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Abstract: Historical visual sources are particularly useful for reconstructing the successive states of
the territory in the past and for analysing its evolution. However, finding visual sources covering a
given area within a large mass of archives can be very difficult if they are poorly documented. In the
case of aerial photographs, most of the time, this task is carried out by solely relying on the visual
content of the images. Convolutional Neural Networks are capable to capture the visual cues of the
images and match them to each other given a sufficient amount of training data. However, over time
and across seasons, the natural and man-made landscapes may evolve, making historical image-
based retrieval a challenging task. We want to approach this cross-time aerial indexing and retrieval
problem from a different novel point of view: by using geometrical and topological properties of
geographic entities of the researched zone encoded as graph representations which are more robust
to appearance changes than the pure image-based ones. Geographic entities in the vertical aerial
images are thought of as nodes in a graph, linked to each other by edges representing their spatial
relationships. To build such graphs, we propose to use instances from topographic vector databases
and state-of-the-art spatial analysis methods. We demonstrate how these geospatial graphs can be
successfully matched across time by means of the learned graph embedding.

Keywords: historical visual sources; graph embeddings; geospatial descriptors; indexing and
retrieval of historical data

1. Introduction

Historical visual sources, such as maps, engravings, drawings, or photographs, are
the only visual representations of the past geographical realm still accessible. As such,
they are extremely important sources of information for analyzing the past territory and its
evolution. In recent years, many historical Geographic Information System (GIS) initiatives
have thus been developed, essentially using maps or, more rarely, old photographs to
reconstruct the past territory.

A first challenge faced by these works is the georeferencing of the historical visual
sources. This operation aims at determining the geographic position of a given visual source.
It can be performed using either a physical sensor model based on precise physical and
geometrical information describing the sensor used for data capture or a correspondence
model derived from a set of ground control points for which ground and image coordinates
are known [1]. Whether performed manually [2] or automatically [3], this task requires
providing enough ground control points to the system that estimates the georeferencing
model. This thus implies identifying beforehand the area covered by each historical visual
source, which is, in the case of old aerial photographs, sometimes very poorly documented,
can be extremely difficult.

A second challenge lies in the extraction of useful information from the visual sources
and their integration within a GIS data structure to make them usable. As an example,
ancient place names can be extracted from old maps and stored with their respective
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locations in some GIS data format. This operation can be performed manually, most often
through collaborative approaches (see for example, https://geo.nls.uk/maps/gb1900/
(accessed on 28 October 2021) or https://geohistoricaldata.org/) (accessed on 28 October
2021), or semi-automatically, using collaborative correction or validation tools (such as http:
/ /buildinginspector.nypl.org/ (accessed on 28 October 2021)), applied on data produced
by automatic image segmentation and vectorization approaches [4,5].

The work presented in this article addresses the aforementioned challenge, that is to
automatically identify and index the geographical area covered by some given historical
visual source. We especially focus on old aerial photographs, but the approach could also
be extended to other visual sources such as old maps. We see this work as the step towards
the unified framework for analysis of various multidimensional cross-temporal sources.

Existing approaches designed to match an aerial photograph usually then compare
it to a database of georeferenced photographs [6] using visual cues i.e., color, texture or
luminance descriptors. It is, however, not a trivial task to match the aerial photographs
available across years due to the structural and appearance changes occurring through
time. New buildings and roads appear, old ones are demolished, rivers, and watercourses
can change their beds, etc. Nevertheless, intuitively, these man-made and natural objects
are more stable than pure visual cues, which strongly vary with the season and weather
conditions on the acquisition day.

While our approach targets historical aerial image matching with georeferenced pho-
tographs, we propose a fundamentally different and novel way to encode the information
captured by photographs: we propose to leverage the geometrical (normalized perimeter
and eccentricity, shape, concativity, etc.) and topological properties of geographic entities
represented by the photographs instead of pure visual cues. Indeed, we think that using
the properties and spatial relations of geographic entities could outperform matching
approaches based on visual cues, because they change less through time than the visual
appearance of photographs. To use these properties of geographical entities, a first step is to
extract them from photographs, using automatic vectorization tools for instance. However,
to test our hypothesis, we propose to first dispense with this step and to use instances of
vector geographic databases instead. Indeed, modern vector topographic databases are
commonly captured from aerial photographs and are thus geometrically consistent with
them. Hence, inspired by the recent progress in learning on graph data, we propose to
model the scene depicting a geographic area as a graph, which is a very powerful and
intuitive way to encode geoinformation. In this graph, geographic entities are represented
by nodes, their properties are added to the nodes as labels, and their spatial relationships
are represented by edges between the respective nodes. For example, an aerial photograph
can be converted into an undirected graph, where rivers, buildings and roads are the
nodes and edges represent their neighbourhood relationships. Graph representation is very
promising because it can capture and standardize the semantics and relational information
from various sources of data such as photographs, historical maps, or textual descriptions.

The contributions of this work are the following. First of all, we propose a novel ap-
proach for cross-time geographic area search, formulating the problem as a graph similarity
matching task. Second, we create a multisource cross-time graph database which is the first
benchmark of such a kind available for other researches. Third, we evaluate the classical
key-points based search on our new dataset to establish a baseline. Fourth, we propose an
approach to learn the graph similarity using a Graph Neural Network based Siamese-like
architecture.The tests we performed show that the proposed method can be successfully
used for cross-time data matching and that it is a promising avenue as there is still a lot of
possible improvement for the more challenging cross-year cross-source retrieval task.

The remainder of this article is structured as follows. First, we present the problem def-
inition and basic notions that motivates our proposal in Section 2. We give the background
on the relevant research areas in Section 7. This section completes the research paper and
gives the overview of the methods, on which this work is based; however, it is not necessary
for understanding of the proposed method. We outline the proposed framework which
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uses a Graph Convolutional Network (GCN) as backbone and a siamese structure to learn
the graph embeddings in Section 3. We introduce a new across-time graph dataset retrieved
from the historical photographs and the intuition behind the conversion of visual data to
structured one in Section 4. In the next section we describe the experiments performed to
evaluate the proposed approach. The last section, Section 8, outlines the future works.

