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Abstract: Night-time light data (NTL) have been extensively utilized to map urban fringe areas,
but to date, there has not been a comprehensive evaluation of the existing spatial clustering meth-
ods for delineating the urban fringe using different types of night-time light data. Therefore, we
first selected three popular sources of night-time light data (i.e., NPP/VIIRS, Luojia 1-01, and
NASA’s Black Marble) to identify the urban fringe. The recognition of spatial mutations across the
urban–rural gradient was conducted based on changes in night light intensity using a spatial con-
tinuous wavelet transform model. Then, we employed three representative dual spatial clustering
approaches (i.e., MK-Means, DBSC, and DSC) for extracting urban fringe areas using different
NTL. By using dual spatial clustering, the spatial patterns of the mutation points were effectively
transformed into homogeneous spatially adjacent clusters, enabling the measurement of similarity
between mutation points. Taking Nanjing city, one of China’s megacities, as the study area, we
found that (1) Compared with the fragmented and concentrated results obtained from the Luojia
1-01, NASA’s Black Marble and NPP/VIIRS data can effectively capture the abrupt change of urban
fringes with NTL variations; (2) DSC provided a reliable approach for accurately extracting urban
fringe areas using NASA’s Black Marble data.

Keywords: urban fringe; night-time light data; dual spatial clustering; Nanjing city

1. Introduction

Over the past three decades, the global growth rate of urban land use (80%) has sig-
nificantly outpaced the population growth rate (52%), leading to substantial development
in urban areas [1]. By 2050, it is expected that the ongoing global urbanization process
will result in 68% of the global population living in urban areas [2]. Urban fringe areas
are located in the transitional zone between urban and rural areas, serving as both the
forefront of urban expansion and the most sensitive regions in the process of urbanization.
Urban fringe areas, as the outer ring of cities, are influenced by both internal and external
human–environment systems and exhibit diverse, interactive, and transitional characteris-
tics [3,4]. However, many problems also arise in urban fringe areas due to the increasing
heterogeneity and instability of land use and socioeconomic structure, leading to various
urban issues such as resource shortage [5] and environmental contamination [6]. Accurate
identification of urban fringe areas is of significant practical importance in controlling
urban sprawl, optimizing urban planning, and promoting the rational utilization of land.

NTL can reflect the spatial distribution of population density, economic activity, and
urbanization [7]. These kinds of data are accessible in real time and are not restricted
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by administrative boundaries, overcoming the issue of data discontinuity. The distinct
characteristics of NTL enable it not simply to capture the spatial expansion of urbaniza-
tion but also to reveal the diverse levels of urbanization intensity within urban regions.
Therefore, it is well-suited for mapping urban fringe areas [8,9]. Since the 1970s, a series of
satellite sensors have been developed to capture night-time light data from space [10], in-
cluding DMSP-OLS [11], Suomi-NPP VIIRS [12], ISS [13], Luojia-01 [14], Jilin1-03B [15], and
SDGSAT-1 [16]. Recent reviews on night lights have primarily concentrated on urban appli-
cations utilizing DMSP/OLS and NPP/VIIRS data [17,18]. The DMSP-OLS dataset, despite
providing continuous NTL from 1992 to 2013, suffers from limitations such as discontinuity
and oversaturation caused by bright lights. To address these limitations, it was replaced by
the NPP-VIIRS starting from 2013 [19]. The utilization of NPP-VIIRS data brings substantial
improvements to the dataset, including enhanced spatial resolution, reduced saturation
issues, and on-board calibration [20]. Recently, researchers have increasingly utilized VIIRS
data to extract urban spatial areas at different scales. Since 2018, a series of new VIIRS
products with progressively improved image quality have been released. The NASA’s
Black Marble product suite (VNP46) is considered the state-of-the-art night-time light data
source developed to harness the full potential of the VIIRS time series record [21,22]. The
VNP46 product suite offers cloud-free, atmospheric-, terrain-, vegetation-, snow-, lunar-,
and stray-light-corrected radiances, enabling researchers to derive valuable insights into
urbanization dynamics, environmental changes, and socioeconomic activities [23]. In ad-
dition to the aforementioned data, the Luojia 1-01 satellite was successfully launched on
2 June 2018. It boasts a remarkable spatial resolution of 130 m, surpassing the resolutions
of NPP/VIIRS at 500 m. This higher spatial resolution enables more detailed and precise
observations of night-time light phenomena, greatly enhancing its capabilities for various
night-time remote sensing applications. However, even when these data are collected, there
has been a lack of comparison to determine how effectively different NTL sources detect
urban fringe areas.

