safe can be very
challenging and can benefit from having geometrically accurate and semantically rich
three-dimensional (3D) models [2]. However, the construction of 3D models for indoor
environment is significantly more challenging than modeling outdoor environments. In-
door spaces are enclosed, cluttered, and human-occupied [3], making it dificult to capture
indoor scenes with sensors [4].

Indoor spatial models typically describe the geometrical, topological, and semantic
aspects of indoor space [3,5]. Automated generation of 3D geometry and location properties
of indoor structures and objects has been well developed [3,6–11]; however, methods for
extracting semantic information remain limited. This explains why existing indoor models
such as IndoorGML [12] have extensive geometric descriptions of structural elements (walls,
floors, ceilings, doors, and windows) but they have very little semantic information at the
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room level and beyond. The need to enrich 3D indoor models with semantic information
at the room level has been repeatedly identified in the past [13,14]. In particular, under-
standing how rooms are used is critical in applications such as safety management and
code compliance [14]. Room use is also relevant to the health and safety of the workplace,
as indicated in the safety guidelines published by the Occupational Safety and Health
Administration (OSHA) (https://safetyculture.com/topics/office-safety/, accessed on 15
July 2023). Unfortunately, semantic tagging of indoor spaces that describes their occupancy
and usage is a much harder problem and remains a manual process to a great extent [14,15].
This is due to multiple reasons: (1) semantic properties reflect human conception and use of
space, and cannot be directly extracted from building design documents such as Building
Information Models (BIM); (2) usage-related semantic information is likely to change over
time, as people constantly make changes on how they use their spaces.

Our work addresses the need for automated generation of room usage semantics for
large public buildings. We formulate this task as a special case of the room classification or
room categorization problems. Active research on room classification can be found in social
robotics studies [16], where recognizing different rooms in a home environment is a crucial
spatial competence to perform various tasks in households. Existing room classification
methods use probabilistic models [17] or statistical machine learning methods [14,18] to in-
fer room types from geometric and topological features extracted from vector maps [17,18],
building information models (BIM) [14,19], images from 2D sensors [20], laser range sen-
sors [20,21], and 2D maps from LiDar sensors [22]. They typically require highly engineered
features and knowledge rules defined on the geometric and topological information of
room categories. Although they can recognize general room categories defined during
the design stage, they are not concerned with the usage and occupancy aspects of room
semantics. They were designed to work for small-scale indoor structures, such as residential
buildings, which have a small number of well-balanced room types.

The main contribution of this paper is the establishment of a room usage classification
method that infers the type of room usage based on the spatial configuration of room
scenes, i.e., how the furniture objects in a room are placed in relation to each other and to
structural elements such as walls, doors, and windows. An example of a room scene with
furniture objects is shown in Figure 1.

Figure 1. Example of a room scene with furniture objects.

Our work is based on the insight that furniture objects in a room are placed and
configured to play certain functional roles in supporting the intended use [13]. We ar-
gue that a room classifier should exploit this intimate relationship between the spatial
configuration of furniture objects in a room and room usage semantics. The core of our
method is a room usage classifier that automatically learns spatial configuration features
from semantically-labelled point cloud (SLPC) representation of a room scene. SLPC data
describes each 3D point with a semantic label of the object class and it allow for extraction
of the spatial configuration features of room objects. Extracting such features is challenging
because they are multi-scale and difficult to describe. Our classifier employs a multi-scale

https://safetyculture.com/topics/office-safety/
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feature extraction module that can learn the spatial configuration features of furnished
rooms automatically.

Because our method makes explicit use of furniture objects in understanding the
configuration of room scenes, we expect that it can provide distinct capacity in room
classification tasks. To examine such hypothesis, we present multiple experiments to
explore the utility of our method in classifying rooms in office buildings. These experiments
used the Stanford 3D Indoor Scene Dataset (S3DIS) (http://buildingparser.stanford.edu/,
accessed on 20 January 2021), which contains point cloud representations and with semantic
object labels for 272 rooms in six office building areas. Our trained classifier achieved 91.8%
accuracy on the task of classifying rooms into six top-level categories for office buildings
(conference room, lounge, storage, hallway, office, and bathroom). We further investigated
the possibility of differentiating rooms in fine-grained subcategories of offices, conference
rooms, and storage rooms. We found that, while large conference rooms are separable from
small conference rooms, it is a much harder task to separate small conference rooms from
shared offices. Our method was less effective in classifying rooms with few furniture objects
(such as storage rooms and foyers). Overall, the results of our experiments show strong
evidence that the spatial configuration characteristics of room furniture objects can be used
to predict room usage types. Further development in this direction could lead to automated
generation of room usage semantics for the construction of semantically rich 3D models.