2. Problem Statement

In our project, we aim at developing a unified framework for the analysis and indexing
of various types of visual sources, seeking the optimal common representation of different
features coming from archive photographs, historical maps, modern vectorized maps
etc. This article focuses on a subtask in the scope of the project: the cross-time matching
of geographical areas, based on the similarity of the geographic entities that are located
in them. This subtask is particularly difficult as the landscape may have changed over
time. To evaluate our approach, we present in this article a use case scenario of cross-time
matching of aerial vertical photographs, based on the similarity of the geographic entities
they represent.

Aerial image retrieval is particularly difficult, as almost all images represent the
same type of geographic entities: buildings, road, watercourses, fields, forest, etc. At that
resolution, the main characteristic that distinguishes one geographic area from the others
is the spatial distribution of the geographic entities it contains. Moreover, the majority
of rural areas contain no distinguishable objects at all, being occupied by the forests or
agricultural fields. The three closest directions to the problem at hand are visual landmark
cross-view research, retrieval analysis of visual information in various historical-based
studies, and more generally Remote Sensing (RS).

The first group of methods commonly requires the objects present in the image to be
captured with a higher resolution and contain specific landmarks. Their features can then
be learned to be matched across views by means of a Convolutional Neural Network (CNN)
as it was done in [7,8]. However, archive aerial images often do not have a significant level
of details and high resolution and cannot be matched using these methods. Some recent
works proposed to learn the relationship between ground level appearance and overhead
appearance and land cover attributes from sparsely available geotagged ground-level im-
ages [9-11]. The methods have demonstrated their potential for the problem of determining
the real-world geographic location across visual sources. However, they do not particularly
target across-time scenarios and perform poorly on unseen locations. Geospatial zone
visual research and retrieval in the context of aerial images was analyzed to a much lesser
extent, with some examples of existing software such as [6] where aerial image databases
are extensively searched and matched to geolocate a parcel of land data in the USA. The sec-
ond group of methods covers conceptually different methods, but it is always assumed that
the images are at least partially georeferenced as in the photogrammetry-based analysis
of historical aerial photography [12,13]. The analysis of the changes is commonly based
on visual characteristic dynamics. For example, ref. [12] quantify volumetric changes
along sandy beaches from archival imagery using photogrammetry-based analysis. In this
scenario, the temporal changes are the ones which should be tracked and quantitatively
or qualitatively analyzed using historical data. Remote-Sensing gathered lots of attention
of researchers recently, thanks to the availability of accurate data of Earth observations.
While the approaches and applications vary significantly, the common characteristic of
RS is the large volume, large variety, large velocity, large veracity and large value, which
raises awareness about the importance of large-scale image processing, fusion, mining and
indexing and retrieval. Hence, the indexation of the images plays a important role to solve
the RS problems [14,15]. Historical data possess similar processing challenges and will
benefit from a set of appropriate indexing and retrieval tools.

Figure 1 shows the unified framework for analysis of various multidimensional cross-
temporal visual sources proposed in this work. As shown this figure, our global approach
starts with vectorization step of the historical visual sources. This step can be performed
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either manually, or with an automatic semantic segmentation method. It aims at extracting
the main geographic entities represented in the visual sources, their characteristics—such
as shape, size, orientation, nature, etc., and their spatial relations. Inspired by the recent
advances of machine learning graph-based approaches and the achievements of CNN-
based visual matching algorithms, we propose to use a graph representation derived from
this semantic segmentation process results to match aerial images across time. Similarly,
some visual-based methods such as [9] rely on a prior segmentation, which is made by the
means of CNNs in a separate step. The segmentation usually allows to detect important and
significant objects present on an image. While CNNs are showing state-of-the-art results in
segmentation, this step is still error-prone. Thus it remains a question whether the possible
errors in this step are impacting a lot results of the following cross view matching task.
In this work, we exclude the segmentation task to concentrate on the data representation
and matching steps, hence we choose to use manually annotated dataset. This allows us to
exclude the potential source of errors due to the segmentation and evaluate the feasibility
of the matching part of the algorithm in the controlled setup. Therefore, in the remainder
of this article we will focus on the steps 1 to 4 of the GisGCN approach.

_G1=(V1, E1) E""" T

Pre-requirement

semanllc labellug

‘ X 5. ¢ ,L‘ :
Ny - . 2019 G2 =(v2, E2) O -

Figure 1. The proposed approach GisGCN consists of several steps: (1) selection of the POI and
surrounding geographical zones for cross-time data; (2) for each geographic zone, representation
of its geographic entities as a connected labelled graph; (3) for each graph, GCN-based embedding
learning with shared weights; (4) similarity-based retrieval of geographic areas across time.

In step 1, Points Of Interest (POI) are sampled using the characteristic of the geographic
entities present on the historical visual sources. In step 2, the geographic entities in the
area of a predefined size around a POI are used to form the nodes of a graph G. The edges
are built based on the spatial relationships between the geographic entities and nodes are
labelled with semantic and geometric attributes of their respective geographic entity. Given
the set of graphs G={Gy, Gy, ..., Gr} representing the territory around a POI through years,
our purpose is to retrieve nearly identical geographic areas across time for the query graph
by employing a similarity measure. Step 3 thus aims at learning an embedding vector
D of the geographical graph structure, which can take into account the node attributes
and topological relations between the nodes, be robust to the noise and changes in the
data coming from different sources or different dates, and be compact. In step 4, these
embeddings are used for fast search and retrieval in a large database of thousands of graphs.
Figure 2 shows the training and evaluation scheme used in our article. We train on the
dataset of known geographic area correspondences using contrastive learning approach.
At the evaluation step, the pre-trained network is used to obtain a descriptor from a
query graph, which is then matched to a database by the means of K nearest neighbors
(KNN) search.
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Figure 2. The main steps of the proposed approach GisGCN on graphs: training and evaluation.