Currently, the identification methods of urban fringe areas using NTL mainly consist
of threshold analysis, mutation detection, and spatial clustering methods. The threshold
analysis method typically employs the night-time light intensity (NLI) index for delineating
urban fringes through ratio classification [24–26]. While the threshold analysis method
is simple and practical, determining the appropriate threshold often requires repeated
experiments, which can result in issues such as low efficiency and limited applicability.
The mutation detection method calculates the locations of mutation values along the
boundaries of the urban fringe and then connects these areas of mutation to map the
spatial extent of the urban fringe [27,28]. The mutation detection method is not suitable
for identifying arbitrary boundaries, and the boundaries of the urban fringe are intuitively
obtained and manually connected. The spatial clustering method first focuses on the
recognition of spatial mutations across the urban–rural gradient. Then, classical clustering
algorithms are employed to identify a series of spatial clusters, grouping similar pixels
within the same fringe cluster [9,29,30]. Compared to the other two methods, the spatial
clustering approach is prevalent for urban fringe extraction, utilizing density maps related
to urbanization due to its objectivity and convenience [31]. The dual spatial clustering
method can take into account both spatial proximity and attribute similarity features,
allowing for a better exploration of the distribution patterns and trends of geographic
spatial entities [32]. Among them, there are three representative dual spatial approaches,
which include MK-Means [33], DBSC [32], and DSC [34]. The MK-Means algorithm is an
extension of the K-means algorithm that incorporates attribute metrics to broaden the focus
on the spatial object’s attribute distance, aiming to consider both the heterogeneity of spatial
positions and the similarity of attributes. Using this approach, Feng [9] discovered more
detailed information regarding urban–rural fringes by combining NLI and light fluctuation
in comparison to the traditional mutation detection method. The analysis results continue
to be challenged by issues such as varying density, arbitrary shapes, and spatial noise
problems, which cannot be overlooked. The DBSC algorithm is a clustering method
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that identifies spatial clusters by modeling the spatial proximity and attribute similarity
relationships among spatial objects with the help of constrained Delaunay triangulation.
The DBSC algorithm has proven to be efficient and applicable in identifying clusters with
irregular shapes and varying densities. It has been successfully used for urban element
identification and urban spatial structure analysis [35,36]. However, DBSC algorithm results
heavily depend on the global shared non-spatial attribute threshold, failing to capture
the inhomogeneous structure of the dataset. DSC can handle both spatial proximity and
attribute similarity in the presence of heterogeneity (i.e., the difference of observations in
attribute distribution is homogeneous within each cluster but inhomogeneous between
clusters) and noise (i.e., attribute values of spatial objects are significantly different from
those of other objects in its spatial neighborhood). The detection of these clusters is valuable
for gaining insights into the localized patterns of geographical phenomena. Using DSC,
Yang [31] can detect the urban–rural fringes with a “Main center–Subcenter” structure using
diverse datasets. Nonetheless, the DSC algorithm may result in over-segment clusters when
dealing with mixed inhomogeneous and homogeneous dataset structures. These three
algorithms differ significantly in terms of theory and accuracy. The lack of a comprehensive
application assessment of these three methods for different NTL limits the broad utilization
of these data for urban fringe extraction. The lack of a comprehensive assessment of the
three algorithms for different NTL (night-time light) limits the broad utilization of these
data for urban fringe extraction.

The goal of this study was to assess the MK-Means, DBSC, and DSC methods for
delineating urban fringe areas using NPP/VIIRS, Luojia 1-01, and NASA’s Black Marble
night-time light data. Specifically, we utilized the NLI index with the help of the spatial
continuous wavelet transform (SCWT) and dual spatial clustering. Through SCWT, a series
of mutation points were automatically detected, allowing for the accurate recognition
of spatial mutations across the urban–rural gradient based on the changes in NLI. By
applying dual spatial clustering in the identification of urban fringes, the spatial patterns
of the mutation points were effectively transformed into homogeneous spatially adjacent
clusters, enabling the measurement of similarity between mutation points. In this study,
we then took Nanjing city, one of China’s megacities, as the study area and delineated its
urban–rural fringes using the three methods. Finally, we evaluated the results of these
three methods using different NTL limits.

2. Study Area and Data

Nanjing is a significant city renowned for its high-level education institutions and
transportation hub (Figure 1). It consists of eleven zones covering a total area of 6587 km2,
situated in the lower reaches of the Yangtze River Delta. As of the end of 2018, the city
had a registered population of 8.3 million, with 81% residing in urban areas. Nanjing’s
GDP reached 960 billion yuan (approximately 140 billion USD), ranking it 10th among
Chinese cities. With improvements in population growth and economic prosperity, there is
a growing demand for commercial and residential space, leading to gradual development
in the rural regions surrounding the city [37].

NTL includes NPP-VIIRS, Luojia 1-01 data, and NASA’s Black Marble data (Figure 2).
The Luojia 1-01 data of Nanjing and its surrounding areas were obtained from the Hubei
Center of High-Resolution Earth Observation System (http://59.175.109.173:8888/app/
login.html, accessed on 10 July 2020), with the data distributed on 23 November 2018. The
geometrically corrected products used in the study have a resolution of 130 m. To reduce
the effect of light saturation, a radiometric correction for Luojia1-01 NTL was implemented
using the formula L = DN3/2 × 10−b, where DN is the digital number values of pixels
and b is set to 3. We then converted the unit of Luojia 1-01 radiance to nano W·cm−2·sr−1,
which matches the unit of VIIRS data. The NPP/VIIRS data were sourced from the National
Geophysical Data Center (NGDC) (https://www.ngdc.noaa.gov/eog/viirs/, accessed on
7 July 2022). In this study, the monthly averaged data from November 2018 were utilized,
excluding the effects of stray light, lightning, and cloud cover, thus allowing it to reflect
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the spatial distribution patterns of typical NLI on the Earth’s surface. The data used in
this study have a spatial resolution of 500 m. The daily Black Marble data (VNP46A2)
were obtained from the NASA Level-1 and Atmosphere Archive and Distribution System
Distributed Active Archive Center (LAADS DAAC) (https://blackmarble.gsfc.nasa.gov/
#product, accessed on 2 September 2022). The VNP46A2 dataset, which includes daily
moonlight-adjusted night-time light and population census estimates, was collected at a
spatial resolution of 500 m within the temporal range of November 2018 night-time light
data. Black Marble data preprocessing has been carried out according to Zheng’s work
(https://github.com/qmzheng09work/NTL-VIIRS-BlackMarbleProduct). For consistent
analysis and comparison across various data sources, we initially converted all the data
into the Lambert Azimuthal Equal Area Projection. Subsequently, NPP-VIIRS and NASA’s
Black Marble data were resampled to a spatial resolution of 500 m × 500 m (cell size)
using the nearest neighbor method within the ArcGIS “Resample” tool, while Luojia 1-01
data were resampled to the same resolution using the aggregating rule within the ArcGIS
“Aggregate” tool.
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Figure 1. Location and land use of the study area.

