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Abstract: The phenomenon of polarized development among regional cities has sparked extensive con-
templation and indicated a need for research on multi-source regional networks. However, such research
faces two obstacles: the absence of quantitative measurement of differences in network structures and
the lack of a thorough examination of the degree of city clustering and the dynamics of community
composition in hierarchical networks. Thus, we identified 16 cities in the Chengdu–Chongqing Economic
Circle (CCEC) as the spatial units to examine the spatial network structures of population, resources,
and transportation and the integrated spatial network structure. Using social network analysis, this
paper describes the structural characteristics of the three networks (population, resource, and trans-
portation), followed by an analysis of their collective and hierarchical network clustering characteristics,
and explores the driving mechanisms and factors that make up each network model. Our results show
the following: (1) All three networks exhibit an “east dense, west sparse” characteristic, but there are
differences in the layouts of the core cities in terms of the three networks. (2) The clustering characteristics
of the hierarchical networks are more pronounced than those of the overall network. The results of
the analysis combined with the network formation mechanisms can help effectively plan the future
coordinated development of the CCEC.

Keywords: multi-source network; urban structure; hierarchical network; quadratic assignment
procedure

1. Introduction

The organizational structure of urban agglomerations depends largely on highly
developed transportation and telecommunications infrastructure, which can promote and
strengthen the coordinated development of population, resources, environment, society,
and economy in various regional cities [1]. On the one hand, population migration and
material transfer need the support of transportation infrastructure [2]; on the other hand, in
urban agglomerations that have developed economically due to the flow of various factors,
to strengthen economic aggregation further and reduce the gap between the rich and the
poor, the focus on the rational layout of the transportation system must not be reduced. In
the next phase of urbanization development, China will promote the coordinated regional
development and character growth of large, medium, and small cities and towns on the
basis of city clusters and metropolitan areas [3].

The expansion of urban agglomerations often entails challenges, such as inadequate
interconnectivity of infrastructure networks, insufficient intraregional collaboration, widen-
ing developmental disparities among cities, and transboundary pollution of the ecological
environment. These factors lead to unfavorable symptoms that violate the development
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laws of urban agglomerations, such as uneconomical agglomeration and spatial imbal-
ance [4,5]. In the past, mainstream research on these issues mainly focused on the unit
of place space, neglecting the dynamic nature of flows and the interaction of multiple
factors [6,7]. Currently, the spatial perspective of flows has received increasing attention,
and many studies have begun to adopt a “flow thinking” approach to understand the
position of cities in urban agglomerations. Creatively incorporating multiple factors into
urban relationship research, analyzing the development of regional networks and the
coordination and allocation of resources from a multi-source perspective of flow space, and
scientifically formulating optimization strategies have significant practical implications for
future research [8].

The spatial movement of the population is one of the most prominent indicators of
regional spatial connections, and its association with the intercity attractiveness level can
reflect the stage of development of regional urban integration [9]. Population migration
encompasses the individual aspirations of residents and can be categorized into immi-
gration and short-term mobility. With the advent of the Internet and the era of big data,
websites that offer mobile phone signaling data have studied short-term mobility more
efficiently and precisely. These studies mainly focus on residents’ intra- and intercity trips
for different purposes [10,11], compare population movement between working days and
weekends, and compare population movement during the Spring Festival travel rush and
during other periods. These studies solve some problems that census data cannot. The
researchers aim to optimize urban planning and traffic service design by investigating the
spillover phenomenon that occurs after population over-concentration and identifying
urban hotspots and the influence of urban size and structure on the mobility of the urban
population [12].

The intercity industrial input and output process, which involves the flow of material
resources, is a direct reflection of the relationship between cities, with minimal influence
of subjective factors. Numerous studies track and quantify resource flows at global, re-
gional, or national levels. The quantification of copper resource trade evolution and the
analysis of trade competition networks or community evolution based on complex network
analysis can aid in maintaining trade stability and resource security. Additionally, it can
assist resource-rich countries in maximizing export benefits [13]. In particular, to promote
resource recycling, the most basic requirement is to understand the flow of resources in
the economy and society, especially some strategic resources that have a serious impact
on the national economy and people’s lives (e.g., coal, oil, and food) [14]. The current
perspective of logistics research, which is rooted in the capacity of transport services at
the social service level, is considered too narrow. There are some limitations to measuring
the mobility of factors by analyzing urban passenger and freight volumes and calculating
the ratio of each interval to the whole to assess the economic development status on the
basis of relevant information on urban commercial logistics [15]. Novel data sources and
innovative methodologies for structural comparison should be pursued.

Transportation infrastructure has a significant impact on the flow of population and
resources [16,17]. It is believed that improving transportation infrastructure can indirectly
encourage the flow of population, capital, and technology; increase residents’ income [13];
and significantly promote cross-regional consumption, leading to a change in residents’
consumption structure [18]. Economic and production activities are linked through di-
versified transportation or information networks, which optimize resource allocation [1].
Therefore, the research on transportation networks is often not limited to the optimization
and operation management of transportation infrastructure services [19,20] and can be
extended to urban boundary identification, its gain to business activities, cooperation
with information networks, industrial structure optimization, and so on [21–24]. Network
studies based on aviation flow, railway flow, and road passenger flow are conducted using
traffic volume data compiled by the Ministry of Transportation [19,21,22]. Due to the
challenges in unifying units for passenger and freight volume, there are few studies that
combine both passenger and freight transport to jointly analyze the transportation network.
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Space of flows breaks through the limitation of time and space and guides the devel-
opment of the future regional spatial pattern to a certain extent. It addresses issues related
to the intercity flow of elements such as population, goods, capital, and information and
provides spatial solutions for their accommodation [6]. Currently, research on multi-source
urban networks is gaining significant attention within the academic community [25]. Some
studies typically construct networks such as enterprise connections [26], technological in-
novation [27], population migration [28], economy [29], and information [30] and then use
indicators from social network analysis to analyze the spatial characteristics of networks
from the perspectives of city nodes, path connections, and community features. There are
two notable limitations to the methods employed in multi-source urban network research:
First, they primarily subjectively observe and describe differences in network structures but
often neglect to quantitatively measure the degree of structural differences using metrics.
Second, these methods fail to analyze the agglomeration characteristics of the hierarchical
networks, a vital element.

The academic community generally acknowledges that cities in a network have vary-
ing abilities to span geographic distances [31]. As a result, a single indicator, often derived
from attribute data, is typically used to differentiate the hierarchy of nodes [32]. Metrics
such as weighted centrality [33], closeness centrality [34], and betweenness centrality [34]
are commonly employed to measure the hierarchical structure of cities within networks.
However, the strength of connections between nodes and the ability of nodes to control and
interact with others are two significant aspects of network hierarchy [35]. Network hierar-
chy is often determined by single indicators, such as economic rank or administrative level,
but this approach overlooks comprehensive methods for analyzing network hierarchy.