We called the proposed approach GisGCN, where Gis stands for geographic informa-
tion science which deals, among other things, with geographic information representation
and analysis, and GCN is simply the term used for a neural network that operates on graphs.

3. GisGCN: A GCN-Based Siamese Model for Geographic Area Embedding Learning

We suggest that the topological information encoded in a graph structure can be
essential when we need to distinguish between two different geographic areas with a
similar set of objects and similar geometric attributes. Therefore, we propose a novel
learning pipeline using a GCN [16] network to learn to match geographic areas represented
as graphs across time. In the original work, GCN model was proposed to perform a node
classification task for big sparse graphs. Our model aims to learn an embedding space for
variable size geographic graphs by exploring the notion of deep graph matching.

3.1. Building Graphs to Represent Geographic Entities and Their Spatial Distribution

For each geographic zone of interest, the graph representing its spatial configuration
can thus be summed up by the following equation:

GC, = (R, X, A) (1)

where:

* R, is the reference area, a generic term that defines the geographic zone of interest
around a POI,

e X =1,x1,x, is the set of values associated with all nodes, so-called node features,

e |is the geographic entity type to which each node belongs,

e A € RN is the adjacency matrix to encode the relational information between
all nodes.

Such a graph can be built from the geographic vector data captured in pre-requirement
step of the pipeline proposed in Figure 1. POI can be chosen according to user’s criteria,
based on geographic entities properties. The size of the geographic areas built around
the POI may vary depending on the scale of analysis of each use case. Node features are
attributes describing geographic entities properties. They may be provided by the input
vector dataset, if available, or computed from the geometric properties of the geographic
entities by means of classical spatial analysis methods [17]. Edges are derived from spatial
relationships between geographic entities: they may be simple neighbourhood relation-
ships, computed by means of a Delaunay Triangulation [18] for example, or topological
relationships implemented in the graph as labelled edges.

3.2. Model Architecture

Given two graphs G; = (X1, A1) and G, = (X3, Az), where A is a connectivity matrix
and X is node parameters, we want a model that produces the learning function f : G — D
through the GCN with learnable parameters w, to compare them next with the similarity
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score s(Dj, D;) between them in a new vector space. The encoding function f takes the A
and X values of a current POI and all geographic entities within the reference area R as
input and outputs the embedded geospatial contextual information. Our model allows to
convert graphs to descriptors, which enables efficient retrieval with fast nearest neighbor
search data structures.

In this work, we propose to adapt Siamese networks to handle graphs to learn their
embeddings. Indeed, a Siamese network is particularly effective in training a model
with few examples for each class, which is most often the case for historical visual sources.
The Siamese network consists of two identical networks (with shareable weight parameters).
In our case, each of the networks is essentially a GCN with maxpooling, as depicted in
Figure 3. This graph matching embedding model is inspired by GNN [16], and comprises
four main parts:

1.  asingle fully-connected layer to convert the node feature vectors to a new space,

2. a GCN based feature aggregation layer with additional fully-connected layers to
increase the depth,

3. amaxpooling layer,

4.  afinal fully-connected layer.

The architecture is schematically shown in Figure 3. The aggregation layers follow the
formulation of the GCN by [16] and are defined as:

XE = o(AXIW) )

where A is the normalized and modified as in [16] adjacency matrix and W are weights to
be trained and ¢ is a ReLu activation function. As in the original work by [16] we use two
layers of propagation, so that the representation for each node will accumulate information
in its local 2-hop neighborhood.

Graph E \
preproce H \ 2
2 \ Pooling n 2
ssing = =2 3| = = & |=| Descriptor
and g 1o over
batching E| V4 i | nodes
i . ar
i Descriptor D 28
[ 7 Qo
- | Descriptor D =
: g0
[ Descriptor D, | 8 &

Figure 3. Schematic architecture of the model proposed to train the graph embeddings.

After we obtain the final node representations, we aggregate across them to get graph-
level representations. This is implemented by a simple maxpooling followed by a MLP
operation that reduces the node representation into a single vector and then transforms it:

D= MLP(;(maxpoolingxen(le)) ®)

where X are the learned graph nodes n features.

The proposed architecture mainly differs from [16] in the point (3) where we do not
calculate the node-level features, but compute a graph-level representation instead by
performing a maxpooling operation over the nodes in a graph to obtain the whole graph
descriptors D similar to [19]. The pooling layer maps the input graph of any structure
and size to a fixed size-structured output.

During training, the embedding model will jointly reason about the graph structure as
well as the graph features to come up with an embedding that reflects the notion of similarity
described by the training examples. The proposed Siamese GCN model is endowed with
the contrastive loss to train on the data with the ground truth correspondence. The NT-
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Xent [20] loss function for a positive pair of examples of matching geographic areas through
time (i, j) is defined as:

exp(sim(Dy,D3)/T)

I = —log -
y N Lyziexp(sim(Dq, D2)/T)

4)

where: T is the temperature, sim(D;,D;)—cosine similarity, i, j—two graphs in batch of size
N. The final loss is computed as an arithmetic mean across all positive pairs, both (i, j) and

(j, 1), in a mini-batch.

1
L= 5 [1(2k —1,2k) +1(2k, 2k — 1)] ")

Following the idea of [20], we propose to create batches of random graphs to train
the model. However, instead of altering them to use as an input for the second branch of
the Siamese GCN, we take the graphs representing the same geographic area but from a
different time frame to form positive samples. Then the loss encourages the embeddings
for the same geographic area to be closer in the embedding space in terms of the cosine
distance; and the embeddings of different areas to be farther apart.

