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Abstract: Using deep learning semantic segmentation for land use extraction is the most challenging
problem in medium spatial resolution imagery. This is because of the deep convolution layer and
multiple levels of deep steps of the baseline network, which can cause a degradation problem in small
land use features. In this paper, a deep learning semantic segmentation algorithm which comprises
an adjustment network architecture (LoopNet) and land use dataset is proposed for automatic land
use classification using Landsat 8 imagery. The experimental results illustrate that deep learning
semantic segmentation using the baseline network (SegNet, U-Net) outperforms pixel-based machine
learning algorithms (MLE, SVM, RF) for land use classification. Furthermore, the LoopNet network,
which comprises a convolutional loop and convolutional block, is superior to other baseline networks
(SegNet, U-Net, PSPnet) and improvement networks (ResU-Net, DeeplabV3+, U-Net++), with 89.84%
overall accuracy and good segmentation results. The evaluation of multispectral bands in the land
use dataset demonstrates that Band 5 has good performance in terms of extraction accuracy, with
83.91% overall accuracy. Furthermore, the combination of different spectral bands (Band 1–Band 7)
achieved the highest accuracy result (89.84%) compared to individual bands. These results indicate
the effectiveness of LoopNet and multispectral bands for land use classification using Landsat
8 imagery.

Keywords: deep learning semantic segmentation; LoopNet; Landsat 8; land use dataset; land use
extraction; multispectral bands; Thailand

1. Introduction

Land use and land cover (LULC) is a challenging problem for identification and moni-
toring due to the complexity of LULC, the many types of human activities, and seasonal
changes. To overcome these problems, remote sensing technology and machine learning
algorithms are used for generating LULC maps [1,2]. Furthermore, up-to-date and accurate
LULC mapping is required for geographic information system (GIS) applications, urban
planning, and the monitoring of land cover changes [3,4]. To generate LULC maps, ground
surveys and remote sensing methods are traditionally applied to land use classification.
Ground surveys can provide accurate and precise mapping; however, taking measurements
in the field is time-consuming, and requires considerable expense of resources and human
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labor. Remote sensing classification that applies pixel-based and object-based classifications
can produce land use classification with high accuracy. However, this method always
requires sample data for training and parameter adjustment.

Most remote sensing imagery used for land use classification is collected from passive
sensors. Such sensors can produce multispectral or hyperspectral bands that can be used
for indicating LULC types [5]. Furthermore, remote sensing imagery has different kinds of
spatial resolution, from low to high. Low spatial resolution imagery (more than 100 m) is
good for recording data in a wide area. It is suitable for pixel-based classification in order
to classify LULC types as defined in the LULC Level 1 classification system for remote
sensing data [6,7]. Medium spatial resolution imagery (10–100 m) is popularly used in
pixel-based classification and object-based classification [8]. This resolution is useful for
classifying LULC types as defined in the LULC Level 2 classification system [9]. However,
it has limitations in classifying the spatially heterogenous or complex features of the LULC
types. High spatial resolution imagery (30 cm–10 m) is capable of classifying and extracting
complex LULC features that are unseen in low or medium resolution imagery [10]. This
resolution has high potential for the classification of LULC types as defined in the LULC
Level 3 classification system [11]. These kinds of image resolutions are mostly classified by
image processing using machine learning algorithms.

Machine learning has played a major role in remote sensing classification for over a
decade, and delivers good performance for LULC classification. Many machine learning
algorithms, such as K-nearest neighbor (KNN), maximum likelihood estimator (MLE),
support vector machine (SVM), random forest (RF), decision tree (DT), etc., can be applied
for pixel-based and object-based classification [5,8]. To implement these algorithms for
LULC classification, Ali Jamali, 2019 [12] evaluated and compared eight machine learning
models, including multilayer perceptron, simple logistic, J48, Lazy IBK, random forest,
decision tree, DTNB, and non-nested generalized exemplars, for LULC mapping using
Landsat 8 OLI. The results show that machine learning can classify land use features
accurately. Later, Mayani et al., 2021 [13] demonstrated machine learning techniques,
including random forest classifier, minimum distance (Euclidean) classifier, gradient tree
boost classifier, naïve Bayes classifier, and classification and regression tree classifier, for
land use classification using remote sensing imagery. The results showed that random forest
had the highest accuracy and was better than other methods. However, these algorithms
require training samples and fine-tuning of parameters for supervised learning models.