In this study, we first construct three types of networks and describe their characteris-
tics and structural differences using social network analysis and dissimilarity metric. We
then employ a “hierarchical” approach to observe urban agglomeration characteristics in
high- and low-level networks. Finally, we delve into the mechanisms behind network for-
mation. Following a “global-hierarchy-node” framework, we analyze the current state and
potential risks of the CCEC’s coordinated development and propose future development
plans and improvement measures based on these influencing mechanisms.

The remaining sections of the study are structured as follows: Section 2 presents
data sources and methodology. Section 3 further elaborates on the main empirical results.
Section 4 discusses the results. The last section provides conclusions of this research.

2. Materials and Methods

We introduce a methodological scheme that summarizes the procedure used, which
consists of four key steps: (1) construct three types of networks and calculate the network
density (ND), the modularity index (MI), and the dissimilarity metric to identify the
differences in network structures; (2) use weighted centrality to depict the statuses and
functions of cities in different networks; (3) employ the natural breaks methodology to
stratify the overall intercity connections, calculate hierarchical network MI indices to
observe hierarchical differences and use cohesive subgroups to examine the number and
composition of city clusters in the hierarchical networks; and (4) analyze the mechanism
of formation of each network from four perspectives and propose recommendations for
scientific development on the basis of the results.

2.1. Study Area

In 2021, the State Council City and the Central Committee of the Communist Party
of China released the planning outline for the construction of the Chengdu–Chongqing
Economic Circle (CCEC). This document mandates that all regions and departments imple-
ment the plan on the basis of their specific circumstances. As highlighted in the outline, the
CCEC in the region is situated at the junction of the Belt and Road Initiative and the Yangtze
River Economic Belt, linking the southwest and northwest regions and bridging East Asia
and Southeast Asia. The Chengdu–Chongqing region is recognized as the primary foreign
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trade hub in the central and western regions of China, excluding the coastal areas. Figure 1
provides an overview of the study area.
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Figure 1. Location of the study area. This figure was created based on the standard map with plan
approval number GS(2019)1822, and no modifications were made to the base map.

According to the planning outline, the scope of planning of the CCEC includes the
central city of Chongqing and 27 districts (counties), including Wanzhou, Fuling, Qijiang,
Dazu, Qianjiang, Changshou, Jiangjin, Hechuan, Yongchuan, Nanchuan, Bishan, Tongliang,
Tongnan, Rongchang, Liangping, Fengdu, Dianjiang, and Zhongxian, as well as 15 cities
in Sichuan, which are Chengdu, Zigong, Luzhou, Deyang, Mianyang (except Pingwu
and Beichuan counties), Suining, Neijiang, Leshan, Nanchong, Meishan, Yibin, Guang’an,
Dazhou (except Wanyuan), Ya’an (except Tianquan and Baoxing counties), and Ziyang,
with a total area of 185,000 sq. km.

2.2. Data Source and Processing

In this study, we considered 16 cities in the CCEC as the spatial units to examine the
spatial network structure of the population, resources, and transportation and the inte-
grated spatial network structure. The spatial scope of the CCEC is taken from the planning
scope approved by the National Development and Reform Commission. The vector data,
such as the urban administrative center and the administrative boundary, are from the
1:100 million National Basic Geographic Information Database of the National Basic Geo-
graphic Information Center (http://www.ngcc.cn/ngcc/html/1/391/392/16114.html, ac-
cessed on 17 November 2022). We primarily employed the Python programming language
to gather data on Baidu migration (https://qianxi.baidu.com/, accessed on 20 October
2022) in 2021, China’s Multi-Regional Input–Output (CMRIO) table in 2017 [36,37], and
road network data in 2021 from the Open Street Map (https://openmaptiles.org/, accessed
on 20 October 2022).

2.2.1. Population Flow Data

We set the daily Baidu migration data from 1 January 2021 to 31 December 2021. In
2021, China gradually allowed daily commuting, and during this period, the Chengdu–
Chongqing region occasionally implemented lockdown measures for 1–3 weeks due to
localized COVID-19 outbreaks. To mitigate the data fluctuations caused by these contain-
ment measures, the annual data were processed into daily averages in accordance with the
policy impact. The original data consist of the proportion of population migrating from

http://www.ngcc.cn/ngcc/html/1/391/392/16114.html
https://qianxi.baidu.com/
https://openmaptiles.org/
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a specific departure city to a destination city relative to the total population leaving the
departure city. There are 100 data points per city per day. The data were transformed into
an exponential function of human flow on the basis of the research by Wang and Yan [38].
The reasons for selecting Baidu migration data are as follows: First, Baidu releases data
on a daily basis, and for each originating city, the top 100 destination cities are changing
every day. This ensures accuracy via collection of data for the entire year. Second, the
data collection cycle for Baidu migration statistics is 8 h. Compared with the displacement
of individuals for travel, visiting relatives, and other special purposes, the displacement
of individuals with commuting as the purpose during a fixed period can be accurately
recorded in big data collection [39]. Third, to eliminate the influence of special holidays on
migration, we used data from the whole year and standardized the data before calculating
the daily migration flow.

The data include the starting city, the daily list of the top 100 cities of urban migration,
and a total of 93,440 pieces of data. A 16 × 16 spatial correlation matrix was constructed
with cities as the carriers:

TL =

i1
i2
...

in−1
in



j1 j2 · · · jn−1 jn
0 L12 · · · L1(n−1) L1n

L21 0 · · · L2(n−1) L2n
...

...
...

...
...

L(n−1)1 L(n−1)2 · · · 0 L(n−1)n
Ln1 Ln2 · · · Ln(n−1) 0


(1)

where TL represents the population flow matrix between cities. The formula for calculating
specific weight Lij is

Lij =
Mij

3.24
× 105 (2)

Mij = Mi × lij, (i, j = 1, 2, . . . , n; i 6= j) (3)

where Lij represents the population flow between city i and city j; Mi represents the
migration scale index provided by Baidu map migration big data; Mij represents the
migration scale index from city i to city j; and lij represents the mobility weight from city i
to city j.