2. Related Work

Room classification depends on our ability to understand scenes of a room. Early
approaches to semantic scene understanding of indoor spaces focused on the basic compo-
nents of a room (walls, floor, furniture) [3,10,23,24]. Such tasks are formulated as semantic
segmentation problems in computer vision research [4,25]. Zhang et al. [24] and Ikehata
et al. [8] used semantic parsing approaches on RGB-D imagery data to estimate room layout.
Recent semantic segmentation algorithms can directly operate on point-cloud data from 3D
sensors [26–28]. Algorithms such as PointNet [29] and PointNet++ [30] significantly outper-
form understanding algorithms on image-based scenes in detecting architectural elements
such as walls, ceiling, and floors with good accuracy (over 85%); however, recognizing wall
openings such as windows, doors, and furniture objects in rooms is less reliable.

The problem of understanding the semantics of indoor scenes at room level has been
studied as a room classification or room categorization task in social robotics research [16,22]
and as a room semantic labeling task in indoor location-based research [18,31,32]. Social robots
are widely used in smart home services such as assisting seniors and doing housekeeping,
and it is an essential skill for a robot to recognize the types of rooms it is navigating in a
house [33]. Room classification is a type of scene understanding task in computer vision
in which a room scene is categorized into specific classes according to certain geometric
or semantic features of the scenes. To create a semantic map for robots, Swadzba and
Wachsmuth [34] used Support Vector Machine (SVM) algorithms to classify rooms in
typical IKEA home centers, including bathrooms, bedrooms, eating places, kitchens, living
rooms, and offices. Their algorithms used a combination of 2D and 3D geometric features
extracted from depth cameras. Although some of their room scenes contained furniture
objects, these objects were ignored in the feature learning process. Pronobis and Jensfelt [19]
used information about the shape, size, and general appearance of room scenes extracted
from 2D image sequences and laser scans as semantic clues to infer room types using a
probabilistic model. This method was used to categorize 47 rooms in an office building
and achieved 84% accuracy at the best feature configuration. Mozos and colleagues [35]
used Support Vector Machine (SVM) and Random Forest (RF) classifiers on RGB-D images
to classify five places in university buildings: corridors, laboratories, offices, kitchens and
study rooms. They found that SVM classification offered the best results. Peter Uri et al. [21]
used laser data to train an SVM classifier that achieved an accuracy of 84% when classifying
rooms in residential buildings into living rooms, corridors, bathrooms, and bedrooms.

http://buildingparser.stanford.edu/
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Common to this group of studies on social robotics is that they all used traditional
statistical learning methods, which require hand-crafted rules defined on room charac-
teristics extracted from 2D or 3D images to infer room semantics. On the contrary, deep
learning methods based on convolutional neural networks (CNN) have recently gained
momentum [36]. Othman and Rad [20] used a deep learning architecture to classify 2D
images of five types of room scene (bedrooms, dining rooms, kitchens, living rooms, and
bathrooms), and were able to achieve 93.30% accuracy without handcrafting any features.
Recently, [22] trained a room classifier based on convolutional neural networks (CNN)
using indoor maps generated from LiDAR sensor data.

In the context of location-based services, room classification is done for the purpose
of enriching indoor maps with room semantics in large indoor environments. Hu and
colleagues [17] demonstrated the feasibility of using feature grammars defined in geometric
features of indoor maps or floor plans and Bayesian inference to infer room usage of research
buildings in university environments. They achieved 84% classification accuracy on 408
rooms. However, the grammar rules that they used were specific to particular buildings
and have limited generalizability to other styles of buildings. Machine learning approaches
such as random forest and relational graph convolutional network (R-GCN) were later
introduced in [18] to automatically learn the relationship between the geometry/topology of
rooms and room semantics. The features used in their machine learning classifier included
the geometries of floors and structural elements, as well as the topological relations among
rooms. However, their method assumes the existence of geometric map data, which is not
practical for most public buildings.

The above room classification and tagging methods have serious limitations when
applied to inferring room usage in large public buildings. Methods developed in social
robotics studies work only for small-scale indoor structures such as residential buildings
that have a small number of well-balanced room types [20,33]. They are not designed for
indoor environments where the number of rooms in each room category could be highly
imbalanced. More importantly, they rely on traditional 2D and 3D images and building
design documents, such as BIM, to extract geometric and topological features of indoor
space and structural elements, and they focus on classifying rooms into a few top-level
categories without paying attention to the usage and occupancy aspects of room semantics.
Although the presence and layout of room furniture objects offer strong clues about how
rooms are used, room furniture objects have been ignored or treated as clutter in previous
room classification studies.

