
Citation: Lu, E.H.-C.; Lin, Y.-R. A

Self-Attention Model for Next

Location Prediction Based on

Semantic Mining. ISPRS Int. J.

Geo-Inf. 2023, 12, 420. https://

doi.org/10.3390/ijgi12100420

Academic Editors: Huayi Wu

and Wolfgang Kainz

Received: 23 August 2023

Revised: 3 October 2023

Accepted: 9 October 2023

Published: 13 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

A Self-Attention Model for Next Location Prediction Based on
Semantic Mining
Eric Hsueh-Chan Lu * and You-Ru Lin

Department of Geomatics, National Cheng Kung University, Tainan 701, Taiwan; p66091088@gs.ncku.edu.tw
* Correspondence: luhc@mail.ncku.edu.tw; Tel.: +886-6-2757575-63830

Abstract: With the rise in the Internet of Things (IOT), mobile devices and Location-Based Social
Network (LBSN), abundant trajectory data have made research on location prediction more popular.
The check-in data shared through LBSN hide information related to life patterns, and obtaining
this information is helpful for location prediction. However, the trajectory data recorded by mobile
devices are different from check-in data that have semantic information. In order to obtain the user’s
semantic, relevant studies match the stay point to the nearest Point of Interest (POI), but location error
may lead to wrong semantic matching. Therefore, we propose a Self-Attention model for next location
prediction based on semantic mining to predict the next location. When calculating the semantic
feature of a stay point, the first step is to search for the k-nearest POI, and then use the reciprocal of
the distance from the stay point to the k-nearest POI and the number of categories as weights. Finally,
we use the probability to express the semantic without losing other important semantic information.
Furthermore, this research, combined with sequential pattern mining, can result in richer semantic
features. In order to better perceive the trajectory, temporal features learn the periodicity of time
series by the sine function. In terms of location features, we build a directed weighted graph and
regard the frequency of users visiting locations as the weight, so the location features are rich in
contextual information. We then adopt the Self-Attention model to capture long-term dependencies
in long trajectory sequences. Experiments in Geolife show that the semantic matching of this study
improved by 45.78% in TOP@1 compared with the closest distance search for POI. Compared with
the baseline, the model proposed in this study improved by 2.5% in TOP@1.

Keywords: location prediction; Point of Interest; trajectory; semantic matching; deep learning

1. Introduction

In recent years, with the rise in positioning devices, Internet of Things (IoTs) and
smart city concepts, mobile phone positioning data and social network data have provided
a large number of continuous location trajectory data; research on trajectory prediction
and analysis has become increasingly popular, and related research topics have gradually
received attention. By predicting the location people will visit in the future, advertising
companies can immediately provide location-related advertisements [1] and government
departments can predict the flow of people for traffic planning in order to ease traffic
congestion [2]. Platforms such as Uber are also using next location prediction technology to
better estimate customer’s travel needs and allocate resources accordingly [3]. In the past,
the most commonly used method for location prediction was either Markov chain [4–6] or
machine learning [7], but due to the large amount of trajectory data, many related studies
have begun using deep learning technology to predict the user’s next location [1,2,8–13].

Many relevant studies often consider spatiotemporal features such as location fea-
tures and temporal features when using deep learning to predict the user’s next location.
However, the check-in data shared through LBSN hide semantic information related to life
patterns; if the model considers semantic features, it can obtain more detailed characteristics
about the user’s life pattern and location preference. Therefore, semantic features can help

ISPRS Int. J. Geo-Inf. 2023, 12, 420. https://doi.org/10.3390/ijgi12100420 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi12100420
https://doi.org/10.3390/ijgi12100420
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-5342-9383
https://doi.org/10.3390/ijgi12100420
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi12100420?type=check_update&version=2

ISPRS Int. J. Geo-Inf. 2023, 12, 420 2 of 22

enhance the performance of next location prediction. However, not all users like to share
their check-in information on LBSN. The trajectory data recorded by mobile devices are not
like the check-in data of social networks that have complete semantic annotation informa-
tion. In order to understand the user’s semantic trajectory behavior, relevant studies [1,14]
matched the trajectory stay point to the nearest Point of Interest (POI). However, location
error may lead to incorrect semantic matching; incorrect semantic matching causes the
model to learn wrong semantic behavior patterns.

Due to the motivation mentioned above, we propose a Self-Attention model for next
location prediction based on semantic mining. In our model, we have location features,
temporal features, semantic features and user features, while focusing on how to extract
semantic features. For semantic features, the stay points of trajectory are matched to the
k-nearest POI. We then use the reciprocal of the distance from the stay points to the k-
nearest POI and the number of categories as weights. Finally, we use probability to express
semantic features without losing other important semantic information. This method solves
the wrong semantic matching problem caused by location error and also considers more of
the spatial information on POIs. Furthermore, we combine sequential pattern mining to
further infer user’s semantic behaviors, which can result in richer semantic features. For
temporal features, we adopt Time2vec to learn periodic features from the time features. For
location features, we adopt the Node2vec to extract contextual features of the trajectory
sequence. Finally, we concatenate the features as the input of the prediction mode and we
adopt Self-Attention to capture long-term dependencies in sequences; Self-Attention uses
fully connected layers to consider the information of each stage together, so it retains more
long-term information. In the output of Self-Attention, we consider the user ID feature to
make the model more personal and obtain prediction results. As a result, we can predict
the user’s future location by inputting the user’s past locations, timestamps and semantics
into Self-Attention.

The contributions of this paper are listed below:

1. We design semantic matching to effectively extract the semantic feature of each stay
point. We then combine sematic matching with sequential pattern mining to result in
richer semantic features.

2. We use Node2vec and Time2vec, which consider the interaction of each location and
the periodicity of the time series.

3. We adopt Self-Attention to predict the user’s next trajectory for solving the problem
with RNN (Recurrent Neural Network); the problem with RNN is that long-term
memory is diminished with each transfer.

4. We use Geolife dataset for our experiments. Based on experiment results, our method
is better than a number of state-of-the-art methods.

The following is the structure of this paper. First, we review relevant research on
location prediction in Section 2. Next, Section 3 is the problem statement, explaining the
numerous terms in location prediction. Then, Section 4 explains the method we proposed
for location prediction. Following that, we evaluate our model’s performance and compare
its accuracy to that of other models in Section 5. In Section 6, we conclude our findings and
briefly discuss future works.

2. Related Work

In this section, we discussed important literature regarding location prediction. In
terms of location prediction, besides the design of the model itself, there are many different
methods for feature extraction, such as temporal, location and semantics. Therefore, we
can separate the literature into two topics: location prediction and feature extraction.

2.1. Location Prediction

In the first part, we introduce the literature on location prediction. In 2018, Xia et al.
considered both stay points and semantic information and used a decision tree for location
prediction [7]. A Markov chain is often used to deal with location predictions. A Markov

ISPRS Int. J. Geo-Inf. 2023, 12, 420 3 of 22

chain is a method with discrete random variables that capture the regularity of human
movement. In 2018, Jiang et al. extended the first-order Markov chain to the k-order
Markov chain to consider more important historical information [5]. In 2018, Xia et al.
established a variable-order Markov chain to predict location based on the matching of
the historical trajectory and the current trajectory [6]. In 2017, Fernandes et al. combined
Naïve Bayesian Classification algorithm and the Markov model to predict next location [4].
However, the Markov chain transfer process is memoryless, which means that the result of
the current state is only influenced by the previous state.

Recently, many studies have used deep learning to predict the user’s future location.
RNN is a typical deep learning model for time series. Since it can transfer long-term
memory to the previous state, it solves the Markov chain problem (the Markov chain is
limited to the previous state). The SERM model proposed by Yao et al. learns embeddings
for multiple features (user, location, time, semantic) and uses Long Short-Term Memory
(LSTM) to forecast the next location [12]. In 2020, Su et al. considered both propagation
directions of LSTM; they used Bi-directional Long Short-Term Memory (BiLSTM) to predict
the user’s next location [9]. Furthermore, in 2020, Xu et al. combined BiLSTM with the
Similarity-based Markov Model (SMM) to predict the user’s next location [1]. The problem
with RNN is that long-term memory is diminished with each transfer. The Attention
mechanism [10] improves this because the Attention mechanism does not pass the long-
term memory through each stage. In other words, the Attention mechanism uses a fully
connected layer to consider the information of each stage together, so it retains more long-
term memory. In 2018, Al-Molegi et al. adopted the Attention mechanism in their neural
network to capture long-term dependencies in trajectory sequences to predict the user’s
future location [8]. In 2020, Zhang et al. designed a variant of LSTM with an Attention
mechanism to better capture spatiotemporal dependencies [13]. Wang et al. designed a
variant of the Attention mechanism; this variant focuses on the time interval and distance
interval, thus enriching the continuity of spatiotemporal, which can better distinguish
each location [11]. However, in 2020, Feng et al. proposed a unique Attention mechanism
application. This method uses the user’s current trajectory with LSTM to predict the user’s
future location, but also combines the historical trajectory with Attention to capture multi-
level periodicity. In addition to considering location feature, time feature, semantics feature
and user ID feature, they also consider user text feature [2]. In 2021, Wen et al. adopted
LSTM to capture long-term and short-term spatiotemporal dependencies, and Attention
mechanism is introduced to distinguish each location in different contexts [3]. In addition
to the structure of the neural network, the feature extraction is also a key point that affects
the next location prediction.

2.2. Feature Extraction

In the second section, we introduce feature extraction methods. Trajectories have three
main features: location, time and semantic. The location feature is usually a one-hot vector
whose dimension is determined by the number of locations. Due to the large number of
locations, the curse of dimensionality occurs when training the model. In order to avoid
this problem, relevant studies use embedding layer (full connection), which reduces a
high-dimensional one-hot vector to a low-dimensional space, which eliminates the curse
of dimensionality in the prediction model [5,12,13]. On the other hand, since trajectories
have contextual features like words, some studies use Word2vec [15] to extract location
features [1,11]. The principle of Word2vec is to use the weights of the fully connected layer
of a classifier as word vectors. In this classifier, the word’s one-hot vectors are input, then
fed into a fully connected layer, and then fed to a SoftMax to obtain the probability of the
contexts. Finally, the weight of the fully connected layer after training will be obtained,
which is the word vectors of Word2vec. The difference between the embedding layer and
Word2vec is explained as follows. Word2vec is an unsupervised learning method that
uses context to learn word embedding; it is a pretrained model. In the embedding layer,
the weight of a full connection is updated based on the label information learning. In

ISPRS Int. J. Geo-Inf. 2023, 12, 420 4 of 22

order to achieve a higher supervised learning effect, the embedding layer is used as a
layer of the network to learn and adjust according to the target. But, Word2vec and full
connection omit a lot of valid contexts, which makes it difficult to contain more spatial
information and distinguish between each location. Therefore, in the loc2vec embedding
method proposed by Sassi et al., each location is encoded as a vector, whereby the more
often two locations co-occur in the trajectory sequences, the closer their vectors will be [16].
Furthermore, the graph-embedding method of Node2vec is based on Word2vec; its directed
weighted graph carries more spatiotemporal context information [17]. In 2021, Wen et al.
used Node2Vec to extract location feature, which encodes each location in all trajectories to
construct a directed weighted graph. It then takes the number of visits to the location as
the weight of the graph, which reflects the visit order preference and frequency [3]. Also
inspired by Word2vec, in 2019, Xu et al. proposed an embedding model called Venue2Vec,
which combines spatiotemporal context, semantic information and sequence relationships;
semantics of the same type and locations that are close or that users frequently visit will
have similar vector spaces [18]. In addition to Word2vec-based methods, in 2020, Chen
et al. proposed the Convolutional Embedding Model (CEM), which embeds the locations
by using convolutions [19].

In terms of temporal features, some studies usually perform a series of preprocessing in
timestamp to extract temporal features for the next location prediction, such as converting
timestamps into hours, days, weeks, months and seasons. However, temporal features are
cyclical. Taking hours as an example, temporal features are usually represented by 1 to 24,
although using hours to represent the temporal features can reflect the periodicity, it may
not be able to fully express the period of time. Therefore, Lu et al. considered the cyclic
features of time, and designed the coordinates on a unit circle using the sine and cosine
functions to represent the cyclic features of time [20]. Kazemi et al. proposed Time2vec.
This method uses temporal features to learn the phase-shift and frequency of the sine
function; it can learn periodic temporal features, which allows the neural network to better
learn temporal features [21].