In the urban fringes, the NLI values typically exhibit a gradual decrease as one moves
from the bright urban center to the darker and less developed rural areas. As urbanization
extends outward, the NLI serves as a useful indicator of the gradual changes in human
settlement and land use from urban to rural environments [8,38]. The NLI index in this
study corresponds to the radiance value of each pixel derived from the NTL images. The
city epicenters exhibit higher NLI indices, and the grid units are more densely populated
in those areas. As one moves farther away from these centers, the NLI indices gradually
decline. This results in a transition from continuous to discrete parts in terms of pixel
distribution. Pixels with higher NLI indices tend to be more clustered, while those with
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medium-level indices are more commonly found in urban fringes. This characteristic
indirectly reflects the variability of the urban fringe area. To facilitate the subsequent
process of detecting mutation points using SCWT (details in Section 3.1), we converted the
night-time light pixels to grid square cells and assigned the NLI index of each pixel to each
grid cell (Figure 3).
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3. Methodology

The identification framework consists of three main parts (Figure 4): (1) the SCWT
method has been employed to identify mutation points along the gradient of the ur-
ban fringe; this helps in detecting significant changes in the spatial distribution of NLI;
(2) based on the spatial distribution of mutation points, three dual spatial clustering meth-
ods have been adopted to detect homogeneous spatial fringe clusters; (3) the boundaries
of the urban fringe areas were connected automatically, and the evaluation of the urban
fringe was investigated via different NTL using different dual spatial clustering methods.
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3.1. The Detection of Mutation Points Using SCWT

The SCWT method is a signal-processing technique that analyzes the frequency content
of a signal at different scales and orientations. By applying the SCWT to the NLI grid map,
it is possible to identify significant changes in NLI, which can serve as indicators of urban
fringe boundaries or transition areas [28,30,31]. In a previous study [31], the process began
with a city center as the starting point, and a one-degree interval was used to establish
360 sampling lines. Additionally, the center of the outermost grid within the entire study
area was designated as the endpoint. This approach ensured the inclusion of each grid cell
in the calculations. Subsequently, we constructed a spatial urbanization sequence signal for
each sample line by recording the urbanization indices (the NLI index in this study) of the
grids intersecting the sample line from the city center to the periphery. Following this, the
mutation points of each signal, which included the maximum and minimum values, were
identified using the SCWT method with the optimal scale. These mutation points were
then mapped to identify the spatial locations of urbanization mutations within the study
area.

The SCWT method operates on the principle of decomposing the original spatial
sequence signal, using wavelet transform to obtain its approximate and detailed coefficients.
The locations of significant changes in the signal, characterized by peaks and troughs in the
wavelet coefficients, are identified as the “maximum modulus” points and considered as
the locations of mutation points.

SCWT(a, b) = S(x)ϕ(x) =
1√
a

∫ Lx

0
S(x)ϕ

(
x− b

a

)
dx (1)

In this equation, SCWT(a, b) denotes the wavelet coefficients, S(x) represents the
signal of a spatial sequence, and ϕ(x) includes parameters for spatial scale (a) and shifting
proxy (b), where the latter is determined by a distinctive factor of the wavelet function,
denoted as scale a, which controls the extent of decomposition.

In this study, there were three steps needed in order to detect mutation points of urban
fringe regions using the SCWT algorithm: first, the Db3 wavelet from the Daubechies
wavelet family was selected as the wavelet basis function; second, the local maximum in
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the coefficients obtained from Scale = 2 was examined in the process of identifying mutation
points; third, the urban fringe was objectively detected by segmenting the mutation map
using k-standard deviations strategy that eliminates “pseudo” mutation points. This
enhancement in the detection method ensures a more reliable and precise identification
of the urban fringe [30,31] (Supplementary Materials Word File S1 provides the detailed
discussions).

3.2. Extraction of Urban Fringe Based on Different Dual Spatial Clustering Methods
3.2.1. Modified k-Means Algorithm (Mk-Means)

The MK-Means method [33], which incorporates attribute clustering in addition to the
K-means algorithm, considers both the spatial heterogeneity and attribute similarity (i.e.,
NLI index). The K-means method starts by randomly selecting k initial cluster centers, then
it calculates the distance between each object and these cluster centers. A cluster is formed
by assigning each object to its nearest cluster center, where the cluster centers, along with
their corresponding assigned objects, constitute the cluster. The key difference between
the K-means method and the dual spatial clustering algorithm lies in their definition of
distance. The K-means method calculates the spatial distance of the clustering targets,
while the MK-Means algorithm not only focuses on the spatial clustering of the targets but
also takes into account their attribute distance. Therefore, the MK-Means algorithm uses a
generalized Euclidean distance as the clustering metric, replacing the spatial distance used
in the K-means method. The generalized Euclidean distance is defined as follows:

D
(

pi, pj
)
=
√

w1DS
(

pi, pj
)
+ w2DA

(
pi, pj

)
. (2)

In this equation, D
(

pi, pj
)

between pi and pj is calculated as the weighted sum of the
normalized spatial distance DS

(
pi, pj

)
and non-spatial distance DA

(
pi, pj

)
. The default

values for the weights w1 and w2 are both set to 0.5 [35].