Our room classification method differs from existing methods in that it can learn
multiscale features of the spatial configuration of room objects and use them to predict
the room usage type. Unlike other methods that have treated furniture objects in rooms
as clutter or noise, our method values the presence and placement of furniture objects in
the room as a unique source of information, allowing for greater understanding how the
room is used. We employ a deep learning architecture to extract configuration features
from a room and relate them to room usage. Although such information is not available
from traditional indoor data such as engineering design documents, BIM, or indoor maps,
point cloud data can represent a rich source of information.

3. Overview of Our Approach and Research Questions

We conceptualize rooms as complex structures comprised of structural elements such as
walls, doors, and windows and of furniture objects such as chairs, tables, lamps, computers,
and cabinets. While rooms are mutually disjoint from each other, they are horizontally
or vertically connected in sophisticated ways through specific types of architectural com-
ponents, such as doors and stairs [12]. The true understanding of a room scene involves
understanding the structural elements, fixtures, and room objects, as well as understanding
how they are spatially configured and semantically related.

In light of the above conceptualization of rooms as purpose-designed spaces, we
define the task of room usage classification as inferring room usage types from the spatial
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configuration of semantic objects in a room scene. We assume that there is a predetermined
set of room categories that reflect the human use of rooms. These room categories could be
either a flat list or organized as a hierarchy of categories.

Our approach for solving the above classification problem works similarly to the
process illustrated in Figure 2. First, we assume that a 3D scan of a building has generated a
point cloud representation for all the rooms in a building. Each room (box 1 ) corresponds
to point cloud data that represent the scanned scene of that room (box 2 ). Next, the point
sets of a room are semantically segmented either manually or automatically (see box 3 )
to derive a semantically labeled point cloud (SLPC) representation of room scenes (box 4 ).
This process can take place through human interpretation of 3D scenes (the upper part
of box 3 ) or by automated semantic segmentation algorithms [29,30,32,37–39] (the lower
part of box 3 ).

Figure 2. From point cloud representation to inferred room usage categories.

In an SLPC representation of a room, each point is represented as a four-dimensional
vector (x, y, z, cls), where (x, y, z) are 3D coordinates and ‘cls’ is a semantic tag indicating
the object class it belongs to. We further assume that there are a limited number of object
classes {O1, O2, . . . On}. For indoor environments, these object classes typically include
structural elements (e.g., walls, ceiling, and floors), structural surface elements (e.g., doors,
windows, columns, picture frames), and furniture objects (e.g., tables, chairs, and sofas).

The core of our method is the Room Usage Classifier (box 5 ). It uses a deep learning
architecture to classify rooms based on the spatial configuration of room objects detected
from the representation of the serially labeled point cloud (SLPC) (box 4 ) of room scenes.

3.1. Room Usage Classifier: Its Architecture and Rationale

Our classifier uses a deep learning architecture, as shown in Figure 3. It is composed
of a Room Feature Extraction module and a Classification module.

3.1.1. Rooms Feature Extraction Module

The rooms feature extraction module takes N points as input, applies feature extraction
transformations and then aggregates features by max grouping. When designing the room
feature extraction module, we must consider two constraints: (1) it has to be able to
perceive local features that are important for room objects, such as furniture; and (2) it
needs to be able to perceive object configuration features in the room scene. One way to
capture multiscale patterns is to apply grouping layers with different scales coupled with
local feature extraction networks, such as PointNets [29], to extract features of each scale.
Features at different scales are concatenated to form a multi-scale feature. This idea has
been formalized as Multiscale Grouping (MSG) in PointNet++ [30], and has been widely
used in many other deep learning for 3D Point Clouds [26]. In our classifier architecture,
we concatenate three MSGs (MSG1(0.4, 0.6, 0.8, 1.0), MSG2(1.2, 1.4, 1.6), and MSG3(1.8,
2.0, 2.2)) to bridge the large scale span from submeters (for perceiving local features) to
multiple meters (for constructing room scene-level configuration features).
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• MSG1 takes in 32768 points and outputs 2048 point features. It searches features on
four radii (0.4 m, 0.6 m, 0.8 m, 1 m) and samples 16 points from each radius. Points
sampled from each radius are processed by a multilayer peceptron (MLP(16, 16, 32)),
and detected features are synthesized via max-pooling.

• MSG2 takes in 2048 points and outputs 512 point features. It searches features on three
radii (1.2 m, 1.4 m, 1.6 m) and samples 16 points from each radius. Points sampled
from each radius are processed by a multilayer perceptron MLP(32, 32, 64) and the
detected features are synthesized via max-pooling.