In terms of semantic feature extraction, trajectory data are divided into check-in data
and GPS trajectory data. Check-in data such as Gowalla dataset and Foursquare dataset,
usually have semantic information. On the other hand, GPS trajectory data such as the
Geolife dataset do not record semantic information. First, we introduce the semantic
feature extraction of check-in data. In 2016, Xie et al. used graph structure to embed
semantic features to encode users’ semantic trajectory in a vector space [22]. In 2019, Cao
et al. proposed habit2vec, which keeps the original user’s pattern of living habits [23]. In
2020, Zhang et al. proposed Sen2vec, which calculates semantic vectors according to the
frequency and principal component analysis [13]. As for GPS trajectory data, in order to
extract semantic information, it is necessary to collect POI data and match the stay points.
If the POI is not considered, the semantic information can be extracted from the trajectory
sequence data alone. In 2009, Ye et al. used the sequential pattern mining to infer users’
semantic behavior [24]. In 2016, Chen et al. proposed semantic trajectory patterns, which
are moving patterns with location, time and semantic attributes. Given a user’s trajectory,
their objective is to mine common semantic trajectory patterns [25].

3. Problem Statement

We explicitly define the notations used in the location prediction issue in this section.
Our topic is to predict a user’s future location based on their trajectory. The notations
concerning location prediction are listed in Table 1.

ISPRS Int. J. Geo-Inf. 2023, 12, 420 5 of 22

Table 1. The notations about location prediction.

Notation Description

tra, p Trajectory, GPS point
u, U User, set of users
s, S Stay point, set of stay points

lat, lng Latitude, longitude
te, tl Time of entering and leaving a stay point

poi, POI POI, set of POIs
ty, TY A type of POI, set of types

ς Semantics
l, L Stay grid, set of stay grids

Definition 1. Trajectory: A time-ordered sequence of GPS points, a GPS trajectory
tra = {p1, p2, . . . pn}, each GPS point pi is a 4-tuple pi = (u, p.lati, p.lngi, p.ti), where the
user ID, latitude, longitude and time are denoted by u, p.lat, p.lng and p.t, respectively.

Definition 2. Stay point: Given a set of sequential GPS points tra =< px, . . . , pi, . . . , py > satis-
fying, (1).∀x ≤ i ≤ y, (2).Distance(px, pi) ≤ θd, (3).Distance

(
px, py+1

)
> θd,

and (4).TimeDi f f erence
(

py, px
)

> θt. S = {s1, s2, . . . , sn}, a stay point is a 5-tuple
s = (u, s.lat, s.lng, te, tl), where s.lat and s.lng denote the average latitude and longitude of GPS
point, respectively, and are defined as (1), where te and tl refer to the time of entering and leaving a
stay point, respectively.

s.lat =
∑

y
i=x pi.lat
|P| , s.lng =

∑
y
i=x pi.lng
|P| (1)

Definition 3. POI: POI (Point of Interest) poi refers to a landmark on the electronic map, which
can be a restaurant, a bank, a school, a hospital, etc., poi ∈ POI , which is composed of the type of
poi ty ∈ TY, the latitude poi.lat and the longitude poi.lon.

Definition 4. Semantic: The semantic ς is defined as the purpose of the user visiting a stay point
s. The semantic ς is calculated by matching the stay point to the k-nearest POI. The dimension of ς
is the number of TY; each dimension corresponds to a different poi.ty. Given a set of consecutive
stay points S = s1, s2, . . . , sn, each S will search for k-nearest POI as semantic ς.

Definition 5. Stay grid: We use grids to represent the stay points L =< l1, l2, . . . , ln >,
l = (u, g, t, ς), where g is the index of the gird, and we use time of entering stay point te as the time
of stay grid t.

Definition 6. Trajectory Sequence: According to time window tw, a user’s stay grid sequence
L is divided into several subsequences L =

{
Ltw1

, Ltw2
, . . . , Ltwm

}
, where m is the index of

the subsequence. EachLtw contains several stay grids of L in the time window tw,
i.e., Ltw = { li, li+1, . . . , li+k}, if i < j ≤ i + k, then tj belongs to tw (the time window tw
can be 1 day, 1 week, 1 month or 1 year). We then convert Ltw into a trajectory sequence using
sliding window. Given a subsequence Ltw = {li, li+1, . . . , li+k}, we use sliding window to ob-
tain LSW =

{
Lswj , Lswj+1 , . . . , Lswj+k−h

}
, Lswj{li, li+1, . . . , li+h−1}, where h is the length of the

sliding window, whereas Lsw is defined as a trajectory sequence.

Definition 7. Problem: For a user u ∈ U, given a trajectory sequence Lsw = {li, li+1, . . . , li+h−1},
our purpose is to predict the next location gi+h.

ISPRS Int. J. Geo-Inf. 2023, 12, 420 6 of 22

4. Proposed Method

In this section, we introduce our proposed method, which is split into three parts.
Frist, we introduce the entire model architecture and explain the input and output of the
model. Then, we will introduce how we extract input features. Finally, we explain our
proposed model in detail.

4.1. System Framework

Our framework is shown in Figure 1. The architecture is divided into three parts: input
features (green), prediction model (blue) and predicted results (red). In the beginning, the
required data (trajectory data and POI data) are processed to obtain four features: 1. user
feature; 2. location feature; 3. temporal feature; 4. semantic feature. Then, we divided the
data into training and testing sets. Next, the neural network model is fed the training data
(the structure of our model will be discussed at the end of this section). The trained model
will generate the anticipated future locations when we feed it the testing data after the
training operation.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 6 of 23

4. Proposed Method
In this section, we introduce our proposed method, which is split into three parts.

Frist, we introduce the entire model architecture and explain the input and output of the
model. Then, we will introduce how we extract input features. Finally, we explain our
proposed model in detail.

4.1. System Framework
Our framework is shown in Figure 1. The architecture is divided into three parts:

input features (green), prediction model (blue) and predicted results (red). In the begin-
ning, the required data (trajectory data and POI data) are processed to obtain four fea-
tures: 1. user feature; 2. location feature; 3. temporal feature; 4. semantic feature. Then, we
divided the data into training and testing sets. Next, the neural network model is fed the
training data (the structure of our model will be discussed at the end of this section). The
trained model will generate the anticipated future locations when we feed it the testing
data after the training operation.

Figure 1. The framework of our research. Source: Icon made by Smashicons, Freepik and dDara
from www.flaticon.com (accessed on 31 July 2022).

4.2. Input Features
We have four major features: user feature, location feature, temporal feature and se-

mantic feature. The first three features are obtained from trajectory data, whereas the last
feature (semantic feature) is obtained by matching the stay point to the 𝑘-nearest POI.
Therefore, we need two types of data: trajectory data and POI data.
1. Trajectory data: The main data for predicting the user’s next location. The location is

recorded every 1 to 5 s. Trajectory data record the living habits of users and provide
clues for predicting the user’s next location.

2. POI data: The POI data in the study area; each poi ∈ POI contains poi.ty, poi.lat and
poi.lng.
We will describe how to extract features from data and how to transform data into

features in the sections that follow, as well as the methods utilized to achieve important
features. These features will be input into the model.
1. User Feature: User feature is the user ID 𝑢 ∈ 𝑈. To personalize the prediction model,

we consider the user feature 𝑢 (𝑢 is a one-hot vector whose dimension is the number
of users 𝑈).

2. Location Feature: We use stay grid 𝑔 to represent a location. Stay grid 𝑔 is one-hot
vector, and the dimension of 𝑔 is determined by the number of grids that cover the
study area which users have visited.

3. Temporal Feature: Temporal feature reveals what time the information is in. Several
methods usually perform a series of preprocessing on timestamps to extract temporal
features for the next location prediction, such as converting timestamps into hour,

Figure 1. The framework of our research. Source: Icon made by Smashicons, Freepik and dDara from
www.flaticon.com (accessed on 31 July 2022).

4.2. Input Features

We have four major features: user feature, location feature, temporal feature and
semantic feature. The first three features are obtained from trajectory data, whereas the
last feature (semantic feature) is obtained by matching the stay point to the k-nearest POI.
Therefore, we need two types of data: trajectory data and POI data.

1. Trajectory data: The main data for predicting the user’s next location. The location is
recorded every 1 to 5 s. Trajectory data record the living habits of users and provide
clues for predicting the user’s next location.

2. POI data: The POI data in the study area; each poi ∈ POI contains poi.ty, poi.lat
and poi.lng.

We will describe how to extract features from data and how to transform data into
features in the sections that follow, as well as the methods utilized to achieve important
features. These features will be input into the model.

1. User Feature: User feature is the user ID u ∈ U. To personalize the prediction model,
we consider the user feature u (u is a one-hot vector whose dimension is the number
of users U).

2. Location Feature: We use stay grid g to represent a location. Stay grid g is one-hot
vector, and the dimension of g is determined by the number of grids that cover the
study area which users have visited.

3. Temporal Feature: Temporal feature reveals what time the information is in. Several
methods usually perform a series of preprocessing on timestamps to extract temporal
features for the next location prediction, such as converting timestamps into hour, day,
week, month and season. In this paper, we convert timestamps into hours (1 to 24) to
obtain temporal features t.

www.flaticon.com

ISPRS Int. J. Geo-Inf. 2023, 12, 420 7 of 22

4. Semantic Feature: Semantic feature ς is defined as the purpose of a user visiting a
stay point. Some studies usually match a stay point to the nearest POI. In this paper,
we introduce a semantic matching to extract semantic features; the architecture of
semantic matching is shown in Figure 2.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 7 of 23

day, week, month and season. In this paper, we convert timestamps into hours (1 to
24) to obtain temporal features t.

4. Semantic Feature: Semantic feature 𝜍 is defined as the purpose of a user visiting a
stay point. Some studies usually match a stay point to the nearest POI. In this paper,
we introduce a semantic matching to extract semantic features; the architecture of
semantic matching is shown in Figure 2.

Figure 2. The framework of semantic matching.

When we calculate the semantic vector of the stay point, we consider the 𝑘-nearest
POI. In addition, inspired by Ye et al. [24], we combine sequential pattern mining to mine
the user’s home and workplace. We then calculate the semantic vector 𝜍 while consider-
ing the home and workplace.

We use the stay points 𝑆 = {𝑠 , 𝑠 , … , 𝑠 } to mine the user’s home and workplace.
However, this sequence still cannot be directly applied to mining home and workplace,
because no two stay points have the same latitudes and longitudes. For example, stay
points at a workplace have different coordinates even though they are very close to each
other [24]. To solve this problem, we apply the OPTIC clustering algorithm to find out
where the stay points are clustered as demonstrated in Figure 3. The stay points of a user 𝑆 = {𝑠 , 𝑠 , … , 𝑠 } are collected into a dataset and clustered into several geographic areas 𝐶 = {𝑐 , 𝑐 , … , 𝑐 }. There are two parameters: number of points and distance threshold; we
set the number of points at 2 and distance threshold at 45 m. Accordingly, additional stay
points will be added to the cluster if there are at least two within 45 m of a clustered stay
point. Then, the clustering stay points 𝐶 = {𝑐 , 𝑐 , … , 𝑐 } will be the input to home and
workplace mining.

Figure 3. Clustering stay points, where s1-s12 are stay points and C1-C5 are clusters.

Next, we adopt the Closet+ algorithm to mine the home and workplace in the clus-
tering stay points. Figure 4 illustrates an example of home and workplace mining. The
first table in Figure 4 means that on day 1, the user went to 𝑐 , 𝑐 , 𝑐 ; on day 2, the user
went to 𝑐 , 𝑐 , 𝑐 , and so on. We then count the number of clusters in the database to obtain
the second table. Next, we delete the clusters below the min support = 1 in the second table

Figure 2. The framework of semantic matching.

When we calculate the semantic vector of the stay point, we consider the k-nearest
POI. In addition, inspired by Ye et al. [24], we combine sequential pattern mining to mine
the user’s home and workplace. We then calculate the semantic vector ς while considering
the home and workplace.