3.2.2. Density-Based Spatial Clustering Algorithm (DBSC)

The DBSC algorithm is a clustering method based on the adaptive Delaunay triangu-
lation (DT) and spatial entity position constraints [32]. Its basic idea is to impose different
levels and types of constraints on the edges of the Delaunay triangulation to obtain discrete
spatial clusters formed by connected triangle edges and to establish neighboring rela-
tionships between spatial entities within each cluster. Subsequently, non-spatial attribute
constraints are introduced to filter the clustering results, achieving dual clustering of both
spatial and attribute aspects. The algorithm primarily consists of two steps:

(1) Clustering based on spatial position constraints

Considering that urban fringes have non-uniform boundaries in terms of size and
shape, the mutation points tend to be unevenly distributed. The traditional proximity
relationship established by DT may result in certain errors at the edges [39]. The DBSC
algorithm addresses this issue by employing a hierarchical edge-length constraint strategy
that trims the edge lengths in DT.

Suppose SDB is the mutation points database, DT(SDB) denotes the DT of SDB,
where each point Pi represents a mutation point. Let Global_Mean(DT) represent the
average length of all edges in DT, and Local_Mean(Pi) denotes the average length of all
edges connected to Pi. Global_Variation(DT) denotes the standard deviation of all edge
lengths in DT, and Local_Variation(Pi) denotes the standard deviation of all edge lengths
connected to Pi. For any point Pi, the global distance constraint criterion can be expressed
as follows:

Global_Distance_Constraints(Pi) = Global_Mean(DT) + α·Global_SD(DT) (3)
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α =
Global_Mean(DT)

Local_Mean(Pi)
. (4)

In DT, if the length of an edge directly connected to Pi is greater than or equal to the
Global_Distance_Constraints(Pi), the edge will be eliminated from DT(SDB). Once the
long edges have been removed at the global level, there might still be some long edges
remaining at the local level. To address this, local edge length constraints are subsequently
applied.

After implementing the global edge length constraint, the resulting subgraph is de-
noted as Gi, Pj is a point in Gi, 2_order_Mean

(
Pj
)

represents the average value of all edge
lengths within the 2nd order neighborhood of Pj, and Mean_Variation

(
Pj
)

represents the
average of variances of directly connected edges to Pj. The local edge length constraint can
be expressed as follows:

Local_Distance_Constraints
(

Pj
)
= 2_order_Mean

(
Pj
)
+ β×Mean_Variation

(
Pj
)
. (5)

Generally, β is set to 2. For any point Pj in Gi, if the length of edges within its second-
order neighborhood is greater than or equal to Local_Distance_Constraints

(
Pj
)
, then those

edges are removed from the triangulation. By applying local trimming, the spatial adjacency
relationships of entities can be better determined.

(2) Clustering based on non-spatial attribute constraints

The modified Delaunay triangulation, C-DT, is obtained after applying global and
local trimming operations. Additionally, non-spatial attributes (i.e., the NLI index) are
involved in the identification of spatial clusters. To facilitate the calculation of non-spatial
attribute distances, the Euclidean distance is used to represent the non-spatial attribute
distance of mutation points. It is denoted as Dist(Pi, Qi), and a threshold T is used to
represent the similarity threshold for non-spatial attributes. Before that, several definitions
are provided.

Definition 1. Spatial Neighborhood: For any mutation pointPi in C-DT, the set of spatial
points that are directly connected to Pi through shared edges forms the neighborhood of Pi, denoted
asNeighbors

(
Pj
)
.

Definition 2. Spatially directly reachable: In C-DT, if there are two points, Pi and Qi, that
share a common edge and satisfy the condition Dist(Pi, Qi) < T, Pi and Qi are considered to be
spatially directly reachable in terms of non-spatial attribute. In this case, Dist(Pi, Qi) quantifies the
dissimilarity in non-spatial attribute between these two mutation points. The threshold, denoted as
T, takes into consideration the difference between the average value of a temporal cluster and the
attribute value of a mutation point that will be added to the same temporal cluster.

Definition 3. Spatially indirectly reachable: In C-DT, if there is a set of mutation points CMU
(there are at least two mutation points in CMU) and satisfy the condition Dist(Pi, AVG(CMU)) < T,
Pi and CMU are referred to as being spatially indirectly reachable. In this case, the average value of
non-spatial attribute values for all points in the CMU is represented by AVG(CMU).

Definition 4. Density Indicator: For a point Pi in C-DT, the density indictor DI(P i) represents
the density index of Pi.

DI(Pi) = Nsdr(Pi) + Nsdr(Pi)/N(Pi). (6)

Nsdr(Pi) represents the number of spatially directly reachable points from Pi. N(Pi)
represents the number of points in Neighbors

(
Pj
)
.
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Definition 5. Spatial Cluster Core: Among all unclustered mutation points, the point with the
highest density indicator is referred to as the spatial cluster core. When multiple points have the
maximum density indicator, the spatial cluster core is chosen based on the point with the minimum
average non-spatial attribute difference among its corresponding neighboring points.

Definition 6. Expansion Core: For any point Pi in C-DT, if there is at least one point in its
neighborhood Neighbors(P i) that is spatially directly reachable from Pi, Pi is referred to as an
expansion core.