Recently, deep learning algorithms have been of great practical interest for automatic
classification of remote sensing imagery. They can manage big data problems and the com-
plexity of land use features. These algorithms have been applied to image classification and
object segmentation and have proven very successful for several remote sensing applica-
tions [14]. A comprehensive survey of remote sensing image classification based on CNNs
for land use classification was performed by Song et al., 2019 [15]. The results showed
better land use classification using deep learning algorithms due to the improvements on
the CNN model they present in terms of how image classification tasks are implemented.
Later, Alem et al., 2020, [16] described deep learning methods for the LULC classification
based on remote sensing imagery. Their study reviewed deep learning applications and
methods, including convolutional neural network (CNN), generative adversarial network
(GAN), and recurrent neural network (RNN). Analyzing this research, they found that
deep learning is sufficient, and better for remote sensing imagery for LULC classification.
Furthermore, Vali et al., 2020 [17] reviewed deep learning for land use and land cover
classification using a passive sensor with both multispectral and hyperspectral imagery.
They showed that deep learning with remote sensing imagery involves an enormous
number of technical challenges that come with the remote sensing applications. There is
a growing interest in commercially viable applications, ground-truth scarcity, on-board
data processing, the fast volume growth of data, and the limitations in memory. Their
review article confirmed that challenging deep learning models explores and improves the
capability of the classification methods that can be applied to LULC applications. With the
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development of LULC classification, Kussul et al., 2017 [18] presented a multilevel deep
learning architecture for image processing using Landsat 8 and Sentinel 1A imagery. The
result of their research showed better performance of the 2D CNN in overall accuracy over
the random forest, ensemble of multilayer perceptron, and 1D-CNN methods. Storie and
Henry, 2018 [19] investigated deep learning neural networks (FCN-8 and VGG-16 network)
to analyze LULC types using Landsat 5 and Landsat 7. The results showed high average
accuracy and quickly produced land use mapping. Later, Akhassan et al., 2020 [20] evalu-
ated a deep learning framework for LULC mapping using multispectral satellite imagery.
They applied different models of adjustment FCN architecture, such as FCN-VGG16, FCN-
ResNet-101, FCN-GoogLeNet, and two extensions (a context module and an adversarial
network) to evaluate the performance of land use classification. The comparison showed
that the FCN-ResNet-101 and two extensions had the highest performance compared to
the other models. Gharbia et al., 2021 [21] proposed a deep convolutional neural network
for land cover classification. This research evaluated AlexNet and the VGG-16 model to
classify land cover classes such as water, urban, agriculture, road, and desert using the
Landsat dataset. The result showed that the VGG-16 model was superior to the AlexNet
model, with high accuracy and good classification results. Sun et al., 2020 [22] investigated
a deep neural network (DNN) with pixel-wise classification to classify the crop types over
remote sensing data such as barley, soybean, corn, spring wheat, dry beans, alfalfa, and
sugar beets. The results illustrated that the deep learning technique can perform well on
crop-type classification with high overall accuracy. To improve the performance of a deep
learning algorithm to provide LULC classification, several researchers have proposed a
combination method. Zhang et al., 2019 [23] proposed a joint deep learning model which
combined multilayer perceptron (MLP) and CNN for land use classification over high
spatial resolution imagery. The result shows that this combination method can achieve
high overall accuracy and an accurate classification result. Later, Rousset et al., 2021 [24]
demonstrated the XGBoost algorithm and deep learning technique for land cover detection
and classification using SPOT6 satellite imagery. The result of this combination method
showed improvement in land use classification. For a remote sensing dataset, Helber et al.,
2019 [25] presented a novel dataset called the EuroSAT and a patch-based deep learning
method for land use and land cover classification using Sentinel 2 imagery. The proposed
method was confirmed as having the highest overall accuracy for land use classification.
Later, Zhang et al., 2021 [26] evaluated the CNN cascade feature and McODM classifier to
classify a land use map using the UC Merced land use dataset. This combination method
showed an improvement in the learning ability for scene level classification with a highly
accurate result.

Studies of LULC classification and deep learning semantic segmentation methods
are a rapidly growing research trend. Kotaridis and Lazaridou, 2021 [27] performed a
meta-analysis of advanced remote sensing image segmentation. They analyzed statistics
and quantitative data in a segmentation algorithm, and determined that the deep learning
model works well on high spatial resolution imagery due to the clear target features and
patterns. However, the price for high spatial resolution imagery is high, and only covers
a small area. Thus, medium spatial resolution imagery is a challenging type of data for
LULC classification. This type of imagery provides a wide coverage area and is free of
charge, which is suitable for land use monitoring. Poliyapram et al., 2019 [28] utilized a
simplified variant of the U-Net DCNN structure for segmenting land use features such as
water, ice, and land over medium resolution satellite images (Landsat 8). Their proposed
structure outperformed U-Net and the DeepWaterMap model. Mutreha et al., 2020 [29]
studied settlement classification with a segmentation method using Landsat 8 imagery. The
deep learning model was able to detect and extract settlements with highly accurate results.
Later, Du et al., 2021 [30] implemented a deep semantic segmentation model for paddy
rice classification and mapping using multi-temporal data from Landsat imagery. It was
demonstrated that the segmentation model could segment the rice paddy over large areas
accurately. Pereira et al., 2021 [31] presented a large-scale dataset for active fire detection
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from Landsat 8 and the U-Net network. The algorithms achieved better performance
on active fire segmentation. Furthermore, Wang et al., 2022 [32] studied a deep learning
semantic segmentation approach which used an ensemble network for land use extraction
using Sentinel 2A and Gaofen PMS. The results showed that the U-Net++ architecture
with the Timm-RegNetY-320 backbone achieved the highest performance compared with
other backbones (VGG-16, EfficientNet-b7, ResNEt50, and Timm-ResNet101). Based on
the literature, the improved capacity of LULC segmentation illustrates that deep learning
semantic segmentation has the potential to detect and extract the variety and complexity of
land use features accurately. However, land use features over medium spatial resolution
imagery have medium level features, and the baseline network architectures that are used
for the supervised learning model have deep and complex convolutional layers to learn
on multidimensional data. Thus, the deep convolutional layers can cause a degradation
problem, and multiple levels of deep steps can cause the loss of small object features.

Therefore, the aim of this research is to propose a deep learning semantic segmentation
for LULC segmentation using Landsat 8 imagery. Our research innovation and contribution
is to apply automatic land use segmentation using a deep learning algorithm over open-
source data. The adjustment network architecture, which consists of a convolution loop,
convolution block, and three levels of deep steps, is designed to learn and extract the
variety of land use features from medium spatial resolution imagery. Then, it is proposed
to use a land use dataset which consists of five main classes, including background, water,
agriculture, urban, miscellaneous, and forest, to evaluate the performance of land use
segmentation using Landsat 8 imagery. Moreover, the multispectral bands are used to
evaluate its performance for detecting and extracting complex land use features.

2. Materials and Methods

This research investigates an automatic LULC segmentation using Landsat 8 imagery.
The land use dataset is used for the supervised learning model. The multispectral bands are
evaluated for their performance in identifying LULC types. Furthermore, an adjustment
network is proposed to learn the complexity of land use patterns and features, and is
compared to the state-of-the-art network architecture for semantic segmentation. The
performance of the proposed network is calculated using accuracy assessment methods.
This section presents the details of the land use dataset, a proposed network architecture,
and the accuracy assessment algorithms.