2.2.2. Resource Flow Data

The resource flow data are retrieved from the 2017 China Multi-Regional Input–Output
(CMRIO) table at the urban scale, which includes 313 administrative units in mainland
China, covering 42 socioeconomic industries and 5 final industries (rural household con-
sumption, urban household consumption, government consumption, capital formation,
and inventory changes) [40]. The study mainly uses the intermediate input table of the
42 industries in each city as the data foundation. First, to investigate intercity resource input,
the inputs between different industries within the same city are removed. Then, the top
5 industries with the most active inputs are selected as the main focus of observation. This
approach has several advantages. First, mature industries with a large market share tend to
experience less volatility due to temporal factors, reducing errors caused by different data
years. Second, while each city may have its dominant industries according to statistical
yearbooks, capital flows can occur in three directions: to other industries within the supply
chain, to other cities within the same industry, and to other industries within the supply
chain in other cities. This study primarily focuses on intercity element flows within the
same industry. Therefore, the data selection is based on the five industries with the highest
flow volumes, aligning with the research objectives.

These industries are construction (CNY 114,675.1 million); food and tobacco (CNY
773,736.49 million); agriculture, forestry, animal husbandry, and fishery industries and
services (CNY 695,555.5 million); chemical products (CNY 554,314.18 million); and finance
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(CNY 534,577.28 million). The initial intercity resource connectivity weights are calculated
by summing up the intermediate inputs for each industry between the 16 cities.

TR =

i1
i2
...

in−1
in


j1
0
R21
...

R(n−1)1
Rn1

j2
R12

0
...

R(n−1)2
Rn2

· · ·
· · ·
· · ·
...
· · ·
· · ·

jn−1
R1(n−1)
R2(n−1)

...
0

Rn(n−1)

jn
R1n
R2n
...

R(n−1)n
0

 (4)

where TR represents the resource flow matrix between cities. The resource connection value
between cities Rij represents the total intercity flow within the five industries.

2.2.3. Transportation Network Data

Transport accessibility is utilized to gauge intercity transit efficiency. At the provincial
level, residents predominantly rely on railways and roadways for traveling. The road
network comprises expressways, national highways, provincial roads, county roads, and
township roads. In accordance with the research conducted by Cai, J, and their colleagues,
values of 120 km/h, 120 km/h, 80 km/h, and 60 km/h are assigned to the railway, ex-
pressway, national highway, and provincial road, respectively. Subsequently, using the
network analysis tools provided by the ArcGIS platform, an intercity travel cost matrix
is computed [41]. The reciprocals of these travel times are then calculated to represent
intercity transportation efficiency as part of the transportation network analysis:

TT =

i1
i2
...

in−1
in


j1
0
T21
...

T(n−1)1
Tn1

j2
T12

0
...

T(n−1)2
Tn2

· · ·
· · ·
· · ·
...
· · ·
· · ·

jn−1
T1(n−1)
T2(n−1)

...
0

Tn(n−1)

jn
T1n
T2n
...

T(n−1)n
0

 (5)

where TT represents the traffic connection matrix between cities. The formula for calculating
the traffic connection value between cities Tij is

Tij = 1/tij (6)

where tij represents the travel time from city i to city j.

2.2.4. Integrated Network Data

After standardizing the original matrices of three sub-networks, i.e., those of popula-
tion, resources, and transportation, and giving them the same weight, the comprehensive
contact matrix is obtained, and its formula is as follows:

T I =

i1
i2
...

in−1
in


j1
0
I21
...

I(n−1)1
In1

j2
I12

0
...

I(n−1)2
In2

· · ·
· · ·
· · ·
...
· · ·
· · ·

jn−1
I1(n−1)
I2(n−1)

...
0

In(n−1)

jn
I1n
I2n
...

I(n−1)n
0

 (7)

Iij = L′ij + R′ij + T′ij (8)
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where T I represents the comprehensive contact matrix; Iij represents the integrated connect
value; and L′ij, R′ij, and T′ij represent the population flow value, the resource contact value,
and the traffic contact value, respectively, standardized by a matrix for edge values.

2.3. Methodology
2.3.1. Measurements of Network Structure and City Characteristics

(1) Network Density

Network density refers to the closeness of connections between cities. The greater the
ND, the better the overall connectivity of the network. Its formula is

ND =
n

∑
i=1

n

∑
j=1

di
(
ci, cj

)
/n(n− 1), (i 6= j) (9)

where ND represents the network density, n represents the number of node cities, and
di
(
ci, cj

)
is the amount of connection between cities ci and cj. The greater the D, the greater

the density of the network and the closer the connections between cities.

(2) Dissimilarity Metric

The dissimilarity metric is calculated to show the degree of similarity or difference be-
tween K-layer and K′-layer networks. Notably, the dissimilarity metric is a quantitative and
effective measure for comparing a multiplex network [42,43]. The structural dissimilarity
can be measured on the basis of the link-weighted-based difference and the connection-
based difference. According to Zhang, the node dissimilarity can first be computed using
the node’s probability distribution vector [44]. The whole network difference between two
networks is then obtained on the basis of differences between all nodes [45].

Specifically, we first convert the weights of networks to obtain a new value (PWk
ij).

PWk
ij =

wk
ij

Sk
i

, and Sk
i =

N

∑
j=1

wk
ij, (i, j = 1, 2, . . . , N, i 6= j) (10)

PCk
ij =

dk
ij

Dk
i

, and Dk
i =

N

∑
j=1

dk
ij, (i, j = 1, 2, . . . , N, i 6= j) (11)

where N represents the number of cities (N = 16), and wk
ij represents the connection weight

from city i to city j. Sk
i represents the sum of the weights associated with the city. Dk

i is the
number of chains associated with the city; if city i is related to city j, then dk

ij = 1, otherwise,

dk
ij = 0.

We then calculate the dissimilarity between cities in different networks:

WNDKK′
i =

1√
2

√√√√ N

∑
j=1

(√
PWK

ij −
√

PWK′
ij

)2
(12)

CNDKK′
i =

1√
2

√√√√ N

∑
j=1

(√
PCK

ij −
√

PCK′
ij

)2
(13)

where WNDKK′
i and CNDKK′

i represent two metrics, weighted-based dissimilarity and
connection-based dissimilarity, for city i between K-layer and K′-layer networks.
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Finally, the whole network metrics of the weighted-based dissimilarity (WBDKK′ ) and
the connection-based dissimilarity (CBDKK′ ) between K-layer and K′-layer networks are
calculated, respectively, as

WBDKK′ =
N

∑
i=1

αKK′
i WNDKK′

i , and αKK′
i =

WKK′
i

∑n
j=1 WKK′

j
(14)

CBDKK′ =
N

∑
i=1

βKK′
i CNDKK′

i , and βKK′
i =

DKK′
i

∑n
j=1 DKK′

j
(15)

WKK′
i =

√
WDCK

i •WDCK′
i (16)

DKK′
i =

√
DCK

i • DCK′
i (17)

where WBDKK′ ∈ [0, 1], CBDKK′ ∈ [0, 1], and WKK′
i and DKK′

i represent the geometric
means of the weighted centrality of cities separately.