• MSG3 takes in 512 points and outputs 2048 point features. It searches features on three
radii (1.8 m, 2.0 m, 2.2 m) and samples 16 points from each radius. Points sampled
from each radius are processed by a multilayer peceptron (MLP(64, 64, 128)) and the
detected features are synthesized via max-pooling.

Figure 3. Architecture of the room usage classifier.

Each MSG layer performs three tasks: (1) sampling input points to select a set of
points as the centroids of local regions using the iterative farthest point sampling (FPS)
method [30]; (2) grouping local points to form local regions by finding neighboring points
around the centroids; and (3) extracting local features using a mini-PointNet [29]. By
concatenating three MSGs together, our Room Feature Extraction module can detect features
with a wide range of search radius values, ensuring that important room configuration
features are extracted no matter the scales (local, middle, or room) at which they are most
prominent. We experimented with many different choices of MSG layers and their search
radius before settling on the current configuration for the best outcome.

3.1.2. Classification Module

The classification module outputs classification scores for K classes. It consists of two
sub-components:

1. A Multi-Layer Perceptron for pooling the features detected in MSGs. It has three layers
of fully connected MLP nodes (MP(256, 512, 1024)) and max-pooling is applied after
each layer of the MLP by default.

2. A classification net for producing room usage classification scores for k classes. It
consists of three fully connected layers (FC(512, 256, 128, k)). A dropout rate of 0.5 is
applied after each layer, except for the output layer.

3.1.3. Input Sampling

The classifier must take a scene from the entire room as input in order to extract
configurational features. However, 3D scans of rooms are full of irregularities in terms
of point density and point spacing. The variation in room size adds further challenges.
To balance the need to detect local features while keeping the computational complexity
manageable, we set the initial number of input points to 32,786 to ensure enough points
for each local region while keeping the number of points small. This requires that all room
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scenes first be down-sampled into 32,786 points before being fed into the classifier. This
number of input points worked well for the types of office building that we used in this
study, though it may need to be adjusted for other types of buildings. We achieve this
downsampling via the random input dropout method, where points are randomly selected
to be dropped out with a set probability.

3.1.4. Rationale

The choice of deep learning architecture for our Room Usage Classifier was driven by
the goal of learning important spatial configuration features in rooms from their SLPC
representation. The classifier principle is based on the assumption that “The intended use
of a room plays an enormous role in explaining why furniture objects are placed one way or
another” [40]. This translates to the idea of using the spatial configuration of room furniture
objects along with structural elements as the primary clues for inferring room usage.

The deep learning architecture of the Room Usage Classifier reflects our understanding
of how humans perceive a room scene. The theory of scene perception [41] suggests that
scene-level perception of a room occurs in two stages: (1) an initial stage in which a quick
impression is formed based on perception of the spatial layout; and (2) a recognition stage
that uses world knowledge to make sense of the scene through a detailed analysis of
objects and their geometry/topology [42]. Our classifier seeks to replicate the above human
perception process to a certain degree. The three MSGs detect features that are sensitive
to differences in the spatial configuration of semantic objects in a room, then the MLP
layer aggregates features from multiple scales and discovers their “links” to categories of
room usage.

3.2. Research Questions

The design of our room classification method was based on the hypothesis that the
spatial configuration of structural elements and furniture objects in a room scene offers
powerful clues on their intended use. If this hypothesis is true, we would expect our Room
Usage Classifier to generate reasonably good predictions of room usage. We experimentally
evaluated the ability of our method to classify rooms in large office buildings. These
experimental studies were driven by the following research questions:

Q1 Can spatial configuration features of room scenes predict common room categories in office
buildings given the highly imbalanced room distribution among room categories? This
question was addressed by Experiment 1 (Section 4.2).

Q2 Can the spatial configuration features of the room scenes predict more fine-grained room
categories? This question was addressed in Experiment 2 (Section 4.3).

Q3 Can point cloud data without human-generated object labels be used to predict room types?
Our room classifier assumes the existence of semantically labeled point sets for each
room. The question of whether our proposed method can work with only geometri-
cally defined 3D point clouds was addressed in Experiment 3 (Section 4.4).

4. Experiments: Materials and Methods

In this section, we present the results of three experiments used to explore the ef-
fectiveness of our method in inferring room usage type from semantically labeled point
cloud representation of room scenes. Experiment 1 addressed the research question [Q1] by
classifying rooms into one of the six top-level categories: conference room, lounge, storage,
hallway, office, and bathroom (see schema 1 in Figure 4). The preliminary results of this ex-
periment were previously reported in [40]; Section 4.2 presents an elaborate description and
interpretation of Experiment 1 for a better understanding of the effect of data imbalance.