The DBSC algorithm’s specific implementation process is outlined as follows:
1©Construct the DT of the mutation points and apply global-to-local hierarchical constraints

to remove long edges. 2© Select a spatial cluster core Pi. In its neighborhood Neighbors(P i),
sort the expansion cores that have not been clustered based on their density index.
3©Within Neighbors(P i), cluster the expansion cores that satisfy both spatially directly and

indirectly reachable with Pi, in descending order of density index. This forms the initial
cluster. 4© Use the expansion core that has been added to the initial cluster as the new
spatial cluster core and continue expanding according to the strategies in steps 2 and 3.
5©When there are no points that can be added to the cluster with Pi as the spatial cluster

core, a spatial cluster is formed. 6© Iterate through steps 2 to 5 until all mutation points
have been traversed. Points that have not been added to any cluster are labeled as noise
points.

3.2.3. DSC Algorithm

DSC aims to address the challenges of heterogeneity and noise by incorporating
both spatial proximity and attribute similarity [34]. DSC initiates by employing DT with
edge-length constraints, which takes into account arbitrary geometrical shapes, different
densities, and spatial noise, to establish spatial proximity relationships among mutation
points. Subsequently, an information entropy clustering strategy is devised to identify
clusters that exhibit similar attributes. This approach enables adaptive and precise cluster
detection while taking into account the existence of heterogeneity and noise.

(1) Clustering constrained by spatial proximity

Following the construction of the DT of the mutation points, the DSC algorithm
proceeded to utilize global and local proximity criteria to partition the mutation points into
multiple spatial clusters. Through the application of global criteria, the long edges will be
removed at the global level. This process can be expressed as follows:

Global_LongEdges(p) =
{

ei|ei > GlobalMean + GlobalSD× GlobalMean
PartialMean(p)

}
, (7)

where Global_LongEdges(p) represents the set of long edges that need to be deleted at
point p. GlobalMean refers to the average length of all edges in DT, PartialMean(p) denotes
the average length of the edges directly connected to point p, and GlobalSD denotes the
standard deviation of edge lengths in DT.

Subsequently, the local proximity constraint is implemented to remove the remaining
long edges. The local process follows the following criteria:

F(p) = Local−SD(p)/Local−Mean−Length(p)
Local−Mean−Length(p) = 1

d(p)∑
d(p)
i=1 |ei|

Local−SD(p) =

√
∑

d(p)
i=1 (Local−Mean−Length(p)−|ei |)2

d(p)

, (8)

where Local−Mean−Length(p) represents the mean length of edges in N(p), and Local−SD(p)
is the standard deviation of the lengths of edges in N(p). d(p) denotes the number of edges
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incident to p, and |ei| is the length of edges in N(p). The final spatial proximity comprise
all connected mutation points for which F(p) ≤ γ.

(2) Clustering constrained by attribute similarity

DSC utilizes an attribute clustering method based on information entropy to classify
the clustering results according to the attributes of the mutation points. The attribute
entropy represents the degree of similarity between the central mutation point and the
surrounding mutation points within the first-order neighborhood. It can be calculated
using the following formula, where a higher value indicates a smaller difference between
the central point and the connected points:

DAEnei(O) = Eoc
n+1

Eoc = −∑n+1
i=1 pilnpi

pi =
vi

∑n+1
j=1 vj

, (9)

where DAEnei(O) represents the attribute entropy of mutation point O, and Eoc represents
the attribute similarity between point O and clustering cluster C. The clustering cluster C
consists of n points {C1, C2, C3, . . . , Cn}, where point O represents the central mutation point
and cluster C is the set of mutation points within the first-order neighborhood of point O.
The NLI index values of each mutation point in the cluster are denoted as {v1, v2, v3, . . . , vn},
and the NLI index value of the central mutation point O is represented as vn+1.

After calculating the attribute entropy for each mutation point, the mutation point
with the highest attribute entropy is selected as the starting point. Using Equation (9),
the starting point is considered as the central point O, and each surrounding mutation
point is treated as a separate clustering cluster C. The attribute similarity Eoc between
the central point and each surrounding point is computed. The initial clustering cluster
is formed by combining the mutation point O with the highest attribute entropy and the
point with the maximum attribute similarity Eoc among its surroundings. The candidate
points are determined as the mutation points within the first-order neighborhood of the
initial clustering cluster. Equation (10) was employed to compute the Eoc between each
candidate point and the initial cluster:{

θ = Eoc
Eocmax

Eocmax = ln(n + 1)
, (10)

where θ is the standardized variable; the maximum information entropy between mutation
point O and the temporal cluster C, denoted as Eocmax, is obtained via the hypothesis that
the attribute values of the mutation points within temporal cluster C are equal. When θ is
great than the threshold, the mutation point O will be added into cluster C; if it exceeds the
threshold, we allow the mutation point O to be added to temporal cluster C. By choosing
an appropriate value for θ, the PBM index is employed to achieve favorable outcomes.
Achieving a high score for the PBM index confirms the acceptability of the result in terms
of the attribute entropy measurement [40].

The cluster was iteratively expanded by repeating the steps of candidate selection until
the first-order neighborhood of the cluster no longer contained similar mutation points.
Subsequently, the remaining mutation points in the initial cluster were evaluated based
on their DAEnei(O) values, and the mutation point with the highest DAEnei(O) value
was selected as the starting point for the second cluster. The aforementioned steps were
repeated to group all mutation points into different sub-clusters.

3.3. Boundary Extraction of Homogeneous Fringe Clusters

Peethambaran and Muthuganapathy [41] proposed a Delaunay-based shape recon-
struction method, which was utilized to accurately detect the boundaries of geographical
phenomenon. The urban fringe comprises both outer and inner boundaries, and a signifi-
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cant advantage of this approach is its ability to identify both cavities and holes represented
as planar points, making it well-suited for detecting fringe boundaries.