2.1. Land Use Dataset

The study area is in Thailand, and has different spectral reflectance and texture features
of land use types in each season. For example, the forest has different plants in abundance
each season, urban growth is increasing year by year, water bodies expand in the rainy
season, agriculture has planting activity that follows the crop calendar, etc. Thus, multiple
perspective views of land use features are required for the supervised learning model. For
land use types in Thailand, as reported by the land development department in 2021 [33],
there are six main classes: urban and built-up land (UB); agricultural land (AC), which
includes paddy field, field crop, perennial, orchard, horticulture, swidden cultivation,
pasture and farmhouse, aquatic plants, aquaculture land, and integrated/diversified farms;
forest land (FR), which includes disturbed forest and dense forest; water bodies (WT);
miscellaneous land (MC), which includes other miscellaneous land, marsh, and swamp;
and background (BG). The largest coverage of the LULC is 54% which is agricultural
land; forest land is next, at 34%. The other types comprise 5% for built-up land, 4% for
miscellaneous land, and 3% for water bodies.

This land use dataset presents the LULC types using Landsat 8 imagery. The data
were collected from an operational land imager sensor installed on the Landsat 8 satellite.
There are 16 days in a repeating cycle for collecting data in the same area. The satellite
collects the spectral reflectance with different spectrum wavelengths over eleven bands;
seven bands are recorded from the visible, near infrared, and shortwave infrared portions of
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the spectrum, which have 30 m of spatial resolution along a 185 km swath. These include
Band 1 (0.43–0.45 µm), Band 2 (0.450–0.51µm), Band 3 (0.53–0.59µm), Band 4 (0.64–0.67 µm),
Band 5 (0.85–0.88 µm), Band 6 (1.57–1.65 µm), and Band 7 (2.11–2.29 µm). These spectral
bands were selected for the land use dataset. Samples for the land use dataset were cap-
tured in Thailand from 2020 to 2022, and were from Path 126–131 and Row 46–56, as shown
in Figure 1a. The total number of images used in this dataset was 50 scenes. Each image
has a pixel size of 7591 × 7761 in width and height, as shown in Figure 1b.
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Figure 1. Landsat 8 WRS 2 Descending Path Row covering Thailand (a) and seven spectral bands of
Landsat 8 (b).

Regarding the land use dataset preparation, the Landsat 8 imagery was clipped and
split into images with 480 × 480 pixel size, which is the appropriate size for data samples to
be fed into the network architecture. A sample set consisted of seven image bands (Band 1
to Band 7) and a labelled image. This research annotates the labeled images consisting of
six semantic classes as background, forest, water, urban, miscellaneous, and agriculture.
These classes relate to the LULC Level 1 from the USGS. The data sample set is shown in
Figure 2. The total number of sample sets was 13,600 sets. These sample sets were divided
into three groups named the training group, the validating group, and the testing group, as
shown in Table 1.
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Table 1. The number of samples for training, validating, and testing from the land use dataset.

Dataset Training Validating Testing

Land use dataset 8000 2000 3600

2.2. Proposed Network Architecture
2.2.1. Convolution Block

This convolution block presents a learning feature algorithm that includes the convo-
lutional layer, batch normalization, and activation function. The convolution layer learns
the fundamental features with a set of filter banks, then batch normalization standardizes
the feature map in order to stabilize the learning process and reduce the number of training
epochs. The activation function determines the output value of the convolution and adapts
the value to the specific length. This convolution block consists of two convolution sets.
Each set includes a convolutional layer, a batch normalization layer, and an activation
function. The convolution structure is shown in Figure 3.
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2.2.2. Convolution Loop

The convolution loop proposes learning of features in different feature dimensions.
This algorithm consists of a convolutional layer, a max-pooling layer, and an upsample layer.
The structure is shown in Figure 4. In this process, the input is dumped to the convolutional
layer. The output is sent to the max-pooling algorithm to reduce the feature size. The
convolutional layers have increasing filter banks that are applied for learning ability. The
upsampling algorithm is used for the upsampled feature map to achieve the target feature
size. The concatenation function is combined between the first convolutional layer and the
upsampling layer. The output is sent to the last convolutional layer in the convolution loop.
The result of the last convolution layer is the output of the convolution loop.
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2.2.3. The Proposed Network Architecture

The proposed network architecture (LoopNet) aims to segment land use features
over medium spatial resolution imagery. The network inherits the three-level modules to
learn the multidimensional features and segment the complexity of land use types. The
network architecture consists of four algorithms: the convolutional block, convolutional
loop, max-pooling algorithm, and upsampling algorithm, as shown in Figure 5. The input
data which has 480 × 480 pixels of feature sizes, feeds to the first convolutional layer and
convolutes with a set of filter banks. The output moves to the convolution block in the
first-level module. The convolution block learns and detects the object’s features using
the convolution algorithm. Later, the output of this block feeds to the convolution loop,
which is designed to improve the learning ability in different feature dimensions using the
max-pooling feature algorithm and optimizes the residual learning using the concatenation
function. For the second-level module, the output of the first convolutional layer feeds to
the max-pooling algorithm in order to compress the feature map to 240 × 240 pixels. This
compression reduces the learning parameters and memory requirements. Convolution
loops are applied to the learning features. This level consists of three convolutional loops,
one concatenation function, and one upsampling algorithm. Due to the compression of the
feature maps, the model can increase the number of filter banks to improve the learning
ability of the object features. Later, in the third-level module, the model comprises two
convolutional loops, a max-pooling algorithm, and an upsampling algorithm. The output
of the max-pooling algorithm in the second-level module feeds to the first layer of this
module. Then, the max-pooling algorithm is applied by resizing the object features to
120 × 120 pixels. The output feeds to the convolutional loop to learn the object features.
The number of filter banks are increased in this convolution layer. The last layer of the
third-level module is an upsampling algorithm that extends the feature map to double
its size. Then, the feature map reverts to 240 × 240 pixels. The output of the third-level
module is concatenated with the output of the convolutional loop of the second-level
module. This method helps the model to optimize learning features when they are lost
in the deep convolutional network. For the last layer in the second-level module, the
feature map is applied to an upsampling algorithm in order to enlarge the feature map
to 480 × 480 pixels. The output is concatenated with the output of the convolutional loop
in the first level module. These feature maps pass through two convolution blocks to the
last layer of this proposed network architecture. The softmax classifier calculates the class
probabilities of the land use types over medium spatial resolution imageries.
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Figure 5. LoopNet network architecture.