(3) Weighted Centrality

To reveal the centrality of cities in the network, weighted centrality measures the
absolute strength of a city in the network, and a higher value indicates a stronger absolute
strength of the city in the network. In this paper, we choose the weighted centrality WDCi
as the primary measurement index of small-scale networks:

WDCout
i =

n

∑
i=1

Tij (18)

WDCin
i =

n

∑
j=1

Tji (19)

WDCi = WDCout
i + WDCin

i (20)

where WDCout
i is the weighted outdegree of city i and the weighted indegree of city i.

2.3.2. Network Cluster Analysis

(1) Modularity

Modularity is an optimization algorithm based on multi-level spatial networks. It can
be used to quickly and accurately discover the community and describe the intimacy of
the community, and it is one of the best community discovery algorithms [46]. The MI is
calculated by comparing the ratio of intracommunity flows in the actual network to the
ratio in a random network [47].

MI =
1

2m∑
ij

(
Aij −

kik j

2m

)
δ
(
ci, cj

)
(21)

where Aij is the weight of edge between cities i and j, m = 1
2 ∑ij Aij represents the total

weights in the whole network, ki = ∑ij Aij represents the total weights of the edges
connected with city i, ci is the community to which city i is assigned, and δ

(
ci, cj

)
equals 1

when ci = cj and 0 when ci 6= cj. A larger MI indicates better performance in the division
of communities.

(2) Cohesive Subgroup

Several small, tightly connected, and synergistic groups are often generated in the
network structure of urban agglomerations [48]. When cohesive subgroups are in the
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network, the actors within the community are closely connected and interact frequently in
terms of resource flow and information exchange [49]. In SNA, cohesive subgroup analysis
is widely adopted for subsets of networks with relatively strong, tight, frequently, or
actively connected nodes [50]. The model empowers us to detect potential subcommunities
or subgroups in the network. A cohesive subgroup is accomplished by UCINET software in
the network of the University of California, Irvine [51]. To focus on observing the reciprocity
of population and resource networks at high and low levels and the accessibility of the
transportation system, the connection is divided into high and low levels by combining
the natural breaks methodology in ArcGIS, and then binarization and standardization are
carried out to conduct clique and N-clique, respectively.

2.3.3. Driving Mechanisms of Networks

The quadratic assignment procedure (QAP) compares the similarity between the lattice
values of one matrix and multiple matrices on the basis of the permutation of relational
matrices and provides the correlation coefficient and the regression coefficient [47]. The
difference between the QAP model and other standard statistical programs is that the
values of matrices are not independent, which prevents the multicollinearity problem
in traditional multiple regression models and effectively reduces the influence of errors.
When selecting urban attribute indicators as explanatory variables in this article, we bear
in mind that they are not entirely independent of each other. Therefore, choosing the QAP
model to explore the network formation mechanism is more appropriate. The models of
population network, resource network, and transportation network are explained in this
paper as follows:

Yi = a0 + a1x1 + a2x2 + . . . + anxn (22)

where Yi represents the urban contact matrix, i = 1, 2, 3; a0 is a constant; a1 − an are the
regression coefficients; and x1 − xn are the explanatory factors of the correlation matrix.

According to Zhu, Cui, Zhang, and Wang [44,45,47,52], the factors that affect network
relations are usually divided into four levels (Table 1): economic development difference,
the difference in urbanization development, policy differences, and geographical factor.

Table 1. Explanation and sources of influencing factors.

Level Abbreviation Variable Explanation or Source

Economic

PG GDP per capita Statistics Yearbook

SPG square of GDP per capita

Economic disparities can promote the formation of urban
relationships, but beyond a certain limit, they can hinder

relationship development. SPG represents the square of per
capita GDP and is used to observe the impact of excessive

economic disparities on the network [47].

TI ratio of tertiary industry GDP
to regional GDP

TI represents the proportion of the tertiary industry’s gross
domestic product (GDP) to the total regional GDP for the

current year. It is used to gauge the importance of the
service sector within the urban economy [9].

FAI fixed assets investment Statistics Yearbook

Urbanization
development

UR urbanization rate

Urbanization rate refers to the proportion of the urban
population to the total population, typically expressed as a
percentage. Cities with a higher urbanization rate tend to

have relatively more developed infrastructure and
employment opportunities.

RP resident population Statistics Yearbook
UCD urban construction degree Statistics Yearbook

W average wage The greater the disparity in average wages, the more likely
it is for cities to be interconnected [53].
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Table 1. Cont.

Level Abbreviation Variable Explanation or Source

Policy

UO urban openness The degree of urban openness is represented by the amount
of foreign direct investment in each city.

PS policy similarity

Using public budget expenditures to calculate policy
similarity, this paper posits that when the public budget

expenditures of two cities exhibit regional similarities, they
share certain commonalities in policy planning [52].

UC urban cooperation

Urban cooperation refers to the number of relevant policies
in 2021 when searching for two cities as keywords on the
official website of the National Development and Reform

Commission [25].

Geographical
factor

P provinces

According to the section to which the city belongs, Sichuan
Province is assigned a value of 1, and Chongqing, as a
municipality directly under the Central Government,

should be given a value of 0 [47].

GA geographical adjacency Adjacent cities to the specified city are assigned a value of 1,
while others are assigned a value of 0 [39].

3. Results
3.1. Characteristics of Networks
3.1.1. Overall Characteristics of Networks

After standardizing and calculating the mean values of population migration, resource
flow, and traffic efficiency value among cities in the CCEC, an integrated network of the
CCEC can be obtained. In this paper, population migration is regarded as the flow of labor
resources and is combined with the efficiency of intercity traffic to analyze the differences
in the structure of human and material flow networks. The different cyberspace structures
are as follows.

According to the comprehensive attributes of the population, resource, and transporta-
tion networks (Table 2), although all the networks have achieved full coverage of 240 links,
the degree of clustering of each network is obviously different. Specifically, the MI in each
network, ranked in descending order, is transportation > population > resource. Nonethe-
less, the integrated network does not exhibit pronounced agglomeration characteristics,
implying heterogeneity in terms of the cohesive communities, participating members, and
levels of involvement across the diverse networks. The network and weighted centrality
are hierarchically classified according to the natural breaks methodology, and the results
are shown in Figure 2.

Table 2. General genus of intercity elements of different networks.