3.4. Evaluation

To evaluate the pros and cons of the different results, various quantitative validations
were carried out. First, the RS index was utilized as the clustering indicator, aimed at
quantifying the level of dispersion among spatial entities [42]. Second, according to Yang
et al. [31] and Dai et al. [43], the three landscape pattern indices—Patch Density (PD),
Landscape Shape Index (LSI), and Shannon’s Diversity Index (SHDI)—were computed to
reflect the characteristics of spatial configuration and structural composition in the urban
fringe area (the index calculation process was performed using FRAGSTATS 4.2 software).
Landscape pattern indices were based on the land use data for Nanjing City in 2018, which
was provided by Yang and Huang’s work [44]. The meanings of the evaluation indicators
are presented in Table 1.

Table 1. Evaluation indicators.

Type Indicator Connotation

Clustering
evaluation

RS =
∑N

i=1 (xi−x)2−∑
NC
i=1 ∑

Ni
j=1(xj−vi)

2

∑N
i=1(xi−x)2

N represents the number of entities in the dataset, Nc
represents the number of clusters, Ni denotes the
number of entities in cluster Ci, vi represents the

centroid of cluster Ci, and x represents the centroid of
the dataset.

The RS index value ranges between 0 and 1, where
0 indicates no difference between clusters, while

1 indicates significant differences between clusters.

Landscape
pattern

PD = 1000000ni
A

A represents the total area of the landscape type, and
ni represents the total number of patches for the ith

landscape type.

PD represents the quantity of specific land use
patches within a given area. It serves as a

comparative metric for landscapes of varying sizes
and plays a crucial role in describing landscape

fragmentation. A higher PD value indicates a higher
degree of landscape fragmentation.

LSI = 0.25E√
A

E represents the total length of the boundaries of a
specific land use type, while A represents the total

area of that land use type.

The LSI can indicate the complexity of patches,
which comprehensively reflects the size and

heterogeneity of land classes. The LSI has a range of
values from 1 to ∞, where a higher value indicates a

more irregular patch shape.

SHDI = −∑m
i=1 PilnPi

Pi represents the proportion of type i within the entire
landscape, and m represents the total number of

landscape types, ranging from [0, ∞).

The SHDI is a metric that measures the complexity
and heterogeneity of different types of patches
within a landscape. When m = 1, the SHDI is 0,

indicating that the region has only one type of patch.
As SHDI increases, it tends to be a more uniform

distribution of different patch types throughout the
landscape.

4. Results
4.1. Mutation Points Detection from Different NTL Sources

According to the SCWT method described in Section 3.1, we conducted mutation
detection and extracted clusters of mutation points in different NLI maps. The study began
by extracting sample lines using Xinjiekou, the main center of Nanjing city, as the starting
point. Furthermore, the endpoints of sample lines were extended to reach the center of the
outermost grid in the entire study area. A total of 252 sample lines were generated for the
center (Figure 5). Later, the NTL indices of the grids intersecting each sample line were
recorded to construct the spatial sequence signal. This recording process started from the
city center and extended towards the periphery.
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Figure 5. Detecting the mutation points by the sampling lines in 360 orientations (NPP/VIIRS
Example).

It can be observed in Figure 6 that the example sampling lines extend from the city
center to the periphery, passing through approximately two high NLI value areas. The
curve demonstrated a shift from high values to low values, followed by a subsequent
shift from low values back to high values. The fluctuation trend described above can be
observed in spatial sequence curves for all three datasets. Furthermore, it is worth noting
that the maximum values in the second high-value area are all lower than the NLI value at
the city center, which was consistent with the description of urbanization in urban fringe
area.

The SCWT method was utilized in this study using the optimal scale (Scale a = 2)
and the db3 wavelet as the basic function for processing (as described in Section 3.1).
Yhe mutation points of each signal, corresponding to the highest and lowest scores, were
identified. After mapping the identified mutation points as individual points, the model
applied a filtering process to eliminate “pseudo” mutation points based on two standard
deviation values via a stepwise trial [30]. As a result, 329, 339, and 445 mutation points
were identified in NPP/VIIRS, Luojia 1-01, and NASA’s Black Marble data, respectively,
with many intersection points (Figure 7).
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4.2. Urban Fringe Extraction by Different Dual Spatial Clustering Methods

Figures 8–10 present the results obtained by applying the three dual spatial clustering
algorithms to the mutation points. The points of the same color indicate that they belong to
the same clusters, while the points denoted by “x” were classified as noise, indicating that
their spatial locations and attribute values significantly differ from those of other mutation
points in their spatial neighborhood. The basic statistical information of these clusters
obtained by the different algorithms was listed in Table 2.
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Table 2. Statistical information of clustering results.

NTL Data Algorithms
Statistical Information

NC NN MEANV SDMV CV

Luojia 1-01
MK-Means 7 0 15,844.372 6199.354 0.391

DBSC 24 44 17,281.492 27,256.439 1.577
DSC 33 37 31,146.359 78,428.949 2.518

NPP/VIIRS
MK-Means 7 0 4.437 0.754 0.168

DBSC 6 15 2.920 0.704 0.241
DSC 13 16 16.012 18.027 1.126

NASA’s Black Marble
MK-Means 7 0 131.933 14.771 0.112

DBSC 29 17 175.540 67.517 0.385
DSC 34 23 98.674 66.554 0.674

Note: NC is number of clusters; NN is number of noises; MEANV is mean values of clusters, SDMV is standard
deviation of mean values of clusters; and CV is the clusters’ coefficient of variation.