2.3. Training

The supervised learning model for deep learning semantic segmentation was applied
using the proposed network architecture and state-of-the-art network architectures. The
weight training in the convolution layers was optimized by the Adam optimization function
in the backpropagation algorithm. The best hyperparameters of each supervised learning
model, the hyperparameters of SegNet, PSPnet, and DeeplabV3+, were set as 0.001 for
learning rate, 0.999 for momentum, and 0.0001 for weight decay. For U-Net, ResU-Net, and
U-Net++, the hyperparameters were set as 0.0001 for the learning rate, 0.99 for momentum,
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and 0.0001 for weight decay. The LoopNet set the hyperparameters as 0.0001 for learning
rate, 0.999 for momentum, and 0.00001 for weight decay. Every network set the step size of
learning at every 1000 iterations. The number of epochs was 100, and the batch size was
defined as 10. Batch normalization and the dropout function were used in the model in
order to prevent overfitting and underfitting. The early step techniques and L2 regularized
logistic regression were used for the cost function. Weight balancing was applied to the loss
function to ensure that all classes contributed equally to solving the unbalanced training
data. The deep learning algorithm was implemented based on Tensorflow library version
2.4 with Python version 3.9 over Chalawan high-performance computing provided by the
NARIT organization in Thailand.

2.4. Evaluation Metrics

Quantitative accuracy metrics such as overall accuracy, mean intersection over union,
per class intersection over union, precision, and recall, were used to evaluate the perfor-
mance of the supervised learning model. The accuracy assessment was conducted in three
steps. The first step was to assess the learning process during the training model. The
second step was to test the learning procedure during its iteration validating the sample
sets. The third step evaluated the performance of the supervised learning model with a test
sample set. The overall accuracy shows the performance of the supervised learning model.
It calculates the sum of the true positive and true negative segmentations divided by the
sum of the true positive, true negative, false positive, and false negative segmentations.
The mean intersection over union (mIoU) presents the accuracy between the segmenta-
tion map and ground truth. It evaluates the ratio between the intersection of all correctly
segmented pixels divided by the union of all correctly segmented pixels and all falsely
segmented pixels. The per-class intersect over union computes the ratio of the target class
between the intersection of correctly segmented pixels divided by the union of correctly
segmented pixels and all falsely segmented pixels. Precision calculates the ratio of true
positive value divided by the sum of the true positive values and false positive values.
Recall measures the ratio of true positive values divided by the sum of true positive values
and false negative values.

3. Experiments and Analysis
3.1. Experiment Designs

Following automatic land use segmentation by deep learning, this research creates a
land use dataset from Landsat 8 imagery and implements the proposed network architec-
ture (LoopNet) for a supervised learning model. In order to overcome the performance
constraints of land use segmentation, the evaluation is set into three experiments. The first
experiment assesses the performance of deep learning semantic segmentation and pixel-
based classification by machine learning algorithms. The second experiment compares
the performance of the proposed network with other state-of-the-art network architec-
tures, including SegNet, U-Net, ResU-Net, U-Net++, PSPnet, and DeeplabV3+. Several
performance metrics are used for these comparisons. The third experiment evaluates
the performance of the land use dataset. Multiple spectral bands (Band 1 to Band 7) are
evaluated for land use segmentation.

3.2. Experiment 1: Comparison of Pixel-Based Classification and Deep Learning Semantic
Segmentation for Land Use Classification

This experiment compares the land use classification performance of pixel-based
machine learning and semantic segmentation via deep learning. Table 2 lists the accuracy
assessment and Figure 6 shows the extraction results. The results of the pixel-based
machine learning algorithms show that the random forest algorithm achieves 74.69%
overall accuracy and 26.14% mIoU. This performance is higher than the support vector
machine algorithm and maximum likelihood estimation algorithm by about 1.83% and
6.57%, respectively, in terms of overall accuracy. In contrast, deep learning semantic
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segmentation proposes land use segmentation. Baseline networks such as SegNet and U-
Net are applied in this evaluation. The results illustrate that the supervised learning model
using SegNet architecture has 84.13% overall accuracy and 54.20% mIoU, which is higher
accuracy than the U-Net architecture. As a result, the comparison between pixel-based
machine learning and deep learning semantic segmentation demonstrates that the deep
learning algorithm is superior to pixel-based classification. The overall accuracy, mIoU,
precision, and recall present higher accuracy results than the pixel-based methods. In
terms of per-class IoU accuracy, the highest performance for the deep learning algorithm
is SegNet, with 66.55% in agriculture, 61.05% in forest, 30.27% in miscellaneous, 61.53%
in urban, and 53.74% in water. These accuracy levels are higher than the random forest
method, which has 73.65% in agriculture, 55.56% in forest, 18.47% in miscellaneous, 33.64%
in urban, and 69.72% in water.

Table 2. The accuracy result (%) of pixel-based classification and deep learning semantic segmentation
on the land use dataset. The highest values are highlighted in bold.