Type ND MI

Population 1.000 0.094
Resource 1.000 0.021

Transportation 1.000 0.127
Integrated 1.000 0.000

It is observed that the pattern of element flows is analogous: (1) A multi-center network
structure is formed. All three networks have at least one core city and two to four sub-center
cities. These cities play a crucial role in efficiently managing human and material resources
within the region. With a well-established transportation infrastructure, they are able to
effectively allocate resources across the region. Chengdu stands at the core of all networks,
with its connection weight representing a significant share of the overall network, ranging
from 32.09% to 63.46%. (2) The intercity connections exhibit a “west dense, east sparse”
pattern, and when compared to the close connections of Chongqing and its surrounding
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regions, the Chengdu-centered Chengdu–Mianyang–Leshan Development Belt holds a
special position in all three networks. Chongqing and its surroundings have not yet formed
a strong influential network layout, especially in the resource network, where Chongqing
holds a peripheral position.
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Figure 2. Different network spatial structures. (a) Weighed centrality and connection weight in
the population network. (b) Weighed centrality and connection weight in the resource network.
(c) Weighed centrality and connection weight in the transportation network. (d) Weighed centrality
and connection weight in the integrated network. Notes: The sizes of the nodes correspond to
the levels of weighted centrality, and the colors of the connecting lines correspond to the levels of
connection weight, with the number in parentheses indicating the number of cities or connections
included in that level.
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In addition to the aforementioned apparent similarities, there are certain distinctions
across networks. (1) The arrangement of central and peripheral cities varies across distinct
networks. Within the population network, Chongqing, Meishan, and Deyang emerge as
sub-centers orbiting the central city of Chengdu. The resource network distinctly exhibits
a “triple-core” structure, with the central cities being Nanchong, Yibin, and Chengdu,
accompanied by secondary centers, such as Mianyang and Dazhou. The transportation
network includes the Chengdu–Mianyang–Leshan Development Belt and the Chengdu–
Ziyang–Neijiang Corridor, highlighting a distribution of cities in both north–south and
east–west directions. (2) All four networks exhibit a network structure dominated by
multiple centers and aided by several cities, but they differ in their hierarchical layout
structure. Apart from the population network, in the other two networks, cities classified
into the same level based on weighted centrality are most numerous in the second and
third levels, forming a “shuttle” structure. In the population network, there are seven cities
allocated to the fourth level, displaying a “dual-core” structure overall, with the middle
and lower levels comprising 75% of the total cities. The dual-core structure, consisting of
Chengdu and Chongqing, displays the characteristics of outward radiation from the core,
with insufficient communication intensity among non-core cities, indicating a “pyramid”
structure (a narrow upper part and a wider lower part). This development model may
lead to an increase in isolated nodes on the periphery of the city [26]; a network structure
centered on three to four cities exhibits a shuttle shape (in resource and transportation
networks), which makes it less prone to excessive concentration of elements flowing to
upper and lower levels. Mid-level cities mostly have a certain ability to gather resources,
while only two cities at the edge of the network are isolated. This form provides stability to
the network.

To quantify the similarities or differences in characteristics between the two networks,
we use the dissimilarity metric to calculate the network structure as per the research method
of Gao [45] (Table 3). The dissimilarity metric in network structure is composed of the WBD
and the CBD.

Table 3. WBD and CBD between three networks.

WBD CBD

Population Resource Transportation Population Resource Transportation

Population 0.000 0.148 0.116 0.000 0.000 0.000
Resource 0.148 0.000 0.115 0.000 0.000 0.000

Transportation 0.116 0.115 0.000 0.000 0.000 0.000

Overall, considering the extent and significance of connections, the WBD is typically
more significant than the CBD, thus better reflecting the disparities between networks. The
population and resource networks exhibit the greatest difference, with a value of 0.148,
while the difference between the traffic network and the population network is 0.115, and
that between the traffic network and the resource network is 0.116.

Specifically, the traffic network serves as a conduit for the intercity flow of population
and material resources. This fact, despite differences in the direction and magnitude of
population and resource flows, results in relatively insignificant disparities between these
two networks and the traffic network. The population and resource networks exhibit
vastly different network structures and city hierarchy layouts. In the process of resource
transfer, labor resources tend to be concentrated in Chengdu and Chongqing, while material
resources tend to be concentrated in Chengdu, Nanchong, and Yibin. The population
network leans more toward an overall network formed by the Chengdu–Mianyang–Leshan
Development Belt and Chongqing, radiating outward. On the other hand, the formation
of the resource network is influenced by local supply relationships, market supply and
demand, industrial structure, and the nurturing of dominant industries, making the factors
influencing it more complex.
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3.1.2. Node Characteristics of Cities

In order to investigate the hierarchy of cities in the intercity factor flow, the weighted
indegree and the weighted outdegree of the network are calculated.

(1) The internal and external balance of the city: In Figure 3, the weighted indegree and
the weighted outdegree exhibit a positive correlation, with a correlation coefficient of 0.930
(p value = 0.000). The differences among cities in terms of weighted indegree and outdegree
values are absolute-valued and classified on the basis of the natural break methodology.
In the population network, cities exhibited a balanced inflow–outflow with minimal dis-
parities in distribution activity in different directions. In the resource network, Chengdu,
Deyang, and Luzhou followed a “higher in, lower out” pattern, while Nanchong, Dazhou,
Meishan, and Neijiang displayed a “higher out, lower in” pattern. In the transportation
network, Deyang and Mianyang showed mismatched in–out characteristics, indicating
differences in the efficiency of flow direction.
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Figure 3. Comparison of weighted indegree and weighted outdegree. Notes: Using the natural break
methodology, the weighted centrality is categorized into high-value (group B) and low-value (group
A) groups. The red line is the balance line of weighted outdegree and weighted indegree, and the blue
line is the fitting curve of the two degrees. The annotation of special points indicates the abbreviation
of the city and the type of element, where R, T, and I, respectively, represent resources, transportation,
and integration.

(2) Overall characteristics of the network: Combining the box plot (Figure 4), Chengdu
holds an absolute central position within the region, while the other cities have not yet
established a coordinated relationship between population, resource transfer, and trans-
portation accessibility conditions. There are significant inter-group differences among them.
However, there are also special points in Chengdu whose weighted outflow in the resource
network is much smaller than other indices. Therefore, Chengdu has centralized control
over resources to a certain extent, which may even cause the phenomenon of “siphoning.”
Chongqing does not play a special role in the comprehensive network due to the huge
gap in its ability to transfer human and material resources. Comparatively, the compre-
hensive influence ability of Yibin is better, enhancing its ability to attract talent and thus
strengthening its position in the population network. When a coordinated development
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model is being formed, Yibin will be expected to become the deputy central city of CCEC
development. Therefore, in the sustainable development of urban agglomerations, Yibin
is important when identifying the formation mechanism of the network and carrying out
regional coordinated planning in order to address the shortcomings.
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Figure 4. Weighted centrality box diagram of different network cities. Notes: The special points are
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3.2. Agglomeration Analysis of Networks

We utilize the natural break methodology and the modularity in Gephi software
to divide the urban community structure to reflect the spatial agglomeration effect of
population, resource, transportation, and integrated networks. The urban clustering degree
(MI) and its contraction subnet are shown in Table 4 and Figure 5.