Regarding the clustering results of the MK-Means, DBSC, and DSC algorithms in dif-
ferent datasets, the MK-Means clustering results demonstrated a well-defined hierarchical
structure, where the clusters exhibited a distinct “drawer-like” distribution from north
to south (Figure 8). The extracted boundaries of urban fringes also exhibited the same
distribution pattern (Figure 11), which, to some extent, can reflect the differences in urban-
ization between different regions. However, the MK-Means algorithm faces challenges
in accurately identifying non-convex-shaped clusters, and its clustering results are often
susceptible to the influence of noise. As a result, it may fail to detect certain adjacent spatial
clusters with different attributes within the clusters, as indicated by the lowest CV values
(Table 2), more scattered distribution (Figure 11), and poorer performance (see below).
Compared to the MK-Means clustering, the DBSC algorithm exhibited higher accuracy
in urban fringe boundary extraction. The application of DBSC yielded several clusters as
well as noise in the clustering results (Figure 9). When analyzing the urban–rural fringe
segments from north to south Nanjing, two main regions (i.e., Jiangbei and Zhucheng)
show a concentration of more human activities at night. However, there was a considerable
urban–rural fringe segment that extended from the north to the south of Nanjing (as shown
in Figures 9 and 12), which was inconsistent with the actual situation. This deviation was
attributed to the small differences between local mutation points. DBSC fails to differentiate
the actual differences between two adjacent clusters as it ignores the tendency of the NLI
index. The findings suggest that the DBSC algorithm is not suitable for datasets character-
ized by uneven distributions of attributes. The clustering results obtained by DSC directly
displayed a noticeable difference between adjacent clusters, as indicated by higher CV
values compared to the ones achieved with the other methods (Table 2). Through a simple
analysis of the results, it becomes evident that different neighborhoods exhibit distinct
spatial patterns of mutation points while identifying the urban–rural fringe. Moreover,
the influence of local spatial patterns of mutation points on density values exhibits vari-
ation across the entire density surface. Compared with the urban fringe areas results by
DBSC (Figure 12b,c), the DSC algorithm is particularly effective in detecting clusters in
datasets where non-spatial attributes are unevenly distributed (Figure 13b,c). However, it
is important to note that several points were wrongly identified as noise, resulting in the
over-segmentation of urban–rural fringes into many small ones. As shown in Figure 13b,
the boundary extraction results of Luojia 1-01 data using the DSC method reveal that the
urban fringe regions in the main urban area are excessively divided into multiple small
fragments, as indicated by lower RS value (Figure 14).
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Regarding different NTL datasets, the boundary extraction results achieved via DBSC
and DSC clustering of three distinct datasets distinctly illustrated the distribution ranges of
major urban fringe regions. Notably, the Xinjiekou area demonstrated a higher NLI index
in comparison to its surrounding regions. This distinctive characteristic was manifested
in the extracted urban fringe boundaries from all three datasets, collectively forming a
void and outlining the extent of the urban region. In the extraction results of urban fringe
areas using NPP/VIIRS data, there was a contiguous appearance with internal voids being
covered, resulting in excessively regular patterns (Figures 12a and 13a). Specifically, the
extraction boundaries at the Zhucheng and Jiangbei are not satisfactory. Considering the
presence of the Yangtze River, the NLI index within this basin was relatively low, leading
to a correspondingly lower level of urbanization characteristics. Consequently, the urban
fringe boundaries in the north and south of the Yangtze River basin were expected to exhibit
a noticeable demarcation. However, in the NPP/VIIRS data, the extraction results did
not capture the distinctive distribution characteristics in these two areas. This was mainly
due to the prominent influence of light spillover on the extraction of fringe areas from
NPP/VIIRS data, leading to the contiguous appearance of fringe areas. This is indicated by
the lowest PD and SHDI values, as well as the highest LSI values (Figure 15a). Compared
to the NPP and Black Marble datasets, the Luojia 1-01 has a higher spatial resolution
and includes various pieces of detailed information such as roads, bridges, and streets.
According to Li et al. [45], using the Luojia 1-01 data for built-up area extraction in Nanjing
can yield a larger number of built-up area patches, and the fringe areas can also be well
distinguished between Zhucheng and Jiangbei regions (Figures 12b and 13b). However,
when there were a large number of built-up area patches and fragmentation within the
built-up areas, the issue of information loss in the urban fringe regions became severe. The
most evident manifestation of this problem was the unsatisfactory extraction results of the
fringe areas, particularly in the Zhucheng area of Nanjing and the southernmost Gaochun
district, where the majority of the fringe area information is missing (Figures 12b and 13b).
Accordingly, using Luojia 1-01 data for urban fringe area extraction led to a significant
increase in patch density, accompanied by a notable reduction in landscape fragmentation
and heterogeneity (Figure 15b). The Black Marble data effectively addressed the problem of
light spillover seen in the NPP/VIIRS data and significantly reduced the information loss
in urban fringe regions observed in the Luojia 1-01 data. Notably, when using the Black
Marble data combined with DSC clustering, the extraction of urban fringe area boundaries
in Nanjing were more precise and accurate.
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5. Discussion
5.1. NASA’s Black Marble and NPP/VIIRS Data Effectively Captured the Abrupt Change of Urban
Fringe Areas with NTL Variations