Experiment 2 addressed the research question [Q2] by testing the ability of our method
to differentiate fine-grained categories of rooms. In this experiment, we further divide
office, conference room, and storage categories into subcategories to form nine types of
usage (see schema 2 in Figure 5). In particular, this experiment recognized that offices can
be further distinguished into private offices and shared offices (see Figure 6). The results of this
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experiment aid in understanding to what extent our classifier can separate subcategories of
conference rooms and offices in office buildings.

Figure 4. Schema 1: six categories of room usage.

Figure 5. Schema 2: room usage categories and subcategories.

Figure 6. Room usage categories and their hierarchical relationships.

Experiment 3 added a semantic segmentation algorithm to automate the generation
of semantically labeled point cloud representations of room scenes. This experiment was
intended to provide a better understanding of the feasibility of classifying rooms using
point cloud data without requiring point-level semantic labels.

4.1. Experimental Dataset

We chose to use a publicly available dataset, the Stanford Large-Scale 3D Indoor Spaces
Dataset (S3DIS) [10], for both Experiment 1 (Section 4.2) and Experiment 2 (Section 4.3). The
S3DIS contains 3D scans from Matterport scanners in six areas, including 272 rooms (see
Figure 7). The rooms in the S3DIS dataset have been tagged by human annotators with
top-level room categories (office areas, educational or exhibition spaces and conference
rooms, personal offices, restrooms, open spaces, lobbies, stairs, and hallways). In addition,
each 3D point in a room scene has been annotated by a human with a semantic label that
indicates its object category (chair, table, sofa, bookcase, board, floor, wall, ceiling, window,
door, beam, column, clutter).

Figure 8 shows an example of a room scene in the S3DIS data. The picture hides
objects on the wall, ceiling, and floor to reveal the arrangement of the furniture inside. The
configuration of the room objects features a layout with a large table surrounded by chairs.
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From world knowledge, it can be inferred with confidence that this room is likely to be a
conference room. In an ideally organized conference room, we would expect chairs neatly
placed around a table; however, a human can recognize it even when the spatial placement
of furniture objects deviates from the ideal. It should be noted that certain room objects
(colored gray) are labeled as “clutter”. Clutter can be anything other than one of the twelve
named categories. We anticipated that the existence of the “clutter” object category might
introduce uncertainty to the learning of room configuration features.

Figure 7. Six areas in the (S3DIS) Dataset.

Figure 8. A room scene in the S3DIS Dataset.

4.2. Experiment 1: Classifying Rooms Using Schema 1

This experiment assessed the ability of our method to classify rooms on six top-level
categories described in Figure 4. When forming this schema, we inherited the room
categories in S3DIS, making the following changes:

• We eliminated “auditorium”, “copy room”, “open space” and “pantry” due to their
extreme small samples (less than five each).

• We combined “lobby” and “lounge” rooms to form a new category, “Lounge1”, as
lobby and lounge rooms are very similar in their functions and layout.

• We employed a research assistant to go through all rooms and verify that the room
category labels were consistent with the spatial layout of the rooms. In cases of
obvious inconsistency, we manually set the label to the correct category. We found five
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conference rooms that were mislabeled as offices and fixed them before inclusion in
the experiment.

After this cleaning process, we ended up with 224 rooms properly labeled according
to schema 1 (Figure 4). The distribution of room types is shown in Figure 9. The room types
are highly imbalanced and are dominated by offices.

Figure 9. Number of rooms by category.

4.2.1. Model Training

We first divided the 224 rooms into a training set (RL) and a test set (RT). The training
set (RL) contained two-thirds of the rooms of each category in schema 1, and the test set
(RT) contained the remaining one-third of the rooms in each category. Second, we trained a
room usage classifier (RUC1) using the training set (RL) following the principles described
in Section 3.1. In particular, each room in the training set was first downsampled to 32768
points using the random dropout method, then the classifier was trained by each room in
order; the training process converged around 200+ epochs. Finally, we used the trained
classifier to recognize the room usage categories of the rooms in the test set.

4.2.2. Results

We measured the performance of our classifier using two measures:

• Accuracy: measures the number of rooms classified correctly divided by the total
number of rooms in the test set.

• Misclassification: measures the error rate, i.e. the number of rooms classified incorrectly,
divided by the total number of rooms in the test set.

Our classifier achieved an overall accuracy of 91.8%. Only 8.2% of the testing rooms
were classified incorrectly. Figure 10 shows the confusion matrix among the function
categories of the room. These results suggest the following findings:

Finding 1. Offices and conference rooms are clearly distinct from hallways, storage rooms, and
bathrooms in terms of their spatial layouts. The confusion matrix shows that these
two subsets are rarely confused by our classifier.