We use the stay points S = {s1, s2, . . . , sn} to mine the user’s home and workplace.
However, this sequence still cannot be directly applied to mining home and workplace,
because no two stay points have the same latitudes and longitudes. For example, stay
points at a workplace have different coordinates even though they are very close to each
other [24]. To solve this problem, we apply the OPTIC clustering algorithm to find out
where the stay points are clustered as demonstrated in Figure 3. The stay points of a user
S = {s1, s2, . . . , sn} are collected into a dataset and clustered into several geographic areas
C = {c1, c2, . . . , cn}. There are two parameters: number of points and distance threshold;
we set the number of points at 2 and distance threshold at 45 m. Accordingly, additional
stay points will be added to the cluster if there are at least two within 45 m of a clustered
stay point. Then, the clustering stay points C = {c1, c2, . . . , cn} will be the input to home
and workplace mining.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 7 of 23

day, week, month and season. In this paper, we convert timestamps into hours (1 to
24) to obtain temporal features t.

4. Semantic Feature: Semantic feature 𝜍 is defined as the purpose of a user visiting a
stay point. Some studies usually match a stay point to the nearest POI. In this paper,
we introduce a semantic matching to extract semantic features; the architecture of
semantic matching is shown in Figure 2.

Figure 2. The framework of semantic matching.

When we calculate the semantic vector of the stay point, we consider the 𝑘-nearest
POI. In addition, inspired by Ye et al. [24], we combine sequential pattern mining to mine
the user’s home and workplace. We then calculate the semantic vector 𝜍 while consider-
ing the home and workplace.

We use the stay points 𝑆 = {𝑠 , 𝑠 , … , 𝑠 } to mine the user’s home and workplace.
However, this sequence still cannot be directly applied to mining home and workplace,
because no two stay points have the same latitudes and longitudes. For example, stay
points at a workplace have different coordinates even though they are very close to each
other [24]. To solve this problem, we apply the OPTIC clustering algorithm to find out
where the stay points are clustered as demonstrated in Figure 3. The stay points of a user 𝑆 = {𝑠 , 𝑠 , … , 𝑠 } are collected into a dataset and clustered into several geographic areas 𝐶 = {𝑐 , 𝑐 , … , 𝑐 }. There are two parameters: number of points and distance threshold; we
set the number of points at 2 and distance threshold at 45 m. Accordingly, additional stay
points will be added to the cluster if there are at least two within 45 m of a clustered stay
point. Then, the clustering stay points 𝐶 = {𝑐 , 𝑐 , … , 𝑐 } will be the input to home and
workplace mining.

Figure 3. Clustering stay points, where s1-s12 are stay points and C1-C5 are clusters.

Next, we adopt the Closet+ algorithm to mine the home and workplace in the clus-
tering stay points. Figure 4 illustrates an example of home and workplace mining. The
first table in Figure 4 means that on day 1, the user went to 𝑐 , 𝑐 , 𝑐 ; on day 2, the user
went to 𝑐 , 𝑐 , 𝑐 , and so on. We then count the number of clusters in the database to obtain
the second table. Next, we delete the clusters below the min support = 1 in the second table

Figure 3. Clustering stay points, where s1–s12 are stay points and C1–C5 are clusters.

Next, we adopt the Closet+ algorithm to mine the home and workplace in the cluster-
ing stay points. Figure 4 illustrates an example of home and workplace mining. The first
table in Figure 4 means that on day 1, the user went to c1, c3, c4; on day 2, the user went
to c2, c3, c5, and so on. We then count the number of clusters in the database to obtain the
second table. Next, we delete the clusters below the min support = 1 in the second table
to produce the fourth table. Using the fourth table, we can find the most frequent clusters
during the day and night, which we can use to mine the workplace and home clusters. In
this paper, we only calculated the first stage of the Closet+ algorithm.

ISPRS Int. J. Geo-Inf. 2023, 12, 420 8 of 22

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 8 of 23

to produce the fourth table. Using the fourth table, we can find the most frequent clusters
during the day and night, which we can use to mine the workplace and home clusters. In
this paper, we only calculated the first stage of the Closet+ algorithm.

Figure 4. Home and workplace mining.

Next, we will introduce the semantic matching algorithm. The flow chart of the se-
mantic matching algorithm is shown in Figure 5, where 𝑅 ∈ 𝑇𝑌 is real estate, 𝜍 is seman-
tic vector (the dimension of semantic vector is the number of different 𝑝𝑜𝑖. 𝑡𝑦, in addition
to home and workplace) and 𝜍 is temporary register (the same dimension as 𝜍). The
following explains how to calculate the semantic vector 𝜍 of the stay point 𝑠:

Figure 5. Semantic matching algorithm.

1. First, the algorithm searches for the nearest 𝑘 POI, then starts to calculate the 𝜍
of each 𝑝𝑜𝑖.

2. If c = home and 𝑝𝑜𝑖. 𝑡𝑦 = R, then 𝑝𝑜𝑖. 𝑡𝑦 is changed to home. Next, we calculate the
reciprocal of the distance between 𝑝𝑜𝑖 and 𝑠.

3. If c = work and 𝑝𝑜𝑖. 𝑡𝑦 R, then 𝑝𝑜𝑖. 𝑡𝑦 is changed to workplace (because we think
that POI that are not R is likely to be workplace). Next, we calculate the reciprocal of
the distance between 𝑝𝑜𝑖 and 𝑠.

Figure 4. Home and workplace mining.

Next, we will introduce the semantic matching algorithm. The flow chart of the
semantic matching algorithm is shown in Figure 5, where R ∈ TY is real estate, ς is
semantic vector (the dimension of semantic vector is the number of different poi.ty, in
addition to home and workplace) and ςtemp is temporary register (the same dimension as
ς). The following explains how to calculate the semantic vector ς of the stay point s:

1. First, the algorithm searches for the nearest k POI, then starts to calculate the ςtemp of
each poi.

2. If c = home and poi.tyi = R, then poi.tyi is changed to home. Next, we calculate the
reciprocal of the distance between poii and s.

3. If c = work and poi.tyi 6= R, then poi.tyi is changed to workplace (because we think
that POI that are not R is likely to be workplace). Next, we calculate the reciprocal of
the distance between poii and s.

4. If c 6= home and c 6= workplace, we directly calculate the reciprocal of the distance
between poii and s.

5. We repeat ς = ς + ςtemp, and when i = k, the loop stops. We then normalize ς, ending
the algorithm.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 8 of 23

to produce the fourth table. Using the fourth table, we can find the most frequent clusters
during the day and night, which we can use to mine the workplace and home clusters. In
this paper, we only calculated the first stage of the Closet+ algorithm.

Figure 4. Home and workplace mining.

Next, we will introduce the semantic matching algorithm. The flow chart of the se-
mantic matching algorithm is shown in Figure 5, where 𝑅 ∈ 𝑇𝑌 is real estate, 𝜍 is seman-
tic vector (the dimension of semantic vector is the number of different 𝑝𝑜𝑖. 𝑡𝑦, in addition
to home and workplace) and 𝜍 is temporary register (the same dimension as 𝜍). The
following explains how to calculate the semantic vector 𝜍 of the stay point 𝑠:

Figure 5. Semantic matching algorithm.

1. First, the algorithm searches for the nearest 𝑘 POI, then starts to calculate the 𝜍
of each 𝑝𝑜𝑖.

2. If c = home and 𝑝𝑜𝑖. 𝑡𝑦 = R, then 𝑝𝑜𝑖. 𝑡𝑦 is changed to home. Next, we calculate the
reciprocal of the distance between 𝑝𝑜𝑖 and 𝑠.

3. If c = work and 𝑝𝑜𝑖. 𝑡𝑦 R, then 𝑝𝑜𝑖. 𝑡𝑦 is changed to workplace (because we think
that POI that are not R is likely to be workplace). Next, we calculate the reciprocal of
the distance between 𝑝𝑜𝑖 and 𝑠.

Figure 5. Semantic matching algorithm.

ISPRS Int. J. Geo-Inf. 2023, 12, 420 9 of 22

We introduce an example of semantic matching in Figure 6. Assuming that there are
only three POI types, so the dimension of ς is 5 ([School, Shop, R, Home, Work]), and the
k = 4 (the algorithm searches for the nearest four poi). The blue dotted lines in Figure 6
are the distance between the stay point s and the four poi. Once the algorithm starts, the
stay point s will search for the four nearest poi. We need to calculate the reciprocal of
the distance between the four poi and the stay point, since the clustering stay point c is
neither the home cluster nor the workplace cluster. In this example, the semantic feature is
calculated as (2).

i = 1, ςtemp =
[

1
4 , 0, 0, 0, 0

]
, ς =

[
1
4 , 0, 0, 0, 0

]
i = 2, ςtemp =

[
0, 1

2 , 0, 0, 0
]
, ς =

[
1
4 , 1

2 , 0, 0, 0
]

i = 3, ςtemp =
[
0, 1

3 , 0, 0, 0
]
, ς =

[
1
4 , 5

6 , 0, 0, 0
]

i = 4, ςtemp =
[
0, 0, 1

2 , 0, 0
]
, ς =

[
1
4 , 5

6 , 1
2 , 0, 0

]
Normalize(ς) = [0.157, 0.526, 0.315, 0, 0]

(2)

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 9 of 23

4. If 𝑐 home and c workplace, we directly calculate the reciprocal of the distance
between 𝑝𝑜𝑖 and 𝑠.

5. We repeat 𝜍 = 𝜍 + 𝜍 , and when 𝑖 = 𝑘, the loop stops. We then normalize 𝜍, end-
ing the algorithm.
We introduce an example of semantic matching in Figure 6. Assuming that there are

only three POI types, so the dimension of 𝜍 is 5 ([School, Shop, R, Home, Work]), and the
k = 4 (the algorithm searches for the nearest four 𝑝𝑜𝑖). The blue dotted lines in Figure 6
are the distance between the stay point 𝑠 and the four 𝑝𝑜𝑖. Once the algorithm starts, the
stay point 𝑠 will search for the four nearest 𝑝𝑜𝑖. We need to calculate the reciprocal of the
distance between the four 𝑝𝑜𝑖 and the stay point, since the clustering stay point 𝑐 is nei-
ther the home cluster nor the workplace cluster. In this example, the semantic feature is
calculated as (2). 𝑖 = 1, 𝜍 = 14 , 0, 0, 0, 0 , 𝜍 = 14 , 0,0, 0, 0

𝑖 = 2, 𝜍 = 0, 12 , 0, 0, 0 , 𝜍 = 14 , 12 , 0, 0, 0

𝑖 = 3, 𝜍 = 0, 13 , 0, 0, 0 , 𝜍 = 14 , 56 , 0, 0, 0

𝑖 = 4, 𝜍 = 0, 0, 12 , 0, 0 , 𝜍 = 14 , 56 , 12 , 0, 0 Normalize (𝜍) = 0.157, 0.526, 0.315, 0, 0

(2)

Figure 6. Example of semantic matching.

4.3. Prediction Model
Our prediction model architecture is shown in Figure 7. It uses the features men-

tioned in input features to obtain the predicted next location. In order to better learn tem-
poral features and location features, we use Time2vec to learn the periodic features of the
temporal features and use Node2vec to extract contextual features rich in trajectory se-
quences. Next, the temporal features, location features and semantic features are concate-
nated as input for the prediction model. In order to predict the next location, we adopt
Self-Attention to solve this issue. Self-Attention is a model that has been successfully used
for time-series-forecasting challenges and can model temporal properties well. In order to
personalize our model, we add the user ID features to the output of Self-Attention. Finally,
we can obtain the final prediction result after SoftMax.

Figure 6. Example of semantic matching.

4.3. Prediction Model

Our prediction model architecture is shown in Figure 7. It uses the features mentioned
in input features to obtain the predicted next location. In order to better learn temporal
features and location features, we use Time2vec to learn the periodic features of the temporal
features and use Node2vec to extract contextual features rich in trajectory sequences. Next,
the temporal features, location features and semantic features are concatenated as input
for the prediction model. In order to predict the next location, we adopt Self-Attention to
solve this issue. Self-Attention is a model that has been successfully used for time-series-
forecasting challenges and can model temporal properties well. In order to personalize our
model, we add the user ID features to the output of Self-Attention. Finally, we can obtain
the final prediction result after SoftMax.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 10 of 23

Figure 7. The proposed model.