3.3. Similarity-Based Retrieval of Geographic Areas

Once the model has been trained, it can be used to produce further graph embeddings
for areas of unknown location for which there is a historical visual representation at a
certain date. The resulting embeddings can then be compared to those pre-computed
during model training using state-of-the-art measures such as cosine similarity or L2
distance. If the searched area is represented in our training database, then its embedding
should obtain a higher similarity score with those of the graphs representing the same area
at different dates, thus allowing the location of the searched area. Ideally, it should obtain a
higher score with the temporally closest embedding, provided that the available historical
representations have the same level of detail, thus allowing to estimate the valid time of
the visual historical source from which it is extracted.

4. Dataset Preparation

Our target use case deals with ancient aerial photographs picturing French landscape
evolution through time: we therefore need annotations for each set of photographs rep-
resenting the same area at different dates. Besides, aerial image retrieval is particularly
difficult, as almost all images represent the same type of geographic entities: buildings,
road, watercourses, fields, forest, etc. At that resolution, the main characteristic that distin-
guishes one geographic area from the others is the spatial distribution of the geographic
entities it contains. To maximize our chances, we thus focus on the geographic areas where
points of interest are located.

4.1. Input Data Selection

The input dataset in our experiments is made of temporal snapshots of a topographic
vector database which precisely correspond to vertical aerial images taken from three French
departments (the so-called “departments” are administrative divisions of the French terri-
tory): Moselle, Bas-Rhin, and Meurthe-et-Moselle in four different years (2004, 2010, 2014
and 2019). The data used to create our dataset originate from the French Mapping Agency
(IGN) [21]. They have been annotated manually, following the same data capture rules and
in an incremental way through time. They are thus very homogeneous, and especially very
geometrically consistent through time (See Figure 4). We have selected the following types
of geographical entities for their visual salience in the landscape and their durability: roads,
railways, waterways, buildings, airports, sports facilities, and cemeteries. For each depart-
ment and each temporal snapshot, we leverage the geometric representations of geographic
entities as well as their associated attributes information to build a graph describing their
overall spatial distribution on the territory.
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Figure 4. Temporal snapshots overlapped with an orthophotograph from 2020. Buildings captured at
different dates are shown with green and white strokes for 2004 and rose and beige solid color for
2019. Unless the terrain changes, they are perfectly identical from one database version to the next.

To test the potential for generalization of our method, we need more heterogeneity be-
tween geometries, as if they had been produced by some automatic segmentation algorithm.
Therefore, we also added data for the same geographic entity types, taken from Open Street
Map [22] (OSM) for two of the departments (Moselle and Meurthe-et-Moselle). OSM data
are produced by crowd-sourcing, without precise data capture rules, and therefore, they
are more likely to have heterogeneous geometries. They are only available in the most
recent edition dated 2020. In addition to these cross-source data, we also experiment with
randomly generated noise added to geometric attributes across the single source dataset.

4.2. Defining Geographic Zones of Interest

To ensure that the areas represented by our graphs contain enough geographical
entities to identify them, we build our graphs around POls: building of religious nature,
historical objects and monuments, castles or forts, local governmental buildings, buildings
with the sport functions, railway stations, airports, etc. We take the exact geometric centers
of POIs, randomly adding a small shift to its easting and northing coordinates up to
10 m. An example of the geographic zones selected for the database is shown in Figure 5,
where the area bounding boxes of dimensions 200 x 200 m are superimposed on the aerial
footage images.

For each vector database edition (namely, 2004, 2010, 2014 or 2019), we randomly
shift the center of the bounding boxes up to 20% so that the represented area is not the
same one for a more realistic retrieval scenario. Some of the selected POIs happened to be
close to each other, so the bounding boxes around them overlap. If the overlapping area
is more than 50%, we consider the resulting graphs as representing the same geographic
zone and assign this zone the same unique identifier. This results in a small number of
zones which have nonunique correspondences in the database (see the Table 1 for the
details). We reassign the labels after the graph creation using the Union Find algorithm [23].
An example of nonunique zone is shown in Figure 5: see the two overlapping bottom-left
bounding boxes.

For each of these zones of interest, the semantic information available in the topo-
graphic vector data and their geometries are used to create a relational graph GCe(R,, X, A)
with attributes X, as described below.

4.3. Building the Graph

For each POI ¢, we build a graph describing its geographical context GC,, i.e., the geo-
graphic entities located in its surrounding geographic area and theirs spatial relationships.

4.3.1. Creating Nodes and Edges

Each node V of the graph represents a single geographical entity. In our experiments,
we choose the following geographic entity types as nodes for the graph: buildings, roads
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topological segments, watercourses topological segments, railroad topological segments,
airports, sport facilities, cemeteries. We choose them as they are quite perennial, clearly
visible, and structurally important landmarks in vertical aerial images.

Figure 5. An example of the bounding boxes of an equal surface around POIs. Note that if two bound-
ing boxes overlap more than 50%—we consider them representing the same geographic zone.

We consider the geographic coordinates of the nodes as a finite planar set to com-
pute the neighbourhood relationship between them and build the graph edges. Tous-
saint et al. [24] compared three methods to connect and cluster a set of points. Based on
their analysis, we selected Delaunay triangulation [18] between the centroids of nodes
geometry, as the method provides the biggest amount of edges between locally neighboring
points. We also experimented with the Range Neighboring Graphs (RNG) and provide the
code for RNG graph creation along with the Delaunay one. Both methods are selected to
guarantee the formation of connected graphs.

4.3.2. Adding Semantic Labels to Nodes

Graph nodes have discrete labels representing their nature: river, road, railroad,
religious buildings, castle, fort, tower, arc, monument, cemetery, sports ground, normal
building, public buildings, and airport. In the case where some precise label is not available,
which is sometimes the case for buildings, the label 'normal building’ is applied.