Table 4. MI in deference hierarchies.

Population Resource Transportation Integrated

Level 1 0.000 0.226 0.446 0.142
Level 2 0.000 0.233 0.543 0.305
Level 3 0.456 0.177 0.302 0.229
Level 4 0.321 0.202 0.094 0.155
Level 5 0.199 0.134 0.000 0.170
Overall 0.094 0.021 0.127 0.000

The population, resource, and transportation networks display pronounced effects of
regional agglomeration, as evidenced by their respective overall clustering coefficients of
0.094, 0.021, and 0.127. There are notable variations in the quantity and spatial arrangement
of cities in the hierarchical community structure. The average value of MI in the levels 1 to
5 hierarchical networks is generally higher than that of the overall network, indicating that
dividing the overall network into hierarchical levels and subsequently identifying commu-
nities can lead to a deeper exploration of city relationships within the same hierarchical
level. Furthermore, the agglomeration features of cities in levels 2 and 3 are significantly
greater than those in levels 1 and 4, with level 5 ranking at the bottom. To examine the
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interdependence of population and resource networks at different hierarchical levels and
the accessibility of transportation systems, the connections are classified into high and low
groups using a combination of the natural breaks methodology. Then, binarization and
standardization are conducted to conduct clique and N-clique (Figure 6).
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The findings indicate that the high and low levels in the three networks exhibit distinct
characteristics.

(1) The absence of a clustering ability in high-level networks implies a deficiency in
community among cities, resulting in restricted opportunities for mutual benefit. In the
high-level networks of resources and transportation, there are indeed closely connected
small communities. In the resource network, two relatively tight groups have formed,
one consisting of five cities (Ziyang, Ya’an, Dazhou, Meishan, and Neijiang) and one
consisting of three cities (Chengdu, Nanchong, and Suining). Cities within these groups
not only support high-intensity resource distribution among themselves but also have
a profound impact on cities outside the communities. In the high-level transportation
network, there are also two distinct community structures. Three cities, Chengdu, Ziyang,
and Neijiang, form one community, while four cities, Mianyang, Deyang, Meishan, and
Leshan, constitute another. Unlike the high-level resource network, these communities
tend to align with neighboring cities when forming, and their ability to overcome distances
is not particularly pronounced.

However, the high-level population network does not exhibit urban agglomeration
characteristics. This indicates that there are issues with the current distribution of popula-
tion in the region. While the excessive concentration of the population in Chengdu may
have driven consumption and economic development at a certain point, it is likely to lead
to problems such as housing shortages, traffic congestion, and declining environmental
quality in the future. Conversely, for peripheral cities, excessive population outflow may
have a negative impact on their economic development. These cities need to attract talent
and investment to propel their own development.
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Figure 6. Analysis of cohesive subgroups. Notes: The nodes on the left of the dendrogram represent
16 cities and extend to clustering nodes on the right, where the length of the links represents the
relative distance between cities. All cities connected to the same node can be classified as a community.
The community with the shortest relative distance belongs to all communities.

(2) While the influence of lower-level intercity element flows may be limited, the
close community relationships they form can facilitate the export and transfer of elements,
playing an equally vital role in helping cities withstand crises and develop resilience.
Peripheral cities that lack large-scale resources and markets often need to rely on these
small communities for their development. The low-level population network forms two
distinct community structures, a smaller one consisting of Dazhou, Zigong, Yibin, and
Luzhou and a larger one that includes the former cities along with Ziyang, Ya’an, Meishan,
Nanchong, Leshan, Neijiang, Suining, Mianyang, and Deyang. While Chengdu holds
an absolute central position in the overall population network, its role in driving the
surrounding cities is not prominently displayed. In the layered network considering
mutual capabilities, Chengdu’s absolute position disappears.

The resource low-level network only forms a small community consisting of Chongqing,
Zigong, and Luzhou, while the transportation network does not exhibit any city clustering
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characteristics. They are more susceptible to the distance decay effect. Chongqing is close
to Zigong and Luzhou, allowing for some degree of element replacement. However, in the
transportation network, peripheral cities located at the endpoints with low transportation
efficiency face challenges in overcoming geographical distances for trade or cooperation
unless they rely on core cities or large communities. This is reflected in longer travel times
and reduced efficiency in transportation.

3.3. Driving Mechanisms of Networks

After analyzing the three types of network structures and their respective clusters in
the CCEC, this paper aims to investigate the factors that determine the strength of network
connections. The QAP model can help avoid issues of multicollinearity that arise in many
standard statistical methods, such as OLS, and it can also address the problem of correlated
independent variables.

3.3.1. Correlation Analysis

In this study, the population network, the resource network, the transportation net-
work, and 13 difference matrix data were randomly arranged 5000 times using UCINET
software. Table 5 shows the correlation coefficients between the three networks and the
factors influencing them. It is worth noting that the resource network is influenced only by
TI and not by other factors, which may limit the explanatory power of this model for that
specific network.

Table 5. Correlation results of factors influencing the networks in the CCEC.

Variables Population Resource Transportation

PG 0.031 * 0.258 0.160
SPG 0.508 * 0.302 0.189 *
TI 0.030 * 0.478 ** 0.216

FAI 0.412 −0.038 −0.002
UR 0.005 *** 0.300 0.302 ***
RP 0.064 0.060 0.147

UCD −0.024 0.004 −0.057
W 0.064 0.019 0.096

UO 0.002 *** 0.480 0.272 *
PS 0.281 0.005 0.107
UC 0.014 * 0.103 0.077
P 0.062 0.251 0.011

GA 0.270 *** −0.085 0.537 ***
Note: ***, **, and * represent significance at the levels of 0.5%, 1%, and 5%, respectively.

On the basis of the degree of correlation and significance through testing, the population
network incorporates PG, SPG, TI, UR, UO, UC, and GA indices into the QAP regression
model. The resource network, for now, has only passed the significance test for TI, and
additional influencing factors will be added in subsequent analyses. As for the transportation
network, only SPG, UR, UO, and GA have shown significance through testing.

3.3.2. QAP Regression Analysis

QAP regression analyses were conducted on the population and transportation net-
works on the basis of the impact factors that passed the hypothesis test (Table 6). UCINET
software was used, and 2000 random matrix permutations were selected. For the resource
network, it is advisable to re-evaluate the model’s explanatory power after filtering out
other influencing factors.
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Table 6. Regression results of factors influencing the networks in the CCEC.