4.3.1. Temporal Features Extractor
The temporal feature t is a one-dimensional vector represented by hours (1–24). How-

ever, time is a periodic feature. Although using hours to represent the temporal features
can reflect the periodicity, it may not be able to fully express the period of time. Therefore,
inspired by Kazemi et al. [21], we adopt Time2vec to extract the periodic temporal fea-
tures. The formula of Time2vec is shown as (3), where 𝕥 is the dimension of the Time2vec
output 𝐵∗. The first 𝑏 (𝑖 = 0) dimension learns original temporal features, the other di-
mensions 𝑏 , … ,𝑏 𝕥(1 ≤ 𝑖 ≤ 𝕥) learn periodic temporal features using the sine function,
where 𝜔 and 𝜑 are learnable parameters, referring to the phase-shift and frequency of
the sine function. 𝑏 = 𝑇𝑖𝑚𝑒2𝑣𝑒𝑐(𝑡) 𝑖 = 𝜔 𝜏 + 𝜑 , 𝑖𝑓 𝑖 = 0sin(𝜔 𝜏 𝜑), 𝑖𝑓 1 ≤ 𝑖 ≤ 𝕥 𝐵∗ = 𝑏 ,𝑏 , … , 𝑏 𝕥 ,𝐵∗ ∈ ℝ 𝕥 (3)

4.3.2. Location Features Extractor
The location feature g is a one-hot vector (the dimension is composed of the number

of grids covering the study area). Due to the large number of grids, the dimension of g is
extensive, which may lead to the curse of dimensionality, not only increasing the amount
of computation, but also making the model easier to overfit. Therefore, we adopt a graph-
based embedding method called Node2vec, which encodes each grid in all trajectories to
construct a directed weighted graph. It then takes the number of visits to the location as
the weight of the graph, which reflects the visit order preference and frequency, while
using Breadth-First Search (BFS), Depth-First Search (DFS) and random walks to generate
training data. Finally, using Word2vec embeddings to obtain more expressive features
that fully consider the interaction between each location and its neighbors, it also can cap-
ture richer context spatial information.

In Node2vec, for all the trajectories of all users, we create a directed weighted 𝐺𝑟𝑎𝑝ℎ = (𝑉,𝐸,𝑊), where 𝑉 is a set of vertices (all grids will be a set of vertices) and 𝐸 is
a set of edges. We define edge 𝑒 as (4): 𝑒 = 1, 𝑓𝑟𝑜𝑚 𝑔 𝑡𝑜 𝑔 0, 𝑢𝑛𝑎𝑐ℎ𝑖𝑒𝑣𝑎𝑏𝑙𝑒 , 𝑒 ∈ 𝐸 (4)

Figure 7. The proposed model.

ISPRS Int. J. Geo-Inf. 2023, 12, 420 10 of 22

4.3.1. Temporal Features Extractor

The temporal feature t is a one-dimensional vector represented by hours (1–24). How-
ever, time is a periodic feature. Although using hours to represent the temporal features
can reflect the periodicity, it may not be able to fully express the period of time. Therefore,
inspired by Kazemi et al. [21], we adopt Time2vec to extract the periodic temporal fea-
tures. The formula of Time2vec is shown as (3), where t is the dimension of the Time2vec
output B∗t . The first bt1(i = 0) dimension learns original temporal features, the other di-
mensions bt2 , . . . , btt(1 ≤ i ≤ t) learn periodic temporal features using the sine function,
where ωi and ϕi are learnable parameters, referring to the phase-shift and frequency of the
sine function.

bti = Time2vec(t)[i] =
{

ωiτ + ϕi, i f i = 0
sin (ωiτ − ϕi), i f 1 ≤ i ≤ t

B∗t = [bt1 , bt2 , . . . , btt], B∗t ∈ Rdt
(3)

4.3.2. Location Features Extractor

The location feature g is a one-hot vector (the dimension is composed of the number
of grids covering the study area). Due to the large number of grids, the dimension of g is
extensive, which may lead to the curse of dimensionality, not only increasing the amount
of computation, but also making the model easier to overfit. Therefore, we adopt a graph-
based embedding method called Node2vec, which encodes each grid in all trajectories
to construct a directed weighted graph. It then takes the number of visits to the location
as the weight of the graph, which reflects the visit order preference and frequency, while
using Breadth-First Search (BFS), Depth-First Search (DFS) and random walks to generate
training data. Finally, using Word2vec embeddings to obtain more expressive features that
fully consider the interaction between each location and its neighbors, it also can capture
richer context spatial information.

In Node2vec, for all the trajectories of all users, we create a directed weighted
Graph = (V, E, W), where V is a set of vertices (all grids will be a set of vertices) and E is a
set of edges. We define edge eij as (4):

eij =

{
1, f romgi to gj
0, unachievable

, eij ∈ E (4)

Based on the trajectory movement of all users, we can obtain E. The wij ∈W denotes
the weight of eij, which is calculated from the total number of visits. Then, Node2vec
combines the BFS and DFS to sample the graph. Given the current node v ∈ V, the
transition probability of visiting the next node x is shown as (5):

P(ci = x|ci−1 = v) =
{πvx

Z , i f (v, x) ε E
0, otherwise

(5)

Before calculating the transition probability, node v and node x must have an edge
link; πvx is the probability of an unnormalized transition between node v and node x,
whereas Z refers to the normalization constant. In order to control the random walk
strategy, Node2vec uses two hyperparameters (p and q), which is defined as (6):

πvx = αpq(
∼
t , x)·wvx

αpq(
∼
t , x) =

1
p , i f d∼

t x
= 0

1, i f d∼
t x

= 1
1
q , i f d∼

t x
= 2

(6)

The random walk strategy is demonstrated in Figure 8, where wvx is the weight of

edge evx, and d∼
t x

is the shortest number of steps between the previous node
∼
t and the next

ISPRS Int. J. Geo-Inf. 2023, 12, 420 11 of 22

node x. When node v transfers to node x, we have to consider the number of steps between

the previous node
∼
t and next node x.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 11 of 23

Based on the trajectory movement of all users, we can obtain 𝐸. The 𝑤 ∈ 𝑊 de-
notes the weight of 𝑒 , which is calculated from the total number of visits. Then,
Node2vec combines the BFS and DFS to sample the graph. Given the current node 𝑣 ∈ 𝑉, the transition probability of visiting the next node 𝑥 is shown as (5):

𝑃(𝑐 = 𝑥 | 𝑐 = 𝑣) = 𝜋𝑍 , 𝑖𝑓(𝑣, 𝑥) 𝜖 𝐸0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (5)

Before calculating the transition probability, node 𝑣 and node 𝑥 must have an edge
link; 𝜋 is the probability of an unnormalized transition between node 𝑣 and node 𝑥,
whereas 𝑍 refers to the normalization constant. In order to control the random walk strat-
egy, Node2vec uses two hyperparameters (p and q), which is defined as (6): 𝜋 = 𝛼 (�̃�, 𝑥) ∙ 𝑤

𝛼 (�̃�, 𝑥) = ⎩⎪⎨
⎪⎧1𝑝 , 𝑖𝑓 𝑑 = 0 1, 𝑖𝑓 𝑑 = 11𝑞 , 𝑖𝑓 𝑑 = 2

(6)

The random walk strategy is demonstrated in Figure 8, where 𝑤 is the weight of
edge 𝑒 , and 𝑑 is the shortest number of steps between the previous node �̃� and the
next node 𝑥. When node 𝑣 transfers to node 𝑥, we have to consider the number of steps
between the previous node �̃� and next node 𝑥.

Figure 8. Random walk strategy [17].

The parameter 𝑝 determines the probability that 𝑣 will visit the previous node �̃�,
and 𝑝 only functions when 𝑑 = 0. The probability of accessing the previous node �̃� is
larger if 𝑝 has a large value. The random walk’s direction is determined by the parameter 𝑞 ; 𝑞 > 1 causes the random walk to tend nodes near node �̃� (BFS); 𝑞 only functions
when 𝑑 = 2. The random walk has a propensity to travel to nodes far from node �̃� (DFS)
if 𝑞 < 1. The loss of Node2vec is calculated as (7), where 𝑁 (𝑢) is the set of neighboring
nodes of node 𝑢 obtained via a sampling strategy, and 𝑓(𝑢) is a mapping function that
maps node 𝑢 to an embedding vector. For the current node 𝑓(𝑢), the optimization goal
is to provide each node 𝑓(𝑢) with the condition to maximize the probability of the adja-
cent node 𝑁 (𝑢): 𝐿 = 𝑚𝑎𝑥 𝑙𝑜𝑔∈ Pr(𝑁 (𝑢) | 𝑓(𝑢)) (7)

Then, according to this loss 𝐿 , the skip-gram in Word2vec is directly used to
learn the embedding vector. The principle of Word2vec is to use the weights of the fully
connected layer of a classifier as word vectors. In this classifier, the word’s one-hot vectors
are input, then fed into a fully connected layer, and then fed to a SoftMax to obtain the

Figure 8. Random walk strategy [17].

The parameter p determines the probability that v will visit the previous node
∼
t , and

p only functions when d∼
t x

= 0. The probability of accessing the previous node
∼
t is larger if

p has a large value. The random walk’s direction is determined by the parameter q; q > 1

causes the random walk to tend nodes near node
∼
t (BFS); q only functions when d∼

t x
= 2.

The random walk has a propensity to travel to nodes far from node
∼
t (DFS) if q < 1. The

loss of Node2vec is calculated as (7), where Ns(
∼
u) is the set of neighboring nodes of node

∼
u obtained via a sampling strategy, and f (

∼
u) is a mapping function that maps node

∼
u to

an embedding vector. For the current node f (
∼
u), the optimization goal is to provide each

node f (
∼
u) with the condition to maximize the probability of the adjacent node Ns(

∼
u):

LNode2vec = max f ∑
u∈V

logPr(Ns(
∼
u) | f (

∼
u)) (7)

Then, according to this loss LNode2vec, the skip-gram in Word2vec is directly used
to learn the embedding vector. The principle of Word2vec is to use the weights of the
fully connected layer of a classifier as word vectors. In this classifier, the word’s one-hot
vectors are input, then fed into a fully connected layer, and then fed to a SoftMax to obtain
the probability of the contexts. We followed a previous work [3] and set p = q = 0.25.
The obtained location-embedding vector is defined as (8), where g is the dimension of
Node2vec output that can be determined, and Bg is the location feature extracted by
Node2vec. We use Node2vec to obtain more expressive location features, which fully
considers the relationship between each node and its neighbor nodes:

Node2vec(V, E) = B∗g =
[
bg1 , bg2 , . . . , bgg

]
, B∗g ∈ Rdg (8)

4.3.3. Model Structure

We fed the features into the model to obtain the next location. The output of Time2vec
is Bt ∈ Rdh×dt , and the output of Node2vec Bg ∈ Rdh×dg . The semantic ς and user ID
u are fed into the fully connected layer to obtain Bς ∈ Rdh×ds and Bu ∈ Rdh×du as (9),
where Wς ∈ Rdς×ds and Wu ∈ Rdu×du are trainable weight matrices, bς and bu are the bias
parameters of the fully connected layer. Our prediction model input X = {X1, X2, . . . , Xh}
is shown as (10):

Bς = ς·Wς + bς

Bu = u·Wu + bu
(9)

X = concatenate
[
Bt, Bg, Bς

]
, X ∈ Rdh×d

d = dt + dg + ds
(10)

ISPRS Int. J. Geo-Inf. 2023, 12, 420 12 of 22

Bu is not directly trained by the prediction model because Bu does not have a time
series characteristic; how Bu is considered by the model will be described later. In order
to capture long-term dependencies in trajectory sequences, we adopt the Self-Attention
model. Self-Attention uses a fully connected layer to consider the information from each
step collectively, which allows it to maintain more long-term memory than RNN, which
communicates information at each stage. Self-Attention also has fewer parameters and a
lower time complexity when compared to RNN. The formula for Self-Attention is shown
as (11), where WQ ∈ Rd×dq , WK ∈ Rd×dk , WV ∈ Rd×dv are weight matrices that can be
trained. X is fed to three full connections to obtain Q ∈ Rdh×dq ,K ∈ Rdh×dk ,V ∈ Rdh×dv .
dx (dq = dk = dv = dx) is the dimension of the hidden state of Self-Attention. We then
compute the dot product of Q with KT (calculate the features similarity of each location
in a trajectory sequence), divide by

√
dk (the purpose of dividing by

√
dk is to make the

gradient of SoftMax not too small), apply a SoftMax function (the features similarity of
each stage is expressed by probability, and the higher the features’ similarity, the more
important the features of the stage), then, dot product V (obtain a weighted score for each
location, which determines which stage features are important) to obtain X* ∈ Rdh×dx :

Q = X·WQ

K = X·WK

V = X·WV

X* = So f tMax
(
Q · KT
√

dk

)
·V

(11)

Finally, we only take the last stage X*
h ∈ X* as the output of Self-Attention, so the

dimension of X*
h is 1× dx. There are two reasons as to why we only take the last stage X*

h:
Each stage uses the full connection to consider all spatiotemporal contexts of the sequence;
if the output is h stages, the number of network parameters will increase, which may easily
cause the problem of overfitting.