4.3.3. Adding Geometric Attributes to Nodes and Edges

Each node also has geometric attributes X (normalized perimeter and eccentricity).
Many other geometrical attributes are commonly used in spatial analysis, such as general
orientation, mean axes of geometric forms, surface descriptors, and various shape descrip-
tors [17]. However, we limited this research to the simplest ones which do not require any
orientation information nor high level of details to compensate for the different level of
details in the annotations across time and data sources and to avoid making assumptions
on the orientation of the scene. Eccentricity in our case is simply E = &, where L and W
are the length and width of the geometry’s minimal bounding box. Normalized perimeter
is simply Py = o7y

We also store the edge attributes in the form of the normalized distance between the
nodes. The other option is to use the angles but that will make this feature dependent on
the orientation and we seek our graphs to be rotation and scale-invariant: hence, the angles
between objects cannot be used as edge weights in our scenario. Note that we do not use
the edges later on in our tests but leave them for future research, limiting this work to
the most challenging case scenario. The graphs in our dataset are therefore undirected
and unweighted.

The code designed for graph creation from the vector shapefile data is available on
an open repository available here: https:/ /www.alegoria-project.fr/en/GENR_dataset
(accessed on 28 October 2021).


https://www.alegoria-project.fr/en/GENR_dataset

ISPRS Int. ]. Geo-Inf. 2022, 11,97

10 of 24

4.4. Discussion on the Resulting Graphs Dataset

An example of the resulting graphs representing the same area across time is shown
in Figure 6. Note the difference in the corresponding landscape and graph structure within
the two corresponding dates with a 15 years gap. We observe that in some cases the
changes are very significant. It is even more the case for cross-source graphs, even when
the time gap is small. Two examples of the resulting cross-source graphs are shown in
Figures 7 and 8. Visually, the biggest changes are in the categories of objects such as roads
and watercourses, and there are less changes in the buildings, although there are nodes of
the category “building” which appear and disappear across time.

Apart from using matching geographical areas from the three departments mentioned
before, we also add some clutter data without correspondences from a fourth French
department, namely, Cotes-d’Armor, to make the indexing and retrieval scenario for the
same source data more challenging. Table 1 presents the data in the graph database we
developed for geographic area retrieval across time. Note that the maximum number
of nodes in a single graph is 150. This is done intentionally, we just removed several
geographic zones with a bigger number of vertices to limit the final graph size. Similarly,
we removed all graphs with less than 3 nodes. This choice is explained by the selection of
the GCN model later in this work.

Figure 6. An example of the resulting graphs representing the same geographical area at two different
time points. (Left): 2004. (Right): 2019. The detailed geometries are shown for the reference, their
categories are color-coded: red = building, orange = road segment, yellow = building from a special
category (such as church, monument, castle, etc).

Figure 7. Resulting graphs for graph #17. (Left): OSM 2020, (Middle): IGN 2019. Node labels are
color coded: red = buildings, orange: roads, violet: rail. (Right): superimposed IGN (orange) and
OSM (blue) graphs.

4.5. Graph Dataset Statistics

An example of the final graph data characteristics and distribution for Moselle de-
partment is summarized in Table 2. It is interesting to see the difference between the data
distribution across the years. Note also that there is a particular change in the number of
nodes and edges in 2014—this is probably due to some change in the manual vector data
capture process since we use the same code to convert the vector data to graph represen-
tations for all years and both sources. The graph characteristic distributions for different
databases with a small gap seem to be rather similar, with less nodes for OSM graphs than
for IGN graphs, which goes along with our observation that IGN data have a higher level
of detail on the geographic extent of our dataset.
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Figure 8. (Left): Superimposed graphs OSM 2020 (blue) and IGN 2004 (orange). (Right): superim-
posed graphs OSM 2020 and IGN 2019. Same geographical area across years and sources.

Table 1. The characteristics of the proposed dataset for cross-time geographic area retrieval. Note
that we mostly deal with single geographic area correspondence across years.

Department # Graphs # Unique Areas Years
Moselle 2768 2298 2004, 10, 14, 19
M-et-Moselle 1968 1571 2004, 10, 14, 19
Bas-Rhin 2268 1863 2004, 10, 14, 19

Cotes-d’Armor 5029 5029 2004
total 12,033 10,761 4 time frames

Table 2. Single department statistics example.

#nodes # edges Node Degree

db Year avrg, stnd, min, max avrg, stnd, min, max avrg, stnd, min, max
2004 29.51,15.16, 3,91 76.78, 43.40, 3, 256 5.20,1.25,2,12
IGN 2010 30.18,15.39, 3,92 78.73,44.09, 3, 260 5.22,1.25,2,11
2014 65.83, 53.25, 3, 150 183.99, 156.97, 3, 280 5.59,1.43,2,22
2019 37.70,19.59, 3, 125 100.62, 56.54, 3, 356 5.34,1.26,2,14
OSM 2020 33.24,17.84, 3,131 87.78,51.51, 3,378 5.28,1.29,2, 14

As explained above, our dataset does not always contain the same geographic areas
per each year, i.e., the bounding boxes are shifted for a more realistic scenario. We thus
provide the statistical analysis of the similarity of the attributes between matching graph
data. To that end, Intersection Over Union (IOU) between two graphs representing the
same geographic area across time is used:

2% Y Xeg, == Xeg,

IoU =
GG Yeg, +eg,

(6)

where X(Xj, Xp) are geometric attributes of the nodes representing geographical entities e.
The resulting distributions of the IOU between matching graphs coming from the same data
source are shown in Figure 9. The obtained distributions are not always normal, however;
analyzing the resulting histograms, we can see that the number of graphs with smaller
values of IOU is bigger when the difference in time is bigger. Since the landscape and thus
the geographical entities it contains are more likely to have evolved over a long period of
time than over a short interval, it seems logical that the differences between graphs of very
different valid times are greater than those between graphs close in time.
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Figure 9. IOU histograms for matching graph geographic areas obtained for Meurthe-en-Moselle
department. If all the nodes attributes match exactly (injective matching) across graphs, the IOU
value will be 1.