Network Variables Unstandardized
Coefficient

Standardized
Coefficient Significance

Population

GA 0.327 0.261 0.000 ***
UC 0.293 0.146 0.021 *
UO 0.871 0.898 0.000 ***
SPG −0.072 −0.029 0.515
PG −0.158 −0.057 0.498
TI −0.09 −0.039 0.693
UR −0.21 −0.107 0.837

Transportation

GA 0.297 0.520 0.000 ***
UO 0.090 0.204 0.125
SPG −0.155 −0.137 0.163
UR 0.174 0.194 0.142

Note: ***, and * represent significance at the levels of 0.5%, and 5%, respectively.

The QAP regression model was built for the population network, and the R2 and
adjusted R2 were found to be 0.729 and 0.722, respectively, indicating that the model
can effectively explain the formation of the population network. The findings indicate
that there is a higher frequency of labor transfer between cities that share borders, with
a standardized influence effect coefficient of 0.261 and a significant positive correlation
between spatial connection at the 0.5% level. The degree of urban openness exhibited a
significant positive correlation with an influence coefficient of 0.898 at the 0.5% significance
level. The urban cooperative relationship positively impacts the population network and
passed 5% significance tests, with an impact coefficient of 0.146. When cities establish trade
and investment relations, they tend to attract more capital investment and create additional
employment opportunities, which stimulates migration activities.

In the explanatory model, the R2 and adjusted R2 for the transportation network
are 0.368 and 0.360, respectively. Transportation infrastructure is more easily established
between neighboring cities. While urbanization rates and the degree of urban openness are
significantly positively correlated with transportation accessibility, a large gap in economic
strength (SPG) acts as an obstacle to transportation connections. However, compared to
geographical factors, these factors are not as significant.

3.3.3. Improvement of the QAP Model

It is noteworthy that only the tertiary industry appears to have an impact on the
resource network. Further exploration of this aspect would certainly be meaningful. Related
studies on inter-industry output interactions have been conducted using industry structure
theory, economic growth theory, and economic cycle theory [54]. For instance, Zhao
and colleagues conducted a study using China’s input–output table for 1998, 2003, and
2008 and discovered a consistent positive correlation between productivity growth of
resource-intensive, labor-intensive, and capital-agglomeration industries with productivity
linkage [55]. Hence, drawing on the industry productivity linkage theory, this study
employs intercity capital flows across 37 industries to explicate the resource network
consisting of capital flows in construction, food and tobacco, agriculture, forestry, animal
husbandry, and fishery industries and services; chemical products; and finance industry.
We screen out the relevant factors through QAP correlation as follows (Table 7).
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Table 7. Related factors of the resource network.

Variables Coefficient Significance

Textile, clothing, footwear, leather, down and their products 0.175 0.047 *
Wood processing and furniture 0.412 0.018 *

Paper printing and cultural, educational, and sporting products 0.244 0.028 *
Non-metallic mineral products 0.22 0.016 *

Metal smelting and rolling processing products 0.373 0.003 ***
Other manufacturing products 0.175 0.031 *

Electricity and heat production and supply 0.205 0.031 *
Gas production and supply 0.326 0.003 ***

Wholesale and retail 0.566 0.001 ***
Transportation, warehousing, and postal services 0.559 0.002 ***

Accommodation and catering 0.602 0.002 ***
Information transmission, software, and information

technology services 0.457 0.029 *

Real estate 0.511 0.015 *
Leasing and business services 0.536 0.021 *

Water conservancy, environmental, and public facility
management 0.398 0.004 ***

Residential services, repair, and other services 0.636 0.000 ***
Education 0.532 0.000 ***

Health and social work 0.459 0.001 ***
Culture, sports, and entertainment 0.434 0.031 *

Public administration, social security, and social organizations 0.325 0.01 **
Note: ***, **, and * represent significance at the levels of 0.5%, 1%, and 5%, respectively.

After augmenting the initial set of 20 factors with TI that passed the significance
test, a QAP regression analysis was performed (Table 8). The resulting R2 of 0.482 and
the adjusted R2 of 0.434 indicate that the model can provide a strong explanation for the
mechanism of resource network formation.

Table 8. Result of the improvement of the QAP regression model.

Variables Standardized
Coefficient Significance

Wood processing and furniture 0.037 0.177 *
Paper printing and cultural, educational, and sporting products −0.071 0.167 **

Electricity and heat production and supply 0.155 0.565 *
Information transmission, software, and information technology services −0.172 0.204 ***

Water conservancy, environmental, and public facility management 0.199 0.323 *
Public administration, social security, and social organizations −0.650 0.234 ***

Note: ***, **, and * represent significance at the levels of 0.5%, 1%, and 5%, respectively.

Public administration, social security, and social organizations have the most profound
impact on resource flow (−0.650), followed by water conservancy, environmental, and
public facility management (0.199). Industries with supply and demand relationships will
exhibit some positive mutual influence. The wood processing and furniture industries have
a certain supply relationship with the construction industry, while they have a demand
relationship with, for example, agriculture, forestry, animal husbandry, and fishery indus-
tries and services. The construction industry requires a stable supply of electricity, while
the chemical products industry; the food and tobacco industry; and agriculture, forestry,
animal husbandry, and fishery industries and services require the operation of produc-
tion equipment or cold-chain transportation. Therefore, electricity and heat production
and supply play a positive facilitating role in these industries. The water conservancy,
environmental, and public facility management industry and the construction industry
both serve infrastructure development. The growth of the construction industry drives the
development of the water conservancy, environmental, and public facility management
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industry. Simultaneously, the water conservancy, environmental, and public facility man-
agement industry regulates the water supply and wastewater treatment processes in the
food and tobacco industry and irrigation in agriculture, forestry, animal husbandry, and
fishery industries and services, as well as production and waste treatment in the chemical
products industry. Therefore, investment in the water conservancy, environmental, and
public facility management industry will create a favorable living environment for these
industries.

However, the paper printing and cultural, educational, and sporting products indus-
tries; information transmission, software, and information technology services; and public
administration, social security, and social organizations industries do not have prominent
upstream and downstream relationships with the construction industry; food and tobacco,
agriculture, forestry, animal husbandry, and fishery industries and services; finance; and
chemical products industries. This impedes their development when capital is invested in
these industries, leading to a significant negative impact.

4. Discussion

Conducting a comparative analysis of networks across various levels within a region
is important for promoting integration and development. To understand the structural
characteristics of spatial networks and the clustering status of urban communities, in this
study, we evaluated the differences among the three network structures and delved into
the polarization features of cities. Additionally, the potential influencing factors of the three
networks were explored. We found the following.