In order to personalize the prediction model, we consider the user ID in the output
of Self-Attention, and then feed it to SoftMax to obtain the final output. The formula is
shown as (12), where Wo ∈ Rdx×do , Wy ∈ R1×dg are the weight matrices; bo and by are
the bias parameters of the full connection. We feed X*

h to the full connection to obtain the
output vector O ∈ R1×do . The trajectory patterns of each user are different, and the model
may mix them together during training. In order to distinguish the trajectory sequence
of each user, O is added to the feature of the user ID Bu to obtain Ou, so that the model
can distinguish the trajectory pattern of each user. Finally, Ou is fed to the full connection,
so that the dimension of the output is the same as the number of grids g. After feeding to
SoftMax, the final output of the model y ∈ R1×dg can be obtained:

O = X*
h·Wo + bo

Ou = O + Bu
y = So f tMax

(
Ou·Wy + by

) (12)

5. Experimental Evaluation

This chapter discusses the experiments and examines the results using our model.
This chapter is divided into four parts. Our experimental data and setup are covered in
great depth in part 1. Part 2 and part 3 are experiments to evaluate the accuracy of our
model under numerous parameters while comparing the performance of our model with
other models. Part 4 visualizes the next location prediction results.

5.1. Experimental Data and Setting

We use two types of data, which are trajectory data and POI data. The first are
trajectory data, and we use Geolife dataset as the trajectory data [26]; the latter are POI data
(Beijing city), and we collect these from Tencent Web Service API.

ISPRS Int. J. Geo-Inf. 2023, 12, 420 13 of 22

1. Trajectory data: Our experiments are performed on the Geolife trajectory dataset.
The Geolife dataset was obtained in the Geolife project by 182 users in Beijing over
a period of more than 5 years (April 2007 to August 2012). Geolife is characterized
by a series of timestamps; each timestamp contains a latitude and longitude, and the
dataset contains records of 24,876,978 GPS points. In the stay point detection, the time
threshold θt is 5 min, and the distance threshold θd is 200 m; we then achieve a total
of 43,442 stay points. We remove users whose stay point records are less than 200, so
the number of users is reduced from 182 to 50, and we will obtain 35,960 stay points.
We then build a virtual grid in Beijing and map the coordinates of each stay point to
the corresponding grid. The size of the grid is 500 × 500, there are 41,080 grid cells
covering Beijing, the number of grid cells that the users have visited is 2211. When
generating trajectory sequence, we set the time window to one week and the sliding
window to 10. Finally, we obtain 23,775 trajectory sequences. Further details of the
preprocessed dataset is shown in Table 2.

Table 2. Trajectory dataset statistics.

Attribute Value

City Beijing City
Duration April 2007 to August 2012

Users (raw/processed) 182/50
GPS points (raw) 24,876,978

Stay points (raw/processed) 43,442/35,960
Grid (raw/the users have been) 41,080/2211

Stay grid (processed) 35,960
Trajectory sequence (processed) 24,056

Trajectory sequence/users(processed) 475

2. POI data: We obtain the POI data of Beijing from the Tencent Web Service API. They
provide detailed POI information such as coordinates, address, ID, name, phone
number, type, etc. The Tencent Web Service API divides POIs into 18 main categories,
the statistical distribution of which is shown in Figure 9. Therefore, we can calculate
the semantic feature vector of each stay point based on these 18 types. In Tencent
Maps, “Address” represents natural place names, road names, administrative place
names and similar categories. This category does not conflict with other types of POIs.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 14 of 23

2. POI data: We obtain the POI data of Beijing from the Tencent Web Service API. They
provide detailed POI information such as coordinates, address, ID, name, phone
number, type, etc. The Tencent Web Service API divides POIs into 18 main categories,
the statistical distribution of which is shown in Figure 9. Therefore, we can calculate
the semantic feature vector of each stay point based on these 18 types. In Tencent
Maps, “Address” represents natural place names, road names, administrative place
names and similar categories. This category does not conflict with other types of
POIs.

Figure 9. POI category statistics.

As for the experimental settings, all experiments were performed on a computer with
Intel Core i9-10900K CPU 3.70 GHz, NVIDIA GeForce RTX 3090, 64GB RAM under Mi-
crosoft Windows 10. We divide each trajectory sequence into training and test sets. For
each user, we use the first 80% of trajectory sequences as training data and the remaining
20% as testing data. We use Python 3.7 and Keras to put our model into practice. We adopt
categorical cross entropy to minimize the loss function, the Adam optimizer is used to
train our model, and dropout is used to prevent overfitting. The hidden state 𝑑, dropout
rate, epoch and the dimensions 𝑑𝕥,𝑑𝕘,𝑑𝕤 and 𝑑𝕦 are set as 64, 0.5, 45 and 20, respectively.

The location prediction is a classification problem; the number of classes is deter-
mined by the grid covering the study area (a total of 2211 grids in our study area). Since
there are many classes to classify, both prediction accuracy and improvement rate will be
low and hard to improve. To evaluate the performance of each method for next location
prediction, we evaluate our model with TOP K accuracy (TOP@K), which checks whether
the ground-truth location is shown among the Top K result list; the units are percentage
points (%), where K = {1, 5, 10, 15}. The evaluation of higher-ranking results is more helpful
in practical applications. We train each method 10 times and compute the average accu-
racy and standard deviation to avoid obtaining good results by training only once.

5.2. Internal Experiment
We conducted seven different internal experiments with different sliding windows,

location features, temporal features, semantic features, user features and prediction mod-
els. Settings and defaults are listed in Table 3.

Table 3. The settings of internal experiment.

Experiment Method Default
Sliding window Sliding window size = {1, 2, …, 15} 10
Location feature None/Full connection/Word2vec/Node2vec Node2vec
Temporal feature None/Hour/Sin and cos/Time2vec Time2vec

Semantic feature
Semantic matching k = {1, 2, …, 100} k = 74
Closest distance/Semantic matching (not consider-
ing home and workplace)/Semantic matching

Semantic
Matching

User feature Remove User ID/Has User ID Has User ID

Figure 9. POI category statistics.

As for the experimental settings, all experiments were performed on a computer
with Intel Core i9-10900K CPU 3.70 GHz, NVIDIA GeForce RTX 3090, 64GB RAM under
Microsoft Windows 10. We divide each trajectory sequence into training and test sets. For
each user, we use the first 80% of trajectory sequences as training data and the remaining
20% as testing data. We use Python 3.7 and Keras to put our model into practice. We adopt
categorical cross entropy to minimize the loss function, the Adam optimizer is used to train
our model, and dropout is used to prevent overfitting. The hidden state d, dropout rate,
epoch and the dimensions dt, dg, ds and du are set as 64, 0.5, 45 and 20, respectively.

ISPRS Int. J. Geo-Inf. 2023, 12, 420 14 of 22

The location prediction is a classification problem; the number of classes is determined
by the grid covering the study area (a total of 2211 grids in our study area). Since there
are many classes to classify, both prediction accuracy and improvement rate will be low
and hard to improve. To evaluate the performance of each method for next location
prediction, we evaluate our model with TOP K accuracy (TOP@K), which checks whether
the ground-truth location is shown among the Top K result list; the units are percentage
points (%), where K = {1, 5, 10, 15}. The evaluation of higher-ranking results is more helpful
in practical applications. We train each method 10 times and compute the average accuracy
and standard deviation to avoid obtaining good results by training only once.

5.2. Internal Experiment

We conducted seven different internal experiments with different sliding windows,
location features, temporal features, semantic features, user features and prediction models.
Settings and defaults are listed in Table 3.

Table 3. The settings of internal experiment.

Experiment Method Default

Sliding window Sliding window size = {1, 2, . . ., 15} 10
Location feature None/Full connection/Word2vec/Node2vec Node2vec
Temporal feature None/Hour/Sin and cos/Time2vec Time2vec

Semantic feature
Semantic matching k = {1, 2, . . ., 100} k = 74
Closest distance/Semantic matching (not
considering home and workplace)/
Semantic matching

Semantic Matching

User feature Remove User ID/Has User ID Has User ID
Prediction model LSTM/BiLSTM/Self-Attention Self-Attention

5.2.1. Time Interval

In this experiment, we compared the trajectory sequence without a time interval
setting (Figure 10) to a trajectory sequence with a time interval setting (Figure 11). The
trajectory sequence with a time interval setting means that the time interval of each point of
a continuous sequence is the same (we set the time interval to 1 h). The trajectory sequence
without a time interval setting means that the time interval of each location is inconsistent.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 15 of 23

Prediction model LSTM/BiLSTM/Self-Attention Self-Attention

5.2.1. Time Interval
In this experiment, we compared the trajectory sequence without a time interval set-

ting (Figure 10) to a trajectory sequence with a time interval setting (Figure 11). The tra-
jectory sequence with a time interval setting means that the time interval of each point of
a continuous sequence is the same (we set the time interval to 1 h). The trajectory sequence
without a time interval setting means that the time interval of each location is inconsistent.

Figure 10. Trajectory sequence without time interval setting.

Figure 11. Trajectory sequence with time interval setting.

In Table 4, the two methods differ in how the training data are processed, and the
testing data in both methods do not have time interval setting. We can observe that the
performance without the time interval setting is better, the main reason is that the time
interval setting will generate redundant data; many records of the trajectory sequence are
the same location, and it may delete important locations. Furthermore, if the time interval
of a location is less than 1 h, this location will be deleted to ensure the same time interval.

Table 4. The TOP@K (%) of different time interval setting.

Method Top@1 Top@5 Top@10 Top@15
Same time interval 19.88 0.17 46.55 0.45 54.68 0.57 58.71 0.56

Without time interval 21.56 0.45 49.59 0.55 58.93 0.42 63.05 0.52

5.2.2. Sliding Window
Secondly, we performed two experiments to observe the effect of the sliding window

size on the model. In the first experiment, we do not set the time window on any of the
trajectory sequences to observe the effect of different sliding window sizes on the perfor-
mance. In the second experiment, we set the time window to observe the different sliding
window sizes on the performance. In Figure 12 (Experiment 1), we can see that the accu-
racy decreases as the sliding window increases. This is because there is no time window
setting in this experiment; therefore, the trajectory sequences with long time intervals may
occur. This makes it hard to predict the next location. In Figure 13 (Experiment 2), it can
be noted that the accuracy increases with the increase in the sliding window; in this ex-
periment, the amount of data decreases as the size of the sliding window increases. This
is because if the trajectory sequence length is less than the sliding window size, the trajec-
tory sequence will be deleted. Based on these two experiments, we set the sliding window
size ℎ to 10, which not only retains a certain number of trajectory sequences, but also
maintains a certain accuracy.

Figure 10. Trajectory sequence without time interval setting.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 15 of 23

Prediction model LSTM/BiLSTM/Self-Attention Self-Attention

5.2.1. Time Interval
In this experiment, we compared the trajectory sequence without a time interval set-

ting (Figure 10) to a trajectory sequence with a time interval setting (Figure 11). The tra-
jectory sequence with a time interval setting means that the time interval of each point of
a continuous sequence is the same (we set the time interval to 1 h). The trajectory sequence
without a time interval setting means that the time interval of each location is inconsistent.

Figure 10. Trajectory sequence without time interval setting.