Figure 10 demonstrates the cross-source statistical analysis for IOU over node at-
tributes. While calculating IOU for cross-source graphs, we introduced a new parameter
d, which corresponds to the number of digits after the decimal point in the continuous
attribute values. We observed that varying the d value, we obtain rather different IOU
histograms, as shown in Figure 11a. Using the histograms and based on the experimental re-
sults from the next section, we choose d = 3 for the cross-source data experiments. Moreover,
with a visual examination and further histogram analysis, we discovered that the buildings
have the most persistent geometric features across the two databases, and the rivers the
least. This is probably due to the fact that the same cadastral plan was used to annotate
buildings for OSM and IGN data sources. The histograms in Figure 11b summarise the
IOU for the attributes of different categories. Still, across time, the average IOU score for
cross-source data stays much lower than the same source one.
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Figure 10. IOU histograms for matching graph geographic areas obtained for Meurthe-et-Moselle
department for two graph sources: IGN 2019 and OSM 2020. The precision level of attributes is fixed
at 3.

Figure 11. IOU (a) histograms between IGN and OSM data 2019-2020, with varying d. (b) IOU
histograms for matching graph geographic areas obtained for Meurthe-en-Moselle department
for two graph sources (IGN 2019-OSM 2020) and 4 different categories: red—ordinary buildings,
yellow—all buildings (including monuments), blue—rivers and black—roads.

We have thus created a cross-source cross-time dataset containing graph representa-
tions of matching geographic areas. For the generalisability, the data are taken from two
different sources: Open Street Map [22] (OSM) and French Mapping Agency (IGN) [21].
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The selection of these particular dates for our experiments was dictated by the availability
of the aerial photographs and their corresponding vector data. We confirmed statistically
the assumption that the bigger is the time gap, the more different the resulting graphs for
the same territory are. We used as much intermediate dates as possible to evaluate how the
accuracy of our approach is dependent on the number of human-made landscape changes
through years. These final cross-time cross-database graphs representing nearly identical
geographical zones are then used to assess the performance of the proposed GisGCN
method. Overall, we expect our approach to work for the case when there is a significant
number of objects preserved on given geographic zone across years, and we are aware that
the performance can degrade when time frame increases.

5. Experiments and Model Evaluation

In this section, we present two ways of comparing the data produced from different
editions of the BD TOPO® database to find those representing the same area of the geo-
graphical realm. The first, unsupervised, simply compares the attribute values computed
as presented in Section 3. The second uses graph embeddings produced using the network
presented in the previous section.

5.1. Attributes Based Nonsupervised Similarity Search

We use a nonsupervised baseline to determine whether the geometric attributes
of the scene objects alone are enough for the graph matching task, without using any
topological information (i.e., graph representation) and any learning. We employ the
K Nearest Neighbors (KNN) to retrieve top 5 matching results and report map average
precision value (map@5):

Yne1 Paw@K

N

where N is number of queries, Py, is the average precision for a single query, K = 5.

We use Facebook Al Similarity Search (Faiss) library [25] to retrieve the geographic
areas across time. Faiss is designed to search for multimedia documents that are similar to
each other using the KNN algorithm. We use the L2 distance measure to retrieve the most
similar geographic areas across years based on the local geometric features and semantics
of each object present in the scene. Other similarity metrics available in Faiss proved to be
less efficient experimentally.

The results of the Faiss-based similarity search are summarised in Table 3. The obtained
map@5 scores are quite high, which means that the semantic and geometrical attributes
are representative enough to describe the geographical areas. Nevertheless, there is still
room for improvement that can potentially be gained by using the topological information
between the nodes, i.e the graph representation. It is interesting to see that when the
returned data are actually wrong. Note that even if the actual correspondence geographic
area from 2004 contains many entities present in 2019, the other areas were returned
instead. This example shows the limitation of the attributes-only search, when no relational
information about the scene is used. In the same moment, we can see that there are also
significant graph structure modifications across years, which we ideally want to be robust
to in the graph matching scenario. An example of the correctly returned data is shown in
Figure 12.

Overall, all our results show that the smaller the time gap between the query and
the database is, the better are the map@5 retrieval results. This seems logical since the
time frame difference should be connected to the number of landscape changes occurred.
There is a sudden drop in the retrieval accuracy between the cross-sources data with a
10 years gap.

map@K = @)

5.2. Node Attributes Robustness in the Presence of the Noise

In our so-called same source database, we have very precise node attributes with the
precision of six decimals that are similar thanks to access to the manually and incremen-
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tally captured vector data. It is especially the case for the tests with data coming from
the same source, and the corresponding map@5 results are higher than the cross-source
map@5. If the same information should have been extracted from the images automatically,
the node attribute similarity would have dropped due to the errors in the segmentation
and vectorization stages. To simulate this realistic scenario, we made a group of tests
by decreasing the number of decimals in the node attributes up to one, two, and three
decimals, and by adding normally distributed noise with u = 0 and ¢ = [0.1, 0.01, 0.001] to
the queries attributes.

Table 3. map@5 Faiss similarity search results, same source database with clutter graphs.

Source Query Year db Year map@5 t per q (s)
same source 2019 2004 0.827 0.05
same source 2014 2004 0.835 0.05
same source 2010 2004 0.924 0.04
Cross source 2020 2019 0.80 0.04
Cross source 2020 2014 0.11 0.04
Cross source 2020 2010 0.04 0.04
Cross source 2020 2004 0.07 0.04

Returned KNN-matches
Query graph, gt 1076 DB zone, index = 1076 DB zone, index = 1101 DB zone, index = 53 index = 252 Real GT

N
Figure 12. An example of the correct top 5 similar graphs in 2010 returned for the query from 2020,
cross source database. The node colors represent the semantics of geographic entities.