Finding 2. Certain conference rooms share a similar spatial layout with certain offices. In all,
33% of the conference rooms were misclassified as offices, while only 3% of
the offices were misclassified as conference room. This finding is consistent
with the literature on the impact of imbalanced training samples on machine
learning outcomes [43].

Finding 3. Bathrooms and hallways are clearly separable by our classifier, while storage rooms
can be confused with bathrooms, hallways or offices. In Figure 10, no confusion is
reported between the bathrooms and hallways. The prediction of storage rooms
is accurate 40%, with confusion occurring with hallways and bathrooms. After
checking the original point cloud data, we noticed that bathrooms, hallways,
and storage rooms are mostly empty of furniture objects other than “clutter”.
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Our classifier depends on the existence of furniture objects and spatial config-
urations to infer room usage; therefore, if these “clutter” objects were labeled
more closely with respect to their true semantics (that is, “toilet”) we believe
that our classifier would potentially perform better. This possibility will be
explored in future research.

Figure 10. Performance of the proposed room usage classifier using Schema 1: Accuracy, 91.8%;
Misclassification, 8.2%.

The above findings are informative in answering our first research question. Offices
and conference rooms are rich in spatial configuration features derived from furniture
objects, and are clearly separable from other types of rooms. Additionally, we observed the
effect of room imbalance, as evidenced by the confusion of conference rooms with offices.

4.3. Experiment 2: Classifying Rooms Using Schema 2

This experiment assessed the ability of our method to classify rooms in finer granu-
larity in terms of room usage. To decide what would be a feasible level of granularity to
study, we employed two research assistants as human coders to analyze and annotate all
225 rooms in the S3DIS dataset to identify distinct subcategories in each of the top cate-
gories. Using their world-knowledge about how room layouts support human activities,
the coders were able to identify 19 subcategories in the first round of coding. However,
most of these subcategories were too small in terms of sample sizes to be included; thus, the
authors worked with the two research assistants to narrow them down to a few well-formed
subcategories, resulting in a final set of 193 rooms in the nine categories shown in Figure 11.



ISPRS Int. J. Geo-Inf. 2023, 12, 427 12 of 18

Figure 11. Number of rooms by subcategories in Schema 2.

Figure 5 shows the schema of room categories used in Experiment 2. Conference rooms
were split into two subcategories: large group conference rooms (CON1) and small group
meeting rooms (CON2). Offices were split into four subcategories: shared multi-occupancy
offices (OF1); reception office (OF21); private use offices (OF22); and other office (OF40). Storage
rooms were split into two subcategories, ST1 and ST2, with ST1 consisting of storage rooms
with no chairs or tables and ST2 of storage rooms with chairs and/or tables.

Finally, the human coders labeled all rooms according to the prototypical spatial
configuration of the room objects, as exemplified in Figure 12. It appears that CON2
rooms typically have a table at the center, while the placement of chairs is more spread out
compared to those in CON1. OF21 offices tend to have a main work area (a chair with a
large table) and a reception area defined by a smaller table and/or chairs.

Figure 12. Human interpretation of room spatial configurations.



ISPRS Int. J. Geo-Inf. 2023, 12, 427 13 of 18

The results of the above human coding of room types reflect the level of human
intelligence when making inferences from spatial configurations of room scenes. Figure 12
shows how the human coders interpreted room scenes and the prototypical examples of
rooms in each subcategory, suggesting the following observations:

H1: Human can separate “Large Conference Rooms” (CON1) from “Small Conference
Rooms” (CON2).

H2: Human can separate “Storage with NO Chair/Table” (ST1) from “Storage with Chair/
Table” (ST2).

H3: Human can separate “Shared Offices” (OF1), “Reception Offices” (OF21), and “Indi-
vidual Offices” (OF22) from “Other Offices” (OF40).

4.3.1. Model Training

We first divided the 193 rooms into a training set (RL) and a test set (RT). The training
set (RL) contains two-thirds of the rooms of each subcategory in Schema 2, while the test
set (RT) contains the remaining one-third of the rooms. Next, we trained a second room
usage classifier (RUC2) using the training set (RL) following the principles described in
Section 3.1. Finally, we use the model to recognize the categories of room usage of the
rooms in the test set (RT).