Figure 11. Trajectory sequence with time interval setting.

In Table 4, the two methods differ in how the training data are processed, and the
testing data in both methods do not have time interval setting. We can observe that the
performance without the time interval setting is better, the main reason is that the time
interval setting will generate redundant data; many records of the trajectory sequence are
the same location, and it may delete important locations. Furthermore, if the time interval
of a location is less than 1 h, this location will be deleted to ensure the same time interval.

Table 4. The TOP@K (%) of different time interval setting.

Method Top@1 Top@5 Top@10 Top@15
Same time interval 19.88 0.17 46.55 0.45 54.68 0.57 58.71 0.56

Without time interval 21.56 0.45 49.59 0.55 58.93 0.42 63.05 0.52

5.2.2. Sliding Window
Secondly, we performed two experiments to observe the effect of the sliding window

size on the model. In the first experiment, we do not set the time window on any of the
trajectory sequences to observe the effect of different sliding window sizes on the perfor-
mance. In the second experiment, we set the time window to observe the different sliding
window sizes on the performance. In Figure 12 (Experiment 1), we can see that the accu-
racy decreases as the sliding window increases. This is because there is no time window
setting in this experiment; therefore, the trajectory sequences with long time intervals may
occur. This makes it hard to predict the next location. In Figure 13 (Experiment 2), it can
be noted that the accuracy increases with the increase in the sliding window; in this ex-
periment, the amount of data decreases as the size of the sliding window increases. This
is because if the trajectory sequence length is less than the sliding window size, the trajec-
tory sequence will be deleted. Based on these two experiments, we set the sliding window
size ℎ to 10, which not only retains a certain number of trajectory sequences, but also
maintains a certain accuracy.

Figure 11. Trajectory sequence with time interval setting.

In Table 4, the two methods differ in how the training data are processed, and the
testing data in both methods do not have time interval setting. We can observe that the
performance without the time interval setting is better, the main reason is that the time
interval setting will generate redundant data; many records of the trajectory sequence are
the same location, and it may delete important locations. Furthermore, if the time interval
of a location is less than 1 h, this location will be deleted to ensure the same time interval.

ISPRS Int. J. Geo-Inf. 2023, 12, 420 15 of 22

Table 4. The TOP@K (%) of different time interval setting.

Method Top@1 Top@5 Top@10 Top@15

Same time interval 19.88 ± 0.17 46.55 ± 0.45 54.68 ± 0.57 58.71 ± 0.56
Without time interval 21.56 ± 0.45 49.59 ± 0.55 58.93 ± 0.42 63.05 ± 0.52

5.2.2. Sliding Window

Secondly, we performed two experiments to observe the effect of the sliding window
size on the model. In the first experiment, we do not set the time window on any of
the trajectory sequences to observe the effect of different sliding window sizes on the
performance. In the second experiment, we set the time window to observe the different
sliding window sizes on the performance. In Figure 12 (Experiment 1), we can see that the
accuracy decreases as the sliding window increases. This is because there is no time window
setting in this experiment; therefore, the trajectory sequences with long time intervals may
occur. This makes it hard to predict the next location. In Figure 13 (Experiment 2), it
can be noted that the accuracy increases with the increase in the sliding window; in this
experiment, the amount of data decreases as the size of the sliding window increases.
This is because if the trajectory sequence length is less than the sliding window size, the
trajectory sequence will be deleted. Based on these two experiments, we set the sliding
window size h to 10, which not only retains a certain number of trajectory sequences, but
also maintains a certain accuracy.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 16 of 23

Figure 12. The comparison between different sliding window settings (without the time window).

Figure 13. The comparison between different sliding window settings (with the time window).

5.2.3. Location Feature
The third internal experiment pertains to location feature setting. We first test the

performance of the model using different location feature extraction methods. Then, we
compare FC (Full Connection), Word2vecc and Node2vec. The experiments are shown in
Table 5. The results of FC and Word2vec are very similar. Because FC and Word2vec are
essentially the same, the difference is that Word2vec is a pre-trained model, and FC is
trained in the model. On the other hand, the results of Node2vec are slightly better;
Node2vec considers the visiting frequency of nodes while fully considering the relation-
ship between each node and its neighbor nodes; therefore, it allows the model to fully
consider the spatiotemporal contexts.

Table 5. The TOP@K (%) of each location feature setting.

Method Top@1 Top@5 Top@10 Top@15
None 18.32 0.22 43.07 0.51 53.23 0.31 57.89 0.33

FC 21.31 0.42 48.89 0.55 58.24 0.48 62.34 0.38
Word2vec 21.37 0.52 48.78 0.56 58.28 0.37 62.31 0.40
Node2vec 21.56 0.45 49.59 0.55 58.93 0.42 63.05 0.52

Figure 12. The comparison between different sliding window settings (without the time window).

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 16 of 23

Figure 12. The comparison between different sliding window settings (without the time window).

Figure 13. The comparison between different sliding window settings (with the time window).

5.2.3. Location Feature
The third internal experiment pertains to location feature setting. We first test the

performance of the model using different location feature extraction methods. Then, we
compare FC (Full Connection), Word2vecc and Node2vec. The experiments are shown in
Table 5. The results of FC and Word2vec are very similar. Because FC and Word2vec are
essentially the same, the difference is that Word2vec is a pre-trained model, and FC is
trained in the model. On the other hand, the results of Node2vec are slightly better;
Node2vec considers the visiting frequency of nodes while fully considering the relation-
ship between each node and its neighbor nodes; therefore, it allows the model to fully
consider the spatiotemporal contexts.

Table 5. The TOP@K (%) of each location feature setting.

Method Top@1 Top@5 Top@10 Top@15
None 18.32 0.22 43.07 0.51 53.23 0.31 57.89 0.33

FC 21.31 0.42 48.89 0.55 58.24 0.48 62.34 0.38
Word2vec 21.37 0.52 48.78 0.56 58.28 0.37 62.31 0.40
Node2vec 21.56 0.45 49.59 0.55 58.93 0.42 63.05 0.52

Figure 13. The comparison between different sliding window settings (with the time window).

ISPRS Int. J. Geo-Inf. 2023, 12, 420 16 of 22

5.2.3. Location Feature

The third internal experiment pertains to location feature setting. We first test the
performance of the model using different location feature extraction methods. Then, we
compare FC (Full Connection), Word2vecc and Node2vec. The experiments are shown
in Table 5. The results of FC and Word2vec are very similar. Because FC and Word2vec
are essentially the same, the difference is that Word2vec is a pre-trained model, and FC
is trained in the model. On the other hand, the results of Node2vec are slightly better;
Node2vec considers the visiting frequency of nodes while fully considering the relationship
between each node and its neighbor nodes; therefore, it allows the model to fully consider
the spatiotemporal contexts.

Table 5. The TOP@K (%) of each location feature setting.

Method Top@1 Top@5 Top@10 Top@15

None 18.32 ± 0.22 43.07 ± 0.51 53.23 ± 0.31 57.89 ± 0.33
FC 21.31 ± 0.42 48.89 ± 0.55 58.24 ± 0.48 62.34 ± 0.38

Word2vec 21.37 ± 0.52 48.78 ± 0.56 58.28 ± 0.37 62.31 ± 0.40
Node2vec 21.56 ± 0.45 49.59 ± 0.55 58.93 ± 0.42 63.05 ± 0.52

5.2.4. Temporal Feature

The fourth internal experiment concerns the temporal feature setting, whereby we
compare different temporal feature extraction methods (Table 6 lists the experiment results).
The first method uses the numbers 1–24 (hours) to represent temporal features. The second
method is sin and cos, proposed by Lu et al. [20], whereby the authors had designed the
coordinates on a unit circle using the sine and cosine functions to represent the cyclic
features of time. In this experiment, using hour or sin and cos does not perform well.
Time2vecs performs better because it considers both the original time feature and the
periodic feature, which better expresses the periodicity and aperiodicity of time.

Table 6. The TOP@K (%) of each temporal feature setting.

Method Top@1 Top@5 Top@10 Top@15

None 19.74 ± 0.39 47.82 ± 0.49 56.83 ± 0.36 60.73 ± 0.50
Hour 20.41 ± 0.44 47.86 ± 0.74 56.90 ± 0.64 60.94 ± 0.53

Sin and cos 20.78 ± 0.43 47.66 ± 0.55 56.67 ± 0.53 60.62 ± 0.56
Time2vec 21.56 ± 0.45 49.59 ± 0.55 58.93 ± 0.42 63.05 ± 0.52

5.2.5. Semantic Feature

The fifth internal experiment is of the semantic feature setting. Before discussing
semantic feature setting, we discuss the impact of semantic matching k. In this experiment,
the model only has the semantic feature as input. In Figure 14, we can observe that when k
increases, the performance of the prediction model shows an upward trend reaching its
peak when k = 73 (so we set k = 73). Based on this experiment result, if the POI distribution
around the stay point is considered, the accuracy can be effectively improved. If the closest
distance method is used to search for POI (without considering POI distribution), when
calculating the semantic vector of the stay point, this method may match the user to a
different POI in close proximity instead of the POI which the user has actually visited.

ISPRS Int. J. Geo-Inf. 2023, 12, 420 17 of 22

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 17 of 23

5.2.4. Temporal Feature
The fourth internal experiment concerns the temporal feature setting, whereby we

compare different temporal feature extraction methods (Table 6 lists the experiment re-
sults). The first method uses the numbers 1–24 (hours) to represent temporal features. The
second method is sin and cos, proposed by Lu et al. [20], whereby the authors had de-
signed the coordinates on a unit circle using the sine and cosine functions to represent the
cyclic features of time. In this experiment, using hour or sin and cos does not perform
well. Time2vecs performs better because it considers both the original time feature and
the periodic feature, which better expresses the periodicity and aperiodicity of time.

Table 6. The TOP@K (%) of each temporal feature setting.

Method Top@1 Top@5 Top@10 Top@15
None 19.74 0.39 47.82 0.49 56.83 0.36 60.73 0.50
Hour 20.41 0.44 47.86 0.74 56.90 0.64 60.94 0.53

Sin and cos 20.78 0.43 47.66 0.55 56.67 0.53 60.62 0.56
Time2vec 21.56 0.45 49.59 0.55 58.93 0.42 63.05 0.52

5.2.5. Semantic Feature
The fifth internal experiment is of the semantic feature setting. Before discussing se-

mantic feature setting, we discuss the impact of semantic matching k. In this experiment,
the model only has the semantic feature as input. In Figure 14, we can observe that when
k increases, the performance of the prediction model shows an upward trend reaching its
peak when k = 73 (so we set k = 73). Based on this experiment result, if the POI distribution
around the stay point is considered, the accuracy can be effectively improved. If the closest
distance method is used to search for POI (without considering POI distribution), when
calculating the semantic vector of the stay point, this method may match the user to a
different POI in close proximity instead of the POI which the user has actually visited.

Figure 14. The comparison between different numbers of k (POI).

We perform two experiments to discuss semantic feature setting. In the first experi-
ment, the prediction model only considers the semantic features (Table 7). In the second
experiment, all features are used as input for the prediction model (Table 8). We compared:
(1) the closest distance (CD), (2) semantic matching without considering home and work-
place (SM*) and (3) semantic matching (SM). A comparison of these methods is discussed
below:

Figure 14. The comparison between different numbers of k (POI).

We perform two experiments to discuss semantic feature setting. In the first experi-
ment, the prediction model only considers the semantic features (Table 7). In the second
experiment, all features are used as input for the prediction model (Table 8). We com-
pared: (1) the closest distance (CD), (2) semantic matching without considering home
and workplace (SM*) and (3) semantic matching (SM). A comparison of these methods is
discussed below:

1. Comparing SM* with CD: The improvement rate of SM* reaches 15% in TOP@1 (the
model only considers semantic features). This shows that if the POI distribution
around the stay point is considered, the accuracy can be effectively improved.

2. Comparing SM with CD: The improvement rate of SM reaches 45% in TOP@1 (the
model only considers semantic features). SM uses sequential pattern mining to
compute semantic feature vectors, so that the prediction model can more accurately
capture the intent of user activities and achieve better performance.

Table 7. The TOP@K (%) of predicted location only considering semantic feature setting.