Faiss method results with added Gaussian noise and less precise query features are
summarised in Table 4.

Table 4. No learning retrieval baseline using Faiss similarity search and modified node attributes.

map@5, Number of Decimals map@5 with Noise, o

Query Year db Year 1 2 3 0.1 0.01 0.001
2019 2004 0.007 0.254 0.825 0.009 0.126 0.647
2014 2004 0.007 0.261 0.835 0.010 0.170 0.778
2010 2004 0.011 0.455 0.924 0.011 0.224 0.902

5.3. GisGCN Model

We consider the two following scenarios presented in Table 5 for our graph similarity
learning problem:

*  The first scenario aims to learn the embeddings using pairs of graphs from our dataset,
and temporal information is used to split the data into training, validating, and testing
subsets. Precisely, we train on 2019-2010, validate on 2019-2014, and finally the pairs
2019-2004 and 2010-2004 make the test set.

¢ In the second scenario, we split the dataset not only by the year, but also by the
departments to evaluate the generalizability of our method. For example, we use the
pairs 2019-2004 from Moselle department for training, and the pairs 2019-2004 from
Meurthe-and-Moselle for testing.
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Table 5. Two scenarios used in our experiments.

Separation

Scenario Motivation Training/Testing

cross-time learning  Train across time for two dates, and then re- -
acquisition date

approach trive same regions dated from another year.
5 generalized learn- Test the generalizability of the method on de-  acquisition date, de-
ing approach partments unseen during training. partment

Both scenarios are deployed for the same source and cross source data. In addition, we
try to directly transfer the learned model to the new data source to further establish its
performance on this data source. We compute the similarity between the final descriptors
using a simple L2 similarity metric in the vector space from Faiss library, and evaluate the
results using map@K metric. Note that the similarity in the loss function we use is cosine
similarity; however, we found that L2 distance worked better at the inference time. We also
report the average retrieval time for a single query.

5.4. Model Parameters

Throughout the experiments, we fixed the dimensionality of graph embeddings to 512,
trying the following commonly used values: 128, 256, 512. Our tests on “same source” data
have shown that when the final descriptor size is lower than 512, the learning capacities of
the model stay the same, but the generalization capacities for the cross-time matching on
new time frames are much lower. We can obtain the same map@5 values on the training set
with all descriptor sizes. However, the validation map@5 reaches the plateau and stops
increasing for lower map@5 values in case of the smaller descriptor size. We observed that
the loss function follows a similar trend, and the smaller the descriptor size, the faster the
model starts to overfit the training data. The first FC layer has a constant size and maps the
features to 128 dimension space.

We use two modified GCN layers in the backbone of our model. The weights in the
GCN layers are equal to 512 as well, although we experimented with different parameters
from 128 and up to 1024. We observed that the smaller number of weights leads to
underfitting on our data. The dimensionality of FC layer added to GCN layers is also equal
to 512.

5.5. Training Parameters

In the graph preprocessing step, the discrete labels of the nodes were one-hot encoded,
and the continuous attributes were left intact and concatenated with the one-hot encoded
ones. Since the graphs have different number of nodes, we use padding to create graphs of
the same size as input to the network. The maximum number of nodes in a single graph
was thus set to 150. An example of the graphs for the same zone across years is shown
in Figure 13. The first fully connected layer with learning weights of the model maps the
features to 128 dimensions.

The training graph pairs are selected during the run time and are shuffled randomly
at the end of each epoch. The network is trained for approximately 200 epochs until the
moment the validation map@5 accuracy reaches the plateau and starts to decrease. In the
case of a single department training, 100 epochs were sufficient to rich the maximum
validation accuracy. Further training leads to overfitting to the training set, so we take the
model which shows the best validation score and report its results. We used the batch size
of 64 graphs through all experiments.

We do not use any data augmentation techniques and NT-Xent loss allows to avoid
hard sample mining commonly used for Siamese network training. The temperature
parameter in the contrastive loss is equal to 0.5. Adam [26] optimizer is chosen for the
optimization of the learning weights. The learning rate is equal to 0.13, with a decay 0.1°
and a multistep learning rate scheduler, decreasing after 80 and 120 epochs with gamma
0.05. All training is performed on a CPU and does not require excessive calculating power,
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mainly thanks to the small size of our graphs. It takes about 12 h to train the model
end-to-end on our dataset with 5732 graphs across two distinct years from the database,
along with calculating map@5 precision for training and validation data after each epoch.
A single branch of the Siamese model is used in the inference step.

Figure 13. An example of the graph representation of the nearly identical geographical zone across
4 years.

6. Discussion

Table 6 summarises the results for the cross-time learning scenario for our GCN-based
descriptors. We report the performance of the global and local descriptors, taking the
resulting node embeddings before the maxpooling layer. We observed that the latter takes
much longer to compute and perform less well than the global ones, which corresponds
to our learning objective. On average, the retrieval time for the query represented as a
single descriptor is twice smaller than the one obtained with Faiss local features earlier on
the same computer. The obtained map@5 values are lower than the ones obtained with a
purely feature-based similarity search from our baseline.

Next, we evaluated if the same source trained network can be used for cross source
retrieval scenario by querying the OSM data with the IGN data pretrained model. The ob-
tained map@5 values are quite low, although they correspond to the baseline results in
the case of a big time gap between the two sources. Therefore, we can conclude that the
training procedure is under specified and the model does not generalize well to the new
data. This result leaves a lot of margins for further improvement, even in case of data with
a small time gap between them.

Table 7 shows how the noise added to the query graph attributes affects the results at
the inference stage. Here we can see that, in contrast to the baseline method, GCN-based
descriptor is relatively robust to noise, with map@5 values decreasing up to 10% in contrast
with the 70% decrease of Faiss noisy local feature search. We only added noise to a single
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source data, assuming that the cross-source data already contain a significant amount of
noise due to their capture process.