Method
Per Class IoU

Precision Recall mIoU OA
BG AC FR MC UB WT

Maximum likelihood
estimation 71.89 52.12 41.13 15.45 30.23 67.94 52.23 53.37 21.23 68.12

Support Vector
Machine 73.76 58.45 48.09 19.54 36.54 70.98 55.61 53.76 24.67 72.86

Random Forest 73.65 61.11 55.56 18.47 33.64 69.72 56.85 54.21 26.14 74.69
SegNet 87.39 66.55 61.05 30.27 61.53 53.74 84.18 84.10 54.20 84.13
U-Net 88.33 67.57 58.85 30.75 52.75 57.55 81.94 81.92 55.09 81.93

The comparison of classification images between pixel-based machine learning and
deep learning semantic segmentation illustrates that the deep learning semantic segmen-
tation has better performance than the pixel-based method. For the maximum likelihood
estimation algorithm, the classification results present the lowest performance among
pixel-based methods, showing confusion in classification between urban and miscellaneous
classes as well as classification errors in the miscellaneous and water classes, as shown
in Figure 6a,c (Maximum Likelihood Estimation). Furthermore, the support vector ma-
chine algorithm has fair performance in the pixel-based methods. There are classification
errors between the agriculture and water classes, as shown in Figure 6a (Support Vector
Machine). It lacks classification ability in the forest class, as shown in Figure 6b,c (Support
Vector Machine). The random forest algorithm has better performance than the previ-
ous classification algorithms for land use classification, although there are classification
errors in the agriculture area which misclassify the water class, as shown in Figure 6a
(Random Forest). Furthermore, Figure 6c (Random Forest) illustrates a lack of classification
in the agriculture and miscellaneous classes. Regarding the performance of pixel-based
classification, it can be seen that there are a lot of errors in classification, such as pepper
noise and classification errors. However, deep learning semantic segmentation, which is a
feature learning algorithm, can detect and extract the land use types. Segmentation with
baseline network architectures such as SegNet and U-Net presents fairly good results for
land use segmentation, as shown in Figure 6a–d (SegNet, U-Net). The SegNet architecture
is better at detecting and extracting the urban and agricultural land classes; however, it
is lacking for the miscellaneous and forest classes, and omits a narrow river, as shown in
Figure 6a–c (SegNet). The U-Net architecture performs better than SegNet in the forest
and water classes, although it has errors in the urban and miscellaneous classes, as shown
in Figure 6a–c (U-Net). The results in Figure 6 show that the deep learning semantic
segmentation approach is superior to pixel-based classification for land use classification.
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Figure 6. The classification results and segmentation results of land use features on the land use
dataset. (a) urban and agriculture area; (b) urban, agriculture, and forest areas in countryside;
(c) urban and agriculture areas in valley; (d) urban, agriculture and forest areas on island.

3.3. Experiment 2: Evaluation of the Proposed Network and State-of-the-Art Network Architecture
for Land Use Segmentation

This experiment evaluates the performance of the proposed network architecture
(LoopNet) with state-of-the-art network architectures for land use extraction using Landsat
8 imagery. Table 3 lists the accuracy assessment and Figure 7 shows the extraction results.
The best performance for land use segmentation is LoopNet, which has 89.84% overall
accuracy. The overall accuracy of the proposed network is higher than other network
architectures by about 2.1% over U-Net++, 3.4% over ResU-Net, 3.62% over DeeplabV3+,
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5.71% over SegNet, 5.72% over PSPnet, and 7.91% over U-Net. Regarding the precision
and recall performance, LoopNet outperforms other networks with 87.88% precision and
87.81% recall, which is higher than U-Net++ by about 0.11% in precision and 0.09% in
recall, DeeplabV3+ by about 0.73% in precision and 0.71% in recall, and PSPnet by about
1.63% in precision and 1.59% in recall. The lowest performance in precision and recall
is SegNet, with 84.18% in precision and 84.10% in recall. For the mean intersection over
union, which illustrates the overall effectiveness of feature shape extraction, the highest
accuracy is found for LoopNet, with a 71.69% mIoU. The segmentation results for LoopNet
are more accurate than U-Net++ by about 4.82%, DeeplabV3+ by about 5.52%, ResU-Net
by about 5.94%, U-Net by about 6.6%, SegNet by about 7.49%, and PSPnet by about 9.76%.
For the segmentation accuracy in each class, as listed in per class IoU, in the agriculture
class, the highest IoU is LoopNet with 75.70%, which is more accurate than U-Net++ by
about 1.95% and DeeplabV3+ by about 3.57%, while the lowest IoU is SegNet with 66.55%.
For the forest class, the highest IoU is LoopNet with 73.41%, which is higher than U-Net++
by about 1.96%, DeeplabV3+ by about 3.63%, and ResU-Net by about 4.47%. The lowest
performance in the forest class is U-Net, with 58.85% of IoU. For the miscellaneous class, the
best performance is LoopNet, with 40.19%, followed by ResU-Net with 37.21% and U-Net++
with 35.58%. The lowest performance is U-Net, which has an IoU of 30.75%. Regarding the
IoU for the urban class, the highest accuracy results are DeeplabV3+ with 46.60%, LoopNet
with 43.12%, and U-Net++ with 42.07%. The lowest accuracy results are PSPnet with 28.30%
and U-Net with 22.75%. For water segmentation, the highest segmentation performance
is seen for LoopNet with 65.95%, which is higher than U-Net++ by about 4.14% and
DeeplabV3+ by about 5.17%. The lowest performance on water segmentation is for SegNet,
with 53.74%. Regarding the results of per-class IoU, it can be seen that the LoopNet achieves
the best performance in land use segmentation, achieving the highest segmentation for the
background, agriculture, forest, miscellaneous, and water land use classes.

Table 3. Accuracy results (%) of network architectures on the land use dataset.