Method Top@1 Top@5 Top@10 Top@15

CD 8.06 ± 0.32 21.54 ± 0.27 30.08 ± 0.33 35.15 ± 0.28
SM*

(Improvement Rate)
9.27 ± 0.72

(15.01%)
28.32 ± 0.74

(31.47%)
37.47 ± 0.79

(24.56%)
42.17 ± 0.72

(19.97%)
SM

(Improvement Rate)
11.75 ± 0.31

(45.78%)
30.78 ± 0.61

(42.89%)
39.45 ± 0.66

(31.15%)
43.87 ± 0.66

(24.80%)

Table 8. The TOP@K (%) of each semantic feature setting.

Method Top@1 Top@5 Top@10 Top@15

None 20.89 ± 0.52 47.92 ± 0.45 57.12 ± 0.47 61.24 ± 0.54
CD 20.98 ± 0.45 47.81 ± 0.61 56.76 ± 0.57 60.79 ± 0.52
SM* 21.40 ± 0.25 48.58 ± 0.49 58.11 ± 0.60 62.25 ± 0.63
SM 21.56 ± 0.45 49.59 ± 0.55 58.93 ± 0.42 63.05 ± 0.52

5.2.6. Prediction Model

The sixth internal experiment concerns the prediction model setting. We compare
LSTM, BiLSTM and Self-Attention. LSTM is a variant of the RNN model, which is widely
used to handle sequential data; BiLSTM is a combination of backward LSTM and forward
LSTM, commonly used to model contextual features. The results are listed in Table 9. We

ISPRS Int. J. Geo-Inf. 2023, 12, 420 18 of 22

can observe that Self-Attention has an advantage in predicting the next location; this is
because Self-Attention is not like RNN-based models, which transmits long-term memory
through many stages, thus losing some memory. Instead, the Self-Attention uses full
connection to consider each stage in parallel, thus retaining more long-term information.

Table 9. The TOP@K (%) of each prediction model setting.

Method Top@1 Top@5 Top@10 Top@15

LSTM 21.13 ± 0.51 48.05 ± 0.50 57.59 ± 0.48 61.65 ± 0.47
BiLSTM 20.82 ± 0.42 46.71 ± 0.61 56.12 ± 0.68 60.30 ± 0.72

Attention 21.56 ± 0.45 49.59 ± 0.55 58.93 ± 0.42 63.05 ± 0.52

5.2.7. User Feature

The last internal experiment is user feature setting. We compared removing a user ID
with retaining a user ID. The experimental results are shown in Table 10, which shows that
retaining a user ID increases performance while simultaneously personalizing the model.

Table 10. The TOP@K (%) of each user feature setting.

Method Top@1 Top@5 Top@10 Top@15

Remove User ID 20.52 ± 0.45 46.77 ± 0.53 55.28 ± 0.56 59.22 ± 0.63
Retain User ID 21.56 ± 0.45 49.59 ± 0.55 58.93 ± 0.42 63.05 ± 0.52

5.3. External Experiment

In external experiments, to evaluate the performance of our model, we compare the
proposed model with two different models:

1. SERM [12]: SERM jointly learns the embedding of various features (location, time,
semantic and user) and uses LSTM to predict the next location.

2. MSSRM [3]: MSSRM jointly learns various features (user, location and time), uses
Node2vec embedding to learn location features and uses Time2vec to learn time
features. LSTM is adopted to capture long short-term spatiotemporal dependencies,
and Self-Attention is introduced to distinguish each location in different contexts.

We aim to understand the performance of models using LSTM with and without
semantic mining. Additionally, we aim to compare the differences between models with
and without semantic features. Therefore, in external experiments, the selection of these
two methods has been made for comparison. We then perform four external experiments;
parameter settings as mentioned in Section 5.1, including comparisons on different methods,
grid sizes, sliding window sizes and weekdays/weekends.

5.3.1. Comparison of Different Methods

A comparison of the different methods is shown in Table 11. Based on the results, our
method has the best performance amongst the three methods. SERM uses fully connected
layers to embed features and does not fully consider information regarding visiting order
and visiting frequency; it uses LSTM to predict locations, which may result in information
loss when passing on long-term memory due to longer trajectory sequences. The main
reason why MSSRM performs worse than our method is because MSSRM does not consider
semantic features, thus losing important behavior patterns and living habits information.
Our proposed method, on the other hand, effectively extracts semantic features and captures
the semantic-awareness spatiotemporal transformation to improve the performance of
location prediction.

ISPRS Int. J. Geo-Inf. 2023, 12, 420 19 of 22

Table 11. The TOP@K (%) of different methods.

Method Top@1 Top@5 Top@10 Top@15

SERM 20.03 ± 0.42 45.58 ± 0.50 54.80 ± 0.48 59.02 ± 0.36
MSSRM 21.03 ± 0.43 46.93 ± 0.41 55.88 ± 0.30 60.00 ± 0.35

Our Method 21.56 ± 0.45 49.59 ± 0.55 58.93 ± 0.42 63.05 ± 0.52

5.3.2. Comparison of Different Methods

The comparison of different grid sizes is shown in Table 12. We compare three different
grid sizes (300 × 300, 500 × 500 and 700 × 700). We can observe that the smaller the grid
size, the lower the accuracy. This is because as the grid size decreases, the number of
locations covered in the study area increases, which makes it difficult to predict the next
location. The overall performance: Our Method > MSSRM > SERM.

Table 12. The TOP@K (%) of different grid sizes.

Grid Size (m) Method Top@1 Top@5 Top@10 Top@15

300 × 300
SERM 13.82 ± 0.61 34.93 ± 0.48 44.22 ± 0.57 48.71 ± 0.47

MSSRM 14.57 ± 0.49 36.09 ± 0.37 45.02 ± 0.47 49.38 ± 0.46
Our Method 15.60 ± 0.37 39.23 ± 0.35 48.45 ± 0.51 52.94 ± 0.30

500 × 500
SERM 20.03 ± 0.42 45.58 ± 0.50 54.80 ± 0.48 59.02 ± 0.36

MSSRM 21.03 ± 0.43 46.93 ± 0.41 55.88 ± 0.30 60.00 ± 0.35
Our Method 21.56 ± 0.45 49.59 ± 0.55 58.93 ± 0.42 63.05 ± 0.52

700 × 700
SERM 28.89 ± 0.42 55.36 ± 0.31 62.98 ± 0.44 66.79 ± 0.52

MSSRM 29.28 ± 0.61 56.67 ± 0.52 63.65 ± 0.41 66.95 ± 0.57
Our Method 29.92 ± 0.50 58.15 ± 0.39 65.04 ± 0.47 68.47 ± 0.45

5.3.3. Comparison of Different Sliding Window Sizes

The comparison of different sliding window sizes is shown in Table 13. This experi-
ment compares three different sliding window sizes (7, 10 and 13). Based on the table below,
when the sliding window size is too large or too small, it is detrimental to the performance.
Furthermore, although the sliding window size has an impact on the accuracy, it still does
not affect the advantages of our method.

Table 13. The TOP@K (%) of different sliding window sizes.

Window
Size Method Top@1 Top@5 Top@10 Top@15

7
SERM 19.77 ± 0.45 44.49 ± 0.66 53.63 ± 0.65 57.86 ± 0.71

MSSRM 20.57 ± 0.34 45.80 ± 0.50 54.48 ± 0.34 58.59 ± 0.44
Our Method 21.31 ± 0.51 47.97 ± 0.27 57.25 ± 0.30 61.33 ± 0.47

10
SERM 20.03 ± 0.42 45.58 ± 0.50 54.80 ± 0.48 59.02 ± 0.36

MSSRM 21.03 ± 0.43 46.93 ± 0.41 55.88 ± 0.30 60.00 ± 0.35
Our Method 21.56 ± 0.45 49.59 ± 0.55 58.93 ± 0.42 63.05 ± 0.52

13
SERM 19.82 ± 0.63 45.38 ± 0.75 54.59 ± 0.72 58.79 ± 0.88

MSSRM 20.25 ± 0.59 45.19 ± 0.54 53.66 ± 0.58 57.46 ± 0.58
Our Method 20.91 ± 0.49 48.17 ± 0.50 56.82 ± 0.54 60.72 ± 0.49

5.3.4. Comparison of Different Methods on Weekdays and Weekends

We compared the performance of different methods on weekdays and weekends.
Some trajectories cross both weekdays and weekends; we also compared these trajectories
together. From Table 14, we can observe that each model performs best on weekdays
because most users follow a similar behavior pattern throughout the weekdays, thus their
daily life patterns are easier to predict. Our model can perform better than both SERM and
MSSRM regardless of weekdays or weekends.

ISPRS Int. J. Geo-Inf. 2023, 12, 420 20 of 22

Table 14. The TOP@K (%) of weekdays and weekends.

Date Method Top@1 Top@5 Top@10 Top@15

Weekday
SERM 21.89 ± 0.45 48.41 ± 0.72 57.57 ± 0.60 61.54 ± 0.61

MSSRM 22.36 ± 0.59 48.67 ± 0.84 57.48 ± 0.78 61.57 ± 0.77
Our Method 22.98 ± 0.51 50.84 ± 0.83 60.34 ± 0.79 64.12 ± 0.76

Weekend
SERM 20.25 ± 1.19 46.08 ± 1.54 56.35 ± 1.19 61.22 ± 0.94

MSSRM 19.40 ± 1.36 45.53 ± 1.18 55.59 ± 1.19 60.00 ± 1.08
Our Method 21.58 ±0.82 51.82 ± 1.19 61.15 ± 0.76 65.29 ± 0.66

Cross
SERM 18.10 ± 0.49 42.81 ± 0.55 52.29 ± 0.74 56.57 ± 0.48

MSSRM 18.57 ± 0.53 43.31 ± 0.50 52.24 ± 0.62 56.37 ± 0.59
Our Method 19.66 ± 0.78 46.26 ± 0.84 55.46 ± 0.95 59.89 ± 0.70

5.4. Visualization of Location Prediction Results

We visualize our location prediction model, which is shown in Figure 15. We use
the user’s previous ten locations to predict the next location. Each grid has a probability,
the redder the grid color indicates a higher probability of being the next location, and the
yellow stars refer to the ground truth. The first example A is on the top left of the figure. We
can observe that the user is traveling around Kunming Lake (a well-known spot in Beijing).
The second example B is on the top right of the figure. The user’s trajectory sequence 1–2 is
in Beijing Forestry University. The user then passes through Jianqingyuan Community
to reach the China Academy of Building Research (3–5). The user then heads toward
the Chinese Academy of Sciences (6–10) and then travels back to the China Academy
of Building Research (ground truth). The third example C is on the bottom left of the
figure. The user’s trajectory sequence 1–4 is initially in Jianqingyuan residential community
(home); after visiting several different places (5–7), the user visits the Chinese Academy of
Sciences to study (8–10) and then returns home (ground truth). The last example D is at the
bottom right of the figure; the user’s trajectory sequences 1–8 are in the Peking University
campus, and the trajectories’ sequence 9–10 and ground truth are in the Tiantongwan
community. Based on this trajectory sequence, we can observe that the user returned home
to rest after finishing his class at Peking University.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 21 of 23

Academy of Building Research (ground truth). The third example C is on the bottom left
of the figure. The user’s trajectory sequence 1–4 is initially in Jianqingyuan residential
community (home); after visiting several different places (5–7), the user visits the Chinese
Academy of Sciences to study (8–10) and then returns home (ground truth). The last ex-
ample D is at the bottom right of the figure; the user’s trajectory sequences 1–8 are in the
Peking University campus, and the trajectoriesʹ sequence 9–10 and ground truth are in the
Tiantongwan community. Based on this trajectory sequence, we can observe that the user
returned home to rest after finishing his class at Peking University.

Figure 15. The visualization examples for location prediction, where (A) traveling around Kunming
Lake, (B) moving from Beijing Forestry University passes through Jianqingyuan Community to
reach the China Academy of Building Research, (C) traveling between home and work and (D)
moving from Peking University campus to Tiantongwan community.