This study employed the SCWT method to detect mutation points in individual signals.
These mutation points were then mapped to identify urban fringes in Nanjing where
urbanization-related changes had occurred. The city center, characterized by a high NLI
index, was encompassed by mutation points, indicating significant urbanization-related
mutation characteristics at the interface of the city center and fringes. Other mutation
points, discretely distributed, represent the mutability in the urban fringes. As shown
in Figure 6, the Xinjiekou area, the main center of Nanjing city, demonstrated a higher
NLI index compared to its surrounding regions. This characteristic was manifested in the
extracted urban fringe boundaries from all three datasets (Figures 13 and 14). However, for
other mutation points, Luojia 1-01 did not yield satisfactory results, as the distribution was
relatively concentrated (Figures 9b and 10b). Compared to the NPP-VIIRS and Black Marble
data, the Luojia 1-01 data requires radiance calibration using the formula L = DN3/2× 10−b

(where b is usually set to 10). When b is set to high value, the variance of the NLI value
with grids will be correspondingly smaller. The brightness of night-time lights was not
significantly different. Therefore, the limited number of detected mutation points hinders
the precise representation of urban fringe area boundaries. In Figure 16 (b = 10) and Figure
S1 (see Supplementary Materials), it can be observed that most of the mutation points are
distributed in the city center area, and no mutations were identified in the Gaochun district.
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We iteratively experimented with b from 0 to 10 m (step size = 1). As the b value
increased from 0 to 10, the number of mutation points continued to decrease, but they were
still predominantly concentrated around the Xinjiekou area. Finally, the optimal parameters
(b = 3) in this study will be defined when the RS index achieves the maximum value in
cluster process.

5.2. DSC Provided a Reliable Approach for Accurately Extracting Urban Fringe Area Using
NASA’s Black Marble Data

In this study, the urban fringe exhibits high spatial heterogeneity in urbanization,
with an uneven distribution of NLI. DSC is based on the assumption that the NLI in the
urban fringe is more heterogeneous compared to that in urban and rural areas. The DSC
clustering results revealed a clear difference between adjacent clusters, as indicated by
higher CV values compared to the ones achieved with the other methods. In addition, a
better representation of NTL variation details inside urban areas was key to mapping urban
fringe areas. NASA’s Black Marble data can provide more detailed information about
intracity NTL variations, which was previously less achievable with VIIRS data [10]. As
depicted in Figures 10c and 14c, the combination of Black Marble data with DSC clustering
effectively extracted the urban fringe boundaries in Nanjing, offering valuable insights into
localized variations. For example, the fringe areas between Zhucheng and Jiangbei regions
can be clearly distinguished; the Purple Mountain area can also be identified, as indicated
by a lower NLI index compared to its surrounding regions; in the case of Gaochun, which
serves as the district center with higher urbanization, it displayed the distinct characteristics
of the urban fringe. Therefore, Gaochun has been accurately recognized as an urban area
and urban fringe using the Black Marble data.

6. Conclusions

In this study, we assessed three representative dual spatial approaches (i.e., MK-means,
DBSC, and DSC methods) for delineating urban fringe areas using the NPP/VIIRS, NASA’s
Black Marble, and Luojia 1-01 night-time light datasets. Considering Nanjing city as the
study area, we used RS, PD, LSI, and SHDI to compare the results obtained from different
comparative methods based on various NTL data sources. The main conclusions are as
follows:

(1) For different algorithms, the MK-Means clustering approach offers a useful perspec-
tive on the hierarchical structure and general urbanization differences between regions.
However, it fails to detect certain adjacent spatial clusters with different attributes
within the clusters, as indicated by more scattered distribution and poorer perfor-
mance. DBSC fails to differentiate the actual differences between two adjacent clusters
as it ignores the tendency of the NLI index. The urban fringe boundaries in the north
and south of the Yangtze River basin (i.e., Zhucheng and Jiangbei) are not anticipated
to demonstrate a distinct demarcation. The DSC algorithm is suitable for detecting
clusters in datasets with an uneven distribution of non-spatial attributes. However, it
resulted in the over-segmentation of urban–rural fringes into numerous smaller areas.

(2) For different NTL datasets, the extraction results from NPP/VIIRS data are signifi-
cantly affected by the light spillover phenomenon, leading to an overestimation of
the recognition results with a high concentration of contiguous patches. Luojia 1-01
data did not yield satisfactory results due to a relatively concentrated distribution
of mutation points, resulting in a significant amount of missing fringe area informa-
tion, which could potentially lead to an underestimation of the recognition results.
NASA’s Black Marble data with medium and high spatial resolution can better reveal
inner-city NTL variations, which can offer valuable insights into localized variations
to map urban fringe areas. Notably, when using the Black Marble data combined with
DSC clustering, the extraction of urban fringe area boundaries in Nanjing were more
precise and accurate.
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There remain certain limitations that require further attention and resolution. First,
recent advancements in NTL platforms have led to enriched NTL data products, providing
a wide range of spatial and temporal resolutions. In future studies, it is crucial to focus
on integrating multi-source NTL data to improve the achievable spatial and spectral
details in urban fringe identification. Second, it is crucial to note that our study focused
solely on identifying the urban fringe for a specific year. The urban fringe undergoes
continuous movement towards the periphery of the city, resulting in a highly dynamic
and instantaneous location. To gain a deeper understanding and address this dynamic
nature, further research should involve a comprehensive analysis using long time series
data. Third, it is important to note that while the identification results were confirmed
through clustering evaluation and landscape pattern analysis, the verification process was
limited in scope and simplicity, lacking a more comprehensive and detailed evaluation.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijgi12100408/s1: Figure S1: Mutation Points; Word File S1: The
SCWT method details [46,47].
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