Method
Per Class IoU

Precision Recall mIoU OA
BG AC FR MC UB WT

SegNet 87.39 66.55 61.05 31.27 31.53 53.74 84.18 84.10 64.20 84.13
U-Net 88.33 67.57 58.85 30.75 22.75 57.55 81.94 81.92 65.09 81.93
PSPnet 88.26 70.86 67.53 31.89 28.30 57.66 86.25 86.22 61.93 86.22
ResU-Net 88.68 70.10 68.94 37.21 39.65 58.85 85.50 85.40 65.75 85.44
DeeplabV3+ 88.29 72.13 69.78 34.65 46.60 60.78 87.15 87.10 66.17 85.12
U-Net++ 88.28 73.75 71.45 35.58 42.07 61.71 87.77 87.72 66.87 87.74
LoopNet 90.22 75.70 73.41 40.19 43.12 65.95 87.88 87.81 71.69 89.84

Regarding the segmentation results, deep learning illustrates that it can detect and
extract the land use type accurately. For the baseline network, SegNet, it presents an
accurate segmentation, though it lacks the ability to learn and extract small object features
such as small urban areas and narrow rivers, as shown in Figure 7a–c (SegNet). The other
baseline network, which is U-Net-based, shows better extraction for the forest class, as
shown in Figure 7b (U-Net); however, it is less accurate than SegNet for on the urban land
use class, as shown in Figure 7a,c (U-Net). The PSPnet network illustrates fair segmentation
capability, though it omits the small object features and has segmentation errors for urban
features, as shown in Figure 7a–c (PSPnet). For the improved networks, the ResU-Net
architecture performs better segmentation for land use types. However, it performs less
accurately for the miscellaneous class, as shown in Figure 7a,c (ResU-Net). The U-Net++
architecture has good segmentation capability, though it has extraction errors for the river
and forest areas, as shown in Figure 7b,c (U-Net++). The performance of this network is
similar to the DeeplabV3+ network. Although this network can detect and extract the land
use types, there are errors in small object features in the agriculture and urban classes, as
shown in Figure 7a,c (DeeplabV3+). The LoopNet architecture outperforms the others in
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land use segmentation, achieving better segmentation than the other network architectures.
LoopNet can segment the urban, agriculture, and forest classes accurately, as shown in
Figure 7a–d (LoopNet). However, its performance is lacking for the miscellaneous and
water classes because of the complex features of miscellaneous land and small water bodies,
including rivers and ponds.
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Figure 7. Segmentation results of network architectures on the land use dataset. (a) urban and
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areas in valley; (d) urban, agriculture and forest areas on island.
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3.4. Experiment 3: Evaluation of Spectral Bands for Land Use Segmentation

This experiment evaluates the effectiveness of the multispectral bands of Landsat 8
for land use segmentation. The performance accuracy results are shown in Table 4 and
illustrate the land use segmentation results in Figure 8. These spectral bands show different
spectral reflectance for the object features. The comparison shows that the best spectral
band for land use segmentation is Band 5, which has 83.91% overall accuracy, 83.98%
precision, and 83.86% recall. It has higher overall accuracy than the 0.51% of Band 4,
0.71% of Band 3, 1.32% of Band 6, 2.05% of Band 7, 6.59% of Band 1, and 9.13% of Band 2.
Regarding the segmentation results in mIoU, the highest segmentation is for Band 6 with
54.96%, which is more accurate than Band 7 by about 0.18%, Band 2 by about 0.23%, Band 3
by about 2.51%, Band 4 by about 3.22%, Band 5 by about 3.29%, and Band 1 by about 4.73%.
When looking at the per class IoU for the agriculture class, the best band is Band 4 which
has 67.85%. This is higher than Band 7 by about 0.92%, Band 5 by about 1.01%, Band 3 by
about 1.67%, Band 6 by about 2.51%, Band 1 by about 3.68%, and Band 2 by about 5.52%.
For the forest class, the highest IoU is Band 6 with 66.04%. The lowest Band 2 with 48.65%.

Table 4. The accuracy result (%) of spectral bands on the land use dataset.

Method
Per Class IoU

Precision Recall mIoU OA
BG AC FR MC UB WT

B1 89.45 64.17 49.76 28.02 48.79 38.57 77.89 76.36 50.23 77.32
B2 88.18 62.33 48.65 33.74 62.91 35.81 75.24 74.35 54.73 74.78
B3 87.43 66.18 61.26 31.08 54.56 46.16 83.96 83.88 52.45 83.12
B4 88.26 67.85 65.58 30.15 57.40 56.53 84.88 82.40 51.74 83.40
B5 88.24 66.84 63.54 32.33 54.96 58.86 83.98 83.86 51.67 83.91
B6 88.17 65.34 66.04 30.60 59.32 58.49 82.66 82.53 54.96 82.59
B7 88.23 66.93 62.77 35.23 62.41 50.89 81.93 81.80 54.78 81.86