4.3.2. Results

We used the same performance measures, as previously, namely, Accuracy and Mis-
classification. In Experiment 2, our classifier achieved an overall accuracy of 58.5%, and
41.5% of the testing rooms were classified wrongly. Although this performance is much
worse than in Experiment 1, the results could be reasonably expected, as the differences
in spatial layout of these room categories are much more nuanced and can easily confuse
the classifier. To understand the particular subcategories of rooms that caused confusion,
we developed an interactive tool that allows us to inspect which rooms contributed the
most to confusion. Figure 13 shows how this tool allows the user to click on a cell in the
Confusion Matrix, after which the system automatically finds the rooms that contributed
to the confusion and shows them on the right-hand side. We use this interactive tool to
inspect the confusion among subcategories. After a closer examination of the confusion
matrix and the rooms associated with classification errors (Figure 13), we found that the
errors were far from random. In particular, we developed the following insights.

Figure 13. Performance of the proposed room function classifier on Schema 2: Overall Accuracy, 58.5%;
Misclassification, 41.5%.

Finding 4. Shared offices (OF1) and individual reception offices (OF21) are quite distinct in terms
of spatial layout; 84% of OF1 instances were correctly classified, and only 16% of
them were misclassified as Lounge1 or OF21.

Finding 5. Individual offices (OF22) including more than one chair can easily be confused with
reception offices (OF21) or shared offices (OF1). In our experiment, all OF21 test
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samples were correctly classified (100%), which is amazingly surprising. Before
the experiment, we anticipated that the OF21 rooms would be confused with
the OF1 rooms, as they all have multiple tables and chairs. However, this
experiment showed that their spatial layouts have different regular features.

Finding 6. Small conference rooms (CON2) are likely to be confused with shared offices (OF1),
as evidenced by all CON2 testing samples being misclassified as OF1 (100%).
While only 50% of the CON1 (large conference room) samples were misclassi-
fied as OF1, OF1 rooms were rarely misclassified as other types. This is again
the effect of the imbalance of the training sample, that is, more training samples
in the OF1 class.

Finding 7. Lounge rooms (Lounge1) could be confused with small meeting rooms (CON2) or shared
offices (OF1) . In Figure 13, it can be seen that 33% of the lounge rooms were
misclassified as CON2 and another 33% were misclassified as OF1. After check-
ing the original point cloud data, we confirmed that these three subcategories
of rooms are indeed very confusing even for humans. Lounge rooms tend to
have chairs and tables placed more randomly in relation to each other and to
walls, making it hard to learn the common features of their spatial layout.

These findings show both the strengths and weaknesses of our method. For rooms
that have clear patterns in terms of their furniture configurations, such as large conference
rooms and shared offices, our method works extremely well. On the contrary, for rooms
with ad hoc furniture patterns or few furniture objects, such as storage rooms and lounges,
our classifier encounters difficulties.

4.4. Experiment 3: Room Use Classification Using Point Cloud Data without Semantic Labels

As described in Section 3.1, our proposed classifier assumes that the point sets of room
scenes have been semantically labeled with room object classes. In reality, most point cloud
data are not semantically labeled. This raises the question of what happens in the case of a
dataset in which the point sets are not semantically labeled; while the S3DIS dataset used
human annotators to label 3D points into thirteen semantic object categories, the process is
very costly. An alternative would be to derive semantically labeled point clouds (SLPC)
computationally. This option is illustrated in Figure 2 in 3 . There exist many semantic
segmentation algorithms that can automatically generate object class labels for each 3D
point [26,44].

To explore the extent of this possibility and related performance changes, we extended
the room usage classifier to include a front phase of semantic segmentation; see Figure 14.
In this experiment, we implemented Box 3 (semantic segmentation) using the PointNet++
algorithm [30], which takes point cloud room scenes and generates semantically labeled point
cloud representation of rooms. Qi et al. [30] reported that PointNet++ achieved an overall
accuracy of 90% + in segmenting structural objects (walls, ceilings, floors), although they
only achieved accuracy of 70% in furniture objects when tested in S3DIS data. This level of
imperfection in point-level semantic labels is likely to result in degraded room classification
performance when used as input to our room classifier; the question then becomes whether
our method is robust enough on point cloud data with poor quality semantic labels.

Figure 14. Extended room usage classifier.

To answer the above question, we experimented with this extended room classifier
using the same training set (RL) and testing set (RT) as in Experiment 1. We first trained a
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semantic segmentation model based on the PointNet++ framework and used the model
to generate the semantic labels for the point clouds of rooms in the testing set (RT). The
resulting SLPC data were then fed into the Room Usage Classifier for room classification,
achieving an accuracy of 71% on Schema 1 categories (Figure 4. This is a significant drop
from an accuracy of 91.8% achieved in Experiment 1 (Figure 10); however, it is quite
promising considering that the entire process shown in Figure 14 was fully automated.