6. Conclusions and Future Work
In this paper, we propose a Self-Attention model for Next Location Prediction based

on semantic mining. We design a semantic matching method, which considers k-nearest
POI, fully considers the spatial features around the stay point and combines sequential
pattern mining to result in richer semantic features. To extract spatiotemporal contexts,
we use Node2vec and Time2vec, which fully consider the interaction of each location and
the periodicity of the time series. Finally, we adopt Self-Attention to capture the spatio-
temporal dependencies to predict the next location. Experiments in Geolife show that the
semantic matching of this study improved by 45.78% in TOP@1 compared with the closest
distance search for POI. In terms of location features and temporal features extraction,
TOP@1 has improved by 0.8% and 3.7%, respectively. Compared with the baseline, the
model proposed in this paper improved by 2.5% in TOP@1, and improved by 5.6% and
5.0% in TOP@5 and TOP@10, respectively. It can be observed that the accuracy and the
improvement rate of the models are quite low, because the location prediction is a classi-
fication problem; the number of classes is determined by the grid covering the study area
(a total of 2211 grids in our study area). Since there are many categories to classify, the
prediction accuracy will be lower.

Figure 15. The visualization examples for location prediction, where (A) traveling around Kunming
Lake, (B) moving from Beijing Forestry University passes through Jianqingyuan Community to reach
the China Academy of Building Research, (C) traveling between home and work and (D) moving
from Peking University campus to Tiantongwan community.

ISPRS Int. J. Geo-Inf. 2023, 12, 420 21 of 22

6. Conclusions and Future Work

In this paper, we propose a Self-Attention model for Next Location Prediction based
on semantic mining. We design a semantic matching method, which considers k-nearest
POI, fully considers the spatial features around the stay point and combines sequential
pattern mining to result in richer semantic features. To extract spatiotemporal contexts, we
use Node2vec and Time2vec, which fully consider the interaction of each location and the
periodicity of the time series. Finally, we adopt Self-Attention to capture the spatiotemporal
dependencies to predict the next location. Experiments in Geolife show that the semantic
matching of this study improved by 45.78% in TOP@1 compared with the closest distance
search for POI. In terms of location features and temporal features extraction, TOP@1 has
improved by 0.8% and 3.7%, respectively. Compared with the baseline, the model proposed
in this paper improved by 2.5% in TOP@1, and improved by 5.6% and 5.0% in TOP@5 and
TOP@10, respectively. It can be observed that the accuracy and the improvement rate of
the models are quite low, because the location prediction is a classification problem; the
number of classes is determined by the grid covering the study area (a total of 2211 grids in
our study area). Since there are many categories to classify, the prediction accuracy will
be lower.

In the future, we plan to mine other semantic behaviors (not only the home and
workplace) and combine them with semantic matching to better understand users’ life
patterns. Given the same reciprocal distance when calculating the semantics of each stay
point, it can reflect the POI features around a stay point; however, some POI categories
with a large number of POIs may occupy most of the weight. In the future, we plan to
control the weight of each POI category through the number of POIs in each category. There
are also some features that were not considered in this study, such as moving distance or
dwelling time; we plan to integrate these features into the model to help the model better
learn contextual features. In addition, it is possible to find better neural network models
to improve prediction accuracy, such as variants of Attention mechanism and variants of
different prediction models (RNN or LSTM). Furthermore, selecting appropriate values
for MinPts and the distance threshold (epsilon) in OPTICS can be challenging. Node2Vec
requires re-computation for each new set of unknown nodes, and we have not addressed
the ‘cold start’ problem in our study. Handling the ‘cold start’ issue will be a part of our
future work.

Author Contributions: Conceptualization, Eric Hsueh-Chan Lu; methodology, Eric Hsueh-Chan Lu
and You-Ru Lin; software, You-Ru Lin; validation, Eric Hsueh-Chan Lu and You-Ru Lin; formal
analysis, Eric Hsueh-Chan Lu and You-Ru Lin; investigation, You-Ru Lin; resources, Eric Hsueh-Chan
Lu; data curation, You-Ru Lin; writing—original draft preparation, Eric Hsueh-Chan Lu and You-Ru
Lin; writing—review and editing, Eric Hsueh-Chan Lu; visualization, You-Ru Lin; supervision, Eric
Hsueh-Chan Lu; project administration, Eric Hsueh-Chan Lu; funding acquisition, Eric Hsueh-Chan
Lu. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Ministry of Science and Technology, Taiwan, R.O.C., grant
number MOST 111-2121-M-006-009- and the APC was funded by Ministry of Science and Technology,
Taiwan, R.O.C.

Data Availability Statement: Restrictions apply to the availability of these data. Data were obtained
from the Geolife dataset and are made available to Zheng, Y., Xie, X. Ma and W. Y. with the permission
of Geolife dataset.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, M.; Han, J. Next Location Recommendation Based on Semantic-Behavior Prediction. In Proceedings of the 5th International

Conference on Big Data and Computing, Chengdu, China, 28–30 May 2020; pp. 65–73.
2. Feng, J.; Li, Y.; Yang, Z.; Qiu, Q.; Jin, D. Predicting Human Mobility with Semantic Motivation via Multi-Task Attentional

Recurrent Networks. IEEE Trans. Knowl. Data Eng. 2022, 34, 2360–2374. [CrossRef]

https://doi.org/10.1109/TKDE.2020.3006048

ISPRS Int. J. Geo-Inf. 2023, 12, 420 22 of 22

3. Wen, S.; Zhang, X.; Cao, R.; Li, B.; Li, Y. MSSRM: A Multi-Embedding Based Self-Attention Spatio-Temporal Recurrent Model for
Human Mobility Prediction. Hum.-Centric Comput. Inf. Sci. 2021, 11, 37. [CrossRef]

4. Fernandes, R.; D’Souza GL, R. A New Approach to Predict User Mobility Using Semantic Analysis and Machine Learning. J. Med.
Syst. 2017, 41, 188. [CrossRef] [PubMed]

5. Jiang, J.; Pan, C.; Liu, H.; Yang, G. Predicting Human Mobility Based on Location Data Modeled by Markov Chains. In Proceedings
of the IEEE Fourth International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services, Shanghai,
China, 3–4 November 2016; pp. 145–151.

6. Xia, Y.; Gong, Y.; Zhang, X.; Bae, H.Y. Location Prediction Based on Variable-order Markov Model and User’s Spatio-Temporal
Rule. In Proceedings of the IEEE Conference on Information and Communication Technology Convergence, Jeju Island, Republic
of Korea, 17–19 October 2018; pp. 37–40.

7. Xia, L.; Huang, Q.; Wu, D. Decision Tree-based Contextual Location Prediction from Mobile Device Logs. Mob. Inf. Syst. 2018,
2018, 1852861. [CrossRef]

8. Al-Molegi, A.; Jabreel, M.; Martínez-Ballesté, A. Move, Attend and Predict: An Attention-Based Neural Model for People’s
Movement Prediction. Pattern Recognit. Lett. 2018, 112, 34–40. [CrossRef]

9. Su, L.; Li, L. Trajectory Prediction Based on Machine Learning. IOP Conf. Ser. Mater. Sci. Eng. 2020, 790, 012032. [CrossRef]
10. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You

Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

11. Wang, S.; Li, A.; Xie, S.; Li, W.; Wang, B.; Yao, S.; Asif, M. A Spatial-Temporal Self-Attention Network (STSAN) for Location
Prediction. Complexity 2021, 2021, 6692313. [CrossRef]

12. Yao, D.; Zhang, C.; Huang, J.; Bi, J. SERM: A Recurrent Model for Next Location Prediction in Semantic Trajectories. In Proceedings
of the ACM on Conference on Information and Knowledge Management, Singapore, 6–10 November 2017; pp. 2411–2414.

13. Zhang, X.; Li, B.; Song, C.; Huang, Z.; Li, Y. SASRM: A Semantic and Attention Spatio-Temporal Recurrent Model for Next
Location Prediction. In Proceedings of the IEEE International Joint Conference on Neural Networks, Glasgow, UK, 19–24 July
2020; pp. 1–8.

14. Ying, J.J.C.; Lee, W.C.; Weng, T.C.; Tseng, V.S. Semantic Trajectory Mining for Location Prediction. In Proceedings of the ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems, Chicago, IL, USA, 1–4 November 2011;
pp. 34–43.

15. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013,
arXiv:1301.3781.

16. Sassi, A.; Brahimi, M.; Bechkit, W.; Bachir, A. Location Embedding and Deep Convolutional Neural Networks for Next Location
Prediction. In Proceedings of the IEEE 44th LCN Symposium on Emerging Topics in Networking, Osnabrück, Germany, 14–17
October 2019; pp. 149–157.

17. Grover, A.; Leskovec, J. Node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864.

18. Xu, S.; Cao, J.; Legg, P.; Liu, B.; Li, S. Venue2vec: An Efficient Embedding Model for Fine-Grained User Location Prediction in
Geo-Social Networks. IEEE Syst. J. 2019, 14, 1740–1751. [CrossRef]

19. Chen, M.; Zuo, Y.; Jia, X.; Liu, Y.; Yu, X.; Zheng, K. CEM: A Convolutional Embedding Model for Predicting Next Locations. IEEE
Trans. Intell. Transp. Syst. 2020, 23, 3349–3358. [CrossRef]

20. Lu, E.H.C.; Lin, Z.Q. Rental Prediction in Bicycle-Sharing System Using Recurrent Neural Network. IEEE Access 2020, 8,
92262–92274. [CrossRef]

21. Kazemi, S.M.; Goel, R.; Eghbali, S.; Ramanan, J.; Sahota, J.; Thakur, S.; Wu, S.; Smyth, C.; Poupart, P.; Brubaker, M. Time2vec:
Learning A Vector Representation of Time. arXiv 2019, arXiv:1907.05321.

22. Xie, M.; Yin, H.; Wang, H.; Xu, F.; Chen, W.; Wang, S. Learning Graph-based POI Embedding for Location-Based Recommendation.
In Proceedings of the 25th ACM International Conference on Information and Knowledge Management, Indianapolis, IN, USA,
24–28 October 2016; pp. 15–24.

23. Cao, H.; Xu, F.; Sankaranarayanan, J.; Li, Y.; Samet, H. Habit2vec: Trajectory Semantic Embedding for Living Pattern Recognition
in Population. IEEE Trans. Mob. Comput. 2019, 19, 1096–1108. [CrossRef]

24. Ye, Y.; Zheng, Y.; Chen, Y.; Feng, J.; Xie, X. Mining Individual Life Pattern Based on Location History. In Proceedings of the IEEE
Tenth International Conference on Mobile Data Management: Systems, Services, and Middleware, Taipei, Taiwan, 18–20 May
2009; pp. 1–10.

25. Chen, C.C.; Chiang, M.F. Trajectory Pattern Mining: Exploring Semantic and Time Information. In Proceedings of the IEEE
Conference on Technologies and Applications of Artificial Intelligence, Hsinchu, Taiwan, 25–27 November 2016; pp. 130–137.

26. Zheng, Y.; Xie, X.; Ma, W.Y. GeoLife: A Collaborative Social Networking Service Among User, Location and Trajectory. IEEE Data
Eng. Bull. 2010, 33, 32–39.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.22967/HCIS.2021.11.037
https://doi.org/10.1007/s10916-017-0837-x
https://www.ncbi.nlm.nih.gov/pubmed/29052021
https://doi.org/10.1155/2018/1852861
https://doi.org/10.1016/j.patrec.2018.05.015
https://doi.org/10.1088/1757-899X/790/1/012032
https://doi.org/10.1155/2021/6692313
https://doi.org/10.1109/JSYST.2019.2913080
https://doi.org/10.1109/TITS.2020.2983647
https://doi.org/10.1109/ACCESS.2020.2994588
https://doi.org/10.1109/TMC.2019.2902403

	Introduction
	Related Work
	Location Prediction
	Feature Extraction

	Problem Statement
	Proposed Method
	System Framework
	Input Features
	Prediction Model
	Temporal Features Extractor
	Location Features Extractor
	Model Structure

	Experimental Evaluation
	Experimental Data and Setting
	Internal Experiment
	Time Interval
	Sliding Window
	Location Feature
	Temporal Feature
	Semantic Feature
	Prediction Model
	User Feature

	External Experiment
	Comparison of Different Methods
	Comparison of Different Methods
	Comparison of Different Sliding Window Sizes
	Comparison of Different Methods on Weekdays and Weekends

	Visualization of Location Prediction Results

	Conclusions and Future Work
	References