B1–B7 90.22 75.70 73.41 40.19 73.12 65.95 87.88 87.81 71.69 89.84

The other results for IoU are Band 4 with 65.58%, Band 5 with 63.54%, Band 7 with
62.77%, Band 1 with 49.76%, and Band 2 with 48.65%. In the miscellaneous class, the band
with the best performance is Band 7 with 35.23%, which is more accurate than Band 2 by
about 1.49%, Band 5 by about 2.93%, Band 3 by about 4.15%, Band 6 by about 4.63%, Band 4
by about 5.08%, and Band 1 by about 7.21%. For the urban class, the best band is Band 2
with 62.91%, providing more accurate segmentation than Band 7 by about 0.5%, Band 6 by
about 3.95%, Band 4 by about 7.95%, Band 5 by about 8.22%, Band 3 by about 8.35%, and
Band 1 by about 14.12%. Lastly, for the water class the best band for water segmentation is
Band 5 with 58.86%, followed by Band 6 with 58.49%, Band 4 with 56.53%, Band 7 with
50.89%, Band 3 with 46.16%, Band 1 with 38.57%, and Band 2 with 35.81%. In summary,
the best bands with the highest performance in each class are Band 5 in the agriculture
class, Band 6 in the forest class, Band 7 in the miscellaneous class, Band 2 in the urban class,
and Band 5 in the water class. Due to the performance of each spectral band for detection
and extraction of land use features, the combination of seven bands shows the highest
performance, with 89% overall accuracy and 71.69% mIoU, and achieves the best accuracy
in per-class IoU with 75.70% in the agriculture class, 73.41% in the forest class, 40.19% in
the miscellaneous class, 73.12% in the urban class, and 65.95% in the water class.
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area; (b) urban, agriculture, and forest areas in countryside; (c) urban and agriculture areas in valley;
(d) urban, agriculture and forest areas on island.
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Regarding the segmentation result, Band 1 shows segmentation errors in the water
class, as shown in Figure 8a,d (B1). The water is segmented in the agriculture areas and
the forest is extracted in the water areas. Regarding the visible bands, Band 2 has better
segmentation results. The model can learn and extract the land use features well. Though
it can reduce the segmented errors in the water class, narrow river and forest features
are omitted in the segmentation results, as shown in Figure 8a–c (B2). Band 3 illustrates
the segmented result accurately in the agriculture class. This band helps the model to
differentiate between water and agricultural features. It provides better segmentation in
water areas, as shown in Figure 8d (B3). However, urban features show more errors in this
band, as shown in Figure 8a (B3). Band 4 shows accurate land use segmentation in the water
class, although it has segmentation errors in the miscellaneous and urban features, as shown
in Figure 8d (B4). Regarding the infrared bands, near-infrared in Band 5 provides accurate
land use segmentation. The model can learn the land use features and segment the land
use classes in the forest, agriculture, and water areas well, as shown in Figure 8a–d (B5).
However, this band has limitations in detecting and extracting of miscellaneous features.
For short-wave infrared, Band 6 has extraction errors for miscellaneous features. Although
it was omitted in this learning model, this band is able to detect and segment narrow
rivers, as shown in Figure 8a–c (B6). Lastly, Band 7 has limitations in terms of its ability
to differentiate between the miscellaneous features and agriculture features. Its most
common segmentation errors are for the miscellaneous, agricultural, water, and forest
classes as shown in Figure 8a–d (B7). Furthermore, the multispectral bands show the
differences in spectral reflectance and land use features, which has advantages for land use
identification. To gain the advantages of these different spectral bands (Band 1–Band 7),
Figure 8a–d (B1–B7) shows the better land use segmentation performance compared to
the supervised learning models trained with one band. The multi-band model can more
accurately detect and extract the urban, forest, water, and agriculture classes. However, the
miscellaneous class remains a limitation with regard to segmentation of complex features.

4. Discussion

Regarding the above-mentioned evaluations and comparisons, it was found that a
deep learning semantic segmentation algorithm can be used to detect and extract land
use features from medium spatial resolution imagery. The pixel-based machine learning
algorithms (Maximum Likelihood Estimation, Support Vector Machine, Random Forest),
which are statistical classification methods, consider spectral information. The per-pixel
classification algorithms present fair classification results. These algorithms can classify
land use features; however, they show classification errors when dealing with unclear and
complex spectral features. Furthermore, the results are influenced strongly by salt-and-
pepper effects. In contrast, deep learning algorithms can use the land use dataset to learn
land use features and patterns from multiple perspectives. In evaluating deep learning
performance, the supervised models which applied the baseline network architectures
SegNet and U-Net have better results in land use segmentation using medium spatial
resolution imagery. The supervised learning models are able to learn medium and complex
land use features using the Landsat 8 imagery, then automatically detect and extract the land
use classes accurately. The clear boundary of land use features shows good segmentation
with a proper shape. However, small object features are omitted when fed through to the
deep network. The unclear land use features and complexity of land cover types have an
effect on extraction errors. The comparison results between pixel-based classification and
semantic segmentation illustrate that deep learning semantic segmentation outperforms
the pixel-based machine learning algorithms.

Due to segmentation errors in the deep steps of the network architecture when us-
ing medium spatial resolution imagery from Landsat 8, the multi-level features of the
convolutional neural network may cause degradation problems, and medium resolution
imagery appears with a medium level of object features. Thus, the convolution loop and
convolution block in the LoopNet architecture are proposed for land use segmentation. The
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proposed network successfully segments the land use features using Landsat 8 imagery,
showing better segmentation of land use shapes. The supervised learning model achieves
89.84% of overall accuracy and 71.69% of mIoU. Although there are extraction errors and
misclassifications of land use classes, the proposed network produces better segmentation
results on land use classes, with 75.70% for agriculture, 73.41% for forest, 40.19% for mis-
cellaneous, 73.12% for urban, and 65.95% for water. The LoopNet network architecture
uses a convolutional loop to its benefit in learning land use features in different feature
dimensions. It solves degradation problems by feeding through the deep convolutional
layers. This algorithm helps the model to segment land use features into a proper shape.
The convolution block demonstrates its learning ability in the land use features. It supports
the model in learning and differentiating the land use features into accurate classes. The
three levels of deep steps in the convolutional neural network are designed to learn the
land use features on a multidimensional level. This prevents degradation problems when
the land use features are reduced to low level features in the bottom of the convolutional
network. Regarding the results of land use segmentation shown in Figure 7a–d (Proposed
Network), LoopNet is able to detect and extract the water, forest, and agriculture classes,
though shows limitations in segmentation of the complex and unclear features of the
miscellaneous, urban, and agriculture classes. Narrow river bodies are omitted in the
segmentation results. Furthermore, based on the land use dataset, the performance of the
proposed network architecture is evaluated and compared with baseline networks (SegNet,
U-Net, PSPnet) and adjustment networks (ResU-Net, DeeplabV3+, U-Net++). Regarding
the baseline networks, the supervised learning models based on the SegNet, U-Net, and
PSPnet networks perform relatively well for land use segmentation, although there are
extraction errors in the water and miscellaneous land use classes. The deep stage convo-
lutional neural network (SegNet) and pyramid scene parsing network (PSPnet) perform
weakly on small and complex land use features. The U-shaped network (U-Net) lacks the
ability to learn urban features. Regarding the adjustment networks, deep residual U-Net
(ResU-Net) produces better segmentation results in the urban and water of land use classes,
however, it over-segments the miscellaneous class. The improvement networks DeeplabV3
(DeeplabV3+) and nested U-Net (U-Net++) are able to overcome the extraction errors in
the miscellaneous class. However, the performance of LoopNet exceeds that of the other
network architectures in detecting and extracting the land use features accurately. It works
well on medium spatial resolution imagery. The main classes, which show clear features,
are segmented in accurate shapes. The limitation of this network is in its classification of
the land use classes in the LULC classification system Levels 2 and 3. This is due to the
low levels of differentiating features in the land use subclasses. The three levels of the deep
steps are GPU-consuming, and limit the ability to learn multidimensional features.