Finding 8. Despite the low semantic segmentation accuracy when generating point-level semantic
labels for furniture objects, our proposed room usage classification method achieved
an overall accuracy of 71% on the top-level room categories. This suggests that our
method remains quite robust even when the input data are of less than optimal quality.

5. Discussion and Conclusions

In this paper, we have described a room classification method to generate semantic
labels for rooms in public buildings. The proposed method is based on the hypothesis that
the placement of fixtures, furniture, and their spatial arrangement in a room is purposefully
designed to support certain types of human activity. Based on this principle, we have
adopted a multiscale feature learning architecture to extract the configuration features
of room objects that have predictive power with regard to room usage. We conducted
three experiments to assess the capacity of our method to generate room usage labels and
compared their performance with human-generated ground truth. Based on the interpreta-
tion of the results, we report eight findings that answer our three research questions with
positive evidence. All of our findings are consistent with the hypothesis that the spatial
configuration of room objects offers strong clues about the intended use of rooms. Our
method works extremely well in classifying offices and conference rooms, where furniture
objects have relatively clear abundance and exhibit clear patterns in their layout. In contrast,
our method performs poorly in classifying storage rooms, bathrooms, and hallways due to
their lack of spatial configuration patterns. Overall, the results of this study suggest that the
use of information about the spatial configuration of room objects for room classification
tasks is a fruitful direction that deserves further exploration.

Our method has multiple design parameters that are currently optimized for classi-
fying rooms in office buildings in the S3DIS data set. Thus, the choice of these parameter
values may need to be reconsidered when applying this method to other types of buildings
and room types. For example, our deep learning architecture has multiple search radii that
determine the size of local regions for local feature extraction. The current search radii are
(0.4 m, 0.6 m, 0,8 m, 1.0 m, 1.2 m,1.4 m, 1.6 m, 1.8 m, 2.0 m, 2.2 m); in practice, these should
be adjusted according to room sizes, point densities, and types of furniture objects being
considered.

Room classification tasks for tagging automated generation of room usage semantics
is an important research goal in 3D indoor modeling and social robotics. In contrast to the
existing work reviewed in Section 2, in this paper we have focused on classifying rooms in
office buildings for the purpose of building 3D indoor models. Our method goes beyond
previous work in three aspects:

• Our classifier directly operates on point cloud data, and can detect relevant scene
features without the need for complex human effort in feature construction.

• Compared to the methods of inferring room semantics in social robotics
studies [10,14,18,45], our method utilizes the spatial configuration of furniture objects
in relation to structural elements to infer room usage types.

• Our method can classify furnished rooms that are in use (rather than BIM models)
and takes advantage of the additional information available from the way furniture
objects are laid out and configured in relation to each other and to structural elements.

• Our method recognizes that human conceptions of room usage are hierarchically
organized; thus, it is not adequate to classify rooms only by top-level categories. For
example, previous work has treated “offices” as one room function category; however,
offices in an office building can have many subcategories, for example, reception rooms,
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single occupancy offices, multioccupancy offices, etc. The results of our Experiment 2
show that the proposed classifier can differentiate between “multi-occupancy offices”
and “single-occupancy offices” with 84% accuracy.

Despite the promise of our method, the experiments reported in this paper indicate a
number of limitations that affect the confidence of our findings.

• The data samples used to train the room classifiers were too small for most categories
other than offices.

• The data samples used to train the room classifiers were highly imbalanced, increasing
the risk of biased conclusions.

• The semantic labels on the point clouds in the S3DIS dataset were of low quality.
During our visual inspection and coding of the 224 rooms, we found many errors in
the human-generated labels. In particular, a large portion (~20%) of the point clouds
were labeled as “clutter”, which are in fact meaningful objects. These issues affect the
amount of information available in the point-cloud representation of room scenes.

• Our method is computationally very intensive and costly. It takes many hours of
computation on a GPU-equipped machine to complete the training of a room classifier.
Although this could be accelerated by incorporation of pre-trained models, it remains
challenging for time-sensitive environments.

In our future work, we intend to refine the deep learning architecture and parameter
settings of the proposed classifier to improve the chance of discovering signature features
of the spatial layout of the room relevant to their functions. In particular, the choice of
MLP layers, the radius values, and the method of feature pooling in the computational
architecture (see Figure 2) need to be further explored to inform the implementation.
Much more extensive testing of our method is needed using a wider variety of indoor
environments (residential, commercial, office buildings, public buildings, etc.); however,
we expect that the low availability of semantically labeled large indoor point-cloud datasets
will continue to be a bottleneck in the foreseeable future.
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