(1) At the population level, Chengdu has a siphoning effect on the surrounding areas.
While Chengdu occupies an absolute central position in the population network, it does
not exhibit any significant associated communities in both high- and low-level networks.
This suggests that although Chengdu is a hub for regional talent distribution, its outward
mutualistic capacity is limited, primarily demonstrating an inward attraction (Figures 2
and 6). This concentration of labor force may have a negative impact on the economic
development of surrounding areas, possibly due to a siphoning effect, where Chengdu
attracts labor from surrounding areas, leaving them with fewer resources and opportunities
for economic development [9]. The resource network exacerbates this characteristic of
Chengdu, with the imbalanced nature of resource inflows and outflows further highlighting
that Chengdu does not exhibit “mutualism” in terms of resources (Figure 4).

(2) The cities have not yet reached a state of coordinated and sustainable development.
When urban clusters reach a certain level of development, such as the Yangtze River
Delta region, excessive economic disparities can have a negative impact. In contrast to
what has been discussed in other studies [26], economic factors such as PG, SPG, and
TI exhibit a positive correlation with population activities in the CCEC (Table 5), with
SPG even accounting for 0.508, surpassing the influence of geographical factors (0.270).
This further suggests that in the CCEC, most cities do not exhibit significant economic
disparities, and they are all positioned at a lower hierarchy level. Their potential for
external influence and their susceptibility to the influence of core cities are relatively
small. Furthermore, transportation infrastructure significantly diminishes the impact of
geographical distance. For example, the logistics network in the Yangtze River Delta region
is less affected by geographical distance compared to the Pearl River Delta and the Beijing–
Tianjin–Hebei urban cluster [56]. In more harmoniously developed urban clusters, with the
improvement of transportation conditions, the influence of geographical factors tends to
diminish. However, the CCEC has not yet reached this favorable developmental state.

(3) To improve this situation, we should begin by examining the mechanisms behind
network formation (Tables 6 and 8). Policies that enhance a city’s openness to foreign in-
vestment and actively foster cooperation with other cities can help non-core cities improve
living conditions and attract labor. Second, building and enhancing intercity industrial
chains, developing supply and demand relationships, reducing market competition among
cities with similar industries, and promoting corporate cooperation and industrial inte-
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gration among cities can guide the rational allocation of resources and prevent excessive
concentration. Similarities in neighboring cities can give rise to a competitive relationship
that undermines the coordinated development of urban agglomerations. As a result, actual
capital flows are more likely to occur across different industries rather than among different
cities within the same industry [57]. Thus, it is important to avoid industrial homogeneity,
which might lead non-core cities to lose their advantageous positions in terms of network
connectivity depth.

This paper will help in the following ways. First, this study is unique in that it
compares different networks on the basis of the CCEC. Such comparison is not common
in network structure analysis. This section is augmented by calculating the dissimilarity
between different network structures, and the quantitative analysis results reduce the errors
caused by subjective judgment in previous network comparisons. Second, the concept of
hierarchy will help research in related fields. We found that hierarchical networks exhibit
more clustered or dispersed features than whole networks (Table 4). This enriches the
research methods of hierarchy theory and complements the theory of connection strength
structure in addition to nodal hierarchy [35]. Building upon the highlights of this paper,
future research could be considered in the following directions. First, future research
could focus on the purpose of travel and comparison of passenger and freight flows.
Currently, migration data cannot identify the reasons residents travel, often focusing solely
on passenger flows and neglecting freight flows. Research on transportation networks
should encompass the movement of both people and goods. When both can be accurately
identified, urban networks will be explored from a more multi-source perspective, allowing
for a deeper understanding of the underlying patterns in urban development. Second, the
construction of a coupled model for multi-source urban networks should be considered.
The development of big data technology has expanded the availability and depth of
research data. Integration of multi-source urban networks with coupled models brings
new research perspectives characterized by directionality and flow within urban networks.
Simultaneously, coupled models offer more scientifically sound methods for assessing
urban coordination in multi-source networks, enabling a quantitative description of urban
cluster development evaluations.

However, it is essential to acknowledge the limitations of this study. (1) Inconsistent
data years: The data used in this study come from various sources, and there is a lack
of uniformity in data years. For instance, the resource network is based on 2017 input–
output tables, which may not align with data from other sources. This inconsistency could
introduce analytical errors. (2) Data year selection: Many of the data years fall within
the period of the COVID-19 pandemic, including lockdown and post-lockdown phases.
While daily averages are calculated for yearly data, variations in pandemic control policies
across regions could lead to data fluctuations that are challenging to differentiate or isolate.
Future research might benefit from collecting more refined data. These limitations should
be considered when interpreting the findings and designing future studies.

5. Conclusions

In this study, we constructed three types of networks: population, resource, and
transportation. Differences in network structures, urban statuses, and inflow–outflow
balance mechanisms, and urban hierarchical network clustering characteristics were studied
using methods such as network structure dissimilarity, weighted centrality, modularity,
and cohesive subgroups. Additionally, the QAP model was used to analyze the driving
mechanisms of the three networks. The conclusions are as follows.

(1) The network structure centered around the Chengdu–Mianyang–Leshan Develop-
ment Belt plays a significant role in various networks, even dominating the “west dense,
east sparse” feature across these networks. The trends and network structures of pop-
ulation and resource networks are entirely different (WBD = 0.148). In comparison, the
differences between the population and resource networks and the transportation net-
work are not significant (WBD = 0.116 and 0.115, respectively). The resulting hierarchical
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patterns can be classified into two types: pyramid (population network 1:3:4:7:1) and shut-
tle (transportation network 3:2:7:2:2, resource network 3:4:4:3:2, and integrated network
3:2:7:2:2).

(2) The clustering characteristics of the hierarchical networks are more pronounced
than those of the overall network, particularly for the hierarchical networks of resources
(with a minimum index of 0.134 and a maximum index of 0.233, generally higher than the
overall MI of 0.021). As per the analysis of cohesive subgroups considering reciprocity and
accessibility, cities in the low-level subgroups of the population network are dominated
by mutually beneficial relationships; in contrast, the cities in the high-level subgroup
of the resource and transportation networks have higher bidirectional reciprocity and
bidirectional accessibility.

(3) The population network in the CCEC is influenced by geographical adjacency,
urban openness, and urban cooperation, while the transportation network mainly relies on
the geographical proximity of cities. The resource network is heavily influenced by industry
structure, with industries that have supply–demand relationships mutually promoting
each other. Conversely, internal fund flow within unrelated industries can hinder the
development of other industries.
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