Furthermore, based on the land use dataset, the comparison of spectral bands using
the proposed network is effective at identifying land use features in different spectral
wavelengths. Band 1, called the coastal/aerosol band, senses violets and deep blues. It has
high contrast in shallow water and dust. The results show fair land use extraction, though
it has limitations in terms of its ability to differentiate features between agriculture, forest,
and deep-water areas. For visible bands (Band 2 (Blue), Band 3 (Green), and Band 4 (Red)),
Band 2 measures the blue wavelength and enhances the water features. The extraction
results provide better segmentation in the urban class. However, it has weaker performance
in classifying similar texture features in the agriculture and forest classes, as well as in
differentiating deep-water areas, which are the same errors as seen in Band 1. This is due to
statistical learning between forest and water features. Band 3 presents the green wavelength,
and emphasizes vegetation features for assessing plant vigor. This band improves learning
ability for differentiating green features, and shows good segmentation in the agriculture
and forest classes. Band 4 collects the red wavelength, and emphasizes vegetation slopes
and plant chlorophyll status. It differentiates abundant plant features and dry areas. The
results overcome deep water extraction issues, and provide more accurate segmentation
results in the agriculture and forest classes. However, it has limitations in terms of its
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ability to detect and extract the complexity of miscellaneous features. For the infrared
bands (Band 5 (near-infrared), Band 6 (SWIR), and Band 7 (SWIR)), Band 5 measures the
near-infrared wavelength. This band contrasts the features between vegetation, water
boundaries, and landforms. The results illustrate better segmentation of land use classes
over other bands, especially for the water class. It is more accurate for the land use shape.
However, it lacks narrow river extraction. Band 6 and Band 7 sense the shortwave infrared
wavelength. They provide good presentation of wet and dry areas, plant drought stress,
and strong contrasts between rocks and soils, and can delineate burnt areas. These bands
show good land use extraction in forest and urban classes, though they are less accurate
than Band 5 in differentiating water features, and there are more extraction errors in the
miscellaneous and water classes. As a result, it can be seen that each spectral band presents
different spectral reflectance for each land use feature. The segmentation performs land
use extraction well. Each spectral band reflects an accurate segmentation result in each
class. The performance of the supervised learning model, which applies all spectral bands,
shows good segmentation for all the land use classes. The model takes advantage of
different spectral reflectance to detect and extract the land use features accurately. However,
identifying small and complex land use features is a limitation of deep learning semantic
segmentation using medium spatial resolution imagery. To overcome these segmentation
errors, the complexity of land use features in the land use dataset and the number of filter
banks in the model can be increased.

According to these comparisons, deep learning semantic segmentation using the
LoopNet architecture and land use dataset provides good the performance in learning land
use features from Landsat 8 imagery. Moreover, the supervised learning model is superior
to other network architectures in detecting and extracting land use classes, as shown in
Table 3 and Figure 7. The supervised learning model which applies all spectral bands raises
the efficiency of accuracy assessment and segmentation results when using the land use
dataset, as demonstrated in Table 4 and Figure 8.

5. Conclusions

This research proposed deep learning semantic segmentation to detect and extract
land use features using medium spatial resolution imagery from the Landsat 8 satellite.
The land use dataset, which has six main classes (background, agriculture, forest, miscel-
laneous, urban, and water) is intended for learning land use patterns and features. The
LoopNet architecture, which comprises a convolutional loop and convolutional block, is
implemented for the supervised learning model. Multiple spectral bands are evaluated for
their performance to differentiate land use types. The experimental results show that the
performance of deep learning semantic segmentation outperforms pixel-based machine
learning. The proposed model can detect and extract land use features accurately. Fur-
thermore, the proposed network architecture, LoopNet, demonstrates better performance
than the baseline network and improvement network architectures, as confirmed by both
the accuracy assessments and segmentation results. The LoopNet architecture is better at
segmenting land use features. The supervised learning model can differentiate between
urban and miscellaneous features, and can segment a narrow river accurately. Regarding
the land use dataset, the performance of the multiple spectral bands illustrates that Band 5,
which captures data in the near-infrared wavelength, shows better segmentation results
over other bands. Moreover, the combination of multiple spectral bands (Band 1–Band 7)
as a sample set achieves high performance, with 89.84% overall accuracy and 71.69% mIoU.
For this reason, it is concluded that the deep learning algorithm applying the LoopNet
architecture and the land use dataset can be used by the supervised learning model to
detect and extract land use features using medium spatial resolution imagery. For future
works, the number of data points with various land use features in the land use dataset can
be increased, and time-series data could be applied to enhance the multiple perspective
views of land use patterns.
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