Table 6. The map@5 results for the global and local descriptors. Note that training and validation
same-source training data do not contain clutter, but the testing data does. Cross-source test is
performed without clutter data. Time is indicated in s.

Global Local
Query Year  db Year Role map@5 tperq map@5 tperq

2019 2010 training 0.660 0.017 0.303 0.880

2019 2014 validation 0.554 0.017 0.317 0.412
same source

2019 2004 testing 0.5522 0.017 0.371 1.14

2010 2004 testing 0.684 0.019 0.638 0.97

2020 2004 testing 0.056 0.01 n/a n/a

2020 2010 testing 0.062 0.01 n/a n/a
cross source

2020 2014 testing 0.044 0.01 n/a n/a

2020 2019 testing 0.085 0.01 n/a n/a

Table 7. The map@5 results for the single source database global and local descriptors with noise
o =0.01

Global Local
Query Year db Year Role map@5 tperq map@5 tper q
2019 2010 training 0.577 0.011 0.247 0.421
2019 2014 validation 0.483 0.011 0.314 0.517
2019 2004 testing 0.487 0.014 0.305 0.521
2010 2004 testing 0.628 0.014 0.578 0.314

Table 8 shows the potential for generalization of our GCN-based descriptors for
the case when data come from the same source and are trained and tested on different
geographical areas. Note that the map@5 is reported for the similarity search in two
(training) and one (testing) departments correspondingly. We kept the hyperparameters
tuned for the cross-time learning scenario previously, and can see that the network is
capable to create a meaningful descriptor for the new region it did not see during training,
so it generalizes rather well when the data come from the same source.

Table 8. The map@5 results for the global and local descriptors, cross-department learning.

Global Local
Query Year db Year Role map@5 tper q map@5 tperq
2019 2004 training 0.538 0.01 0.399 0.6
2019 2004 testing 0.576 0.003 0.371 0.2

Finally, Table 9 shows the cross source cross-time learning results. The model was
trained from scratch, but we left all parameters intact from the previous tests. The results
are significantly lower than those obtained by the same source scenario, which demonstrates
the difficulty of the aimed task, especially for data with a significant time gap. It is hard to
say what is the reason of the decreased performance in this case, since both the geometric
attributes and graph structure can be affected a lot in the case of the cross source data.
Nevertheless, taking into account the fact that our dataset ground truth consists of mostly
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single correct matches, the results are interesting and confirm the intuition that the graph
representations can be used for this challenging task.

Table 9. The map@5 results for the global and local descriptors, cross-year correspondence learning,
cross-source data.

Global Local
Query Year db Year Role map@5 tperq map@5 tperq
2020 2004 training 0.29 0.02 0.07 0.23
2020 2019 validating 0.33 0.02 0.18 0.27
2020 2014 testing 0.15 0.02 0.44 0.30
2020 2010 testing 0.17 0.02 0.44 0.23

Table 10 shows the generalizability of our GCN-based descriptors for the case when
data are coming from two different sources. Note that the map@5 is for the similarity search
in one (training) and one (testing) departments correspondingly. We got a lower map@5
score than the one for the same source cross-year data but a higher result.

Table 10. The map@5 results for the global and local descriptors, cross-department learning and
testing, cross-source data.

Global Local
Department Query Year  db Year Role map@5 tperq map@5 tperq
Moselle 2020 2019 training 0.61 0.02 0.22 0.15
2020 2019 testing 0.513 0.02 0.23 0.11
M-and-Moselle
2020 2004 testing 0.128 0.02 0.005 0.11

The obtained results show that the proposed method works and outperforms the
baseline approach for scenarios dealing with less precise attributes and cross source data:
hence it has more potential for the real-case geographical graph matching task we aim at.
Table 7 proves that the resulting descriptors are robust to noise and retrieve the correct
geographic area in 50% of the queries when dealing with same source data (i.e., trained and
tested on the same geographic area). Note that with the unsupervised baselines, noise is
dramatically affecting the map@>5 results while GCN model proves robust. In a real-world
scenario, where it is yet impossible to fully automatically produce perfect segmentation
results, and even human annotation might vary from person to person and from database
to database, this property is crucial. However, the cross source tests have shown quite
low map@5 values, but demonstrated that our approach is not generalizable enough at
the current state. We explored different ways to represent geographical data as graphs
(Delaunay graphs, RNG graphs), and experimented with different parameters of our
Siamese GCN model and discovered that the graph architecture and network parameters
are very dependent on each other but we did not discover a particular trend characteristic
for all tests performed. Saying that, we assume that although the first results obtained are
not yet on the point with classical methods, it is a path to a new research direction.

7. Background

The idea of using distinct geographic entities to automatically index, match—and
optionally geolocalize—aerial images are not novel. Early research in Computer Vision
envisaged it long time ago [27], and there are recent works for RS image-based indexation
and retrieval [28,29]. However, the majority of the works dedicated to image matching
and retrieval do not explicitly use the graph structure to represent the spatial relations
between geographic entities and do not aim for cross-time matching as we do in this
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research inspired by the recent advances in structural learning. In the following we give
the background of the various research areas, on which the current work is based.

7.1. Representing Geographic Information as Graph

Graph-based representations are traditionally used for road, train, or watercourse
network representation, and their associated computations such as routing applications.
They are also commonly used for spatio-temporal geographic data [30]. But graph-based
representation of places and landscapes can also reveal important insights in scenarios
such as scene geolocalization or geographic information retrieval.

Initially coined by Google to describe an enhancement of its search engine with se-
mantics [31], the term “knowledge graph” is widely used today to refer to any graph-based
representation of general purpose knowledge, such as the big knowledge bases of the
Linked Open Data (LOD) cloud, namely DBPedia [32], Yago [33], etc. From the early
days of the Web of data, geographic data have played a central role in the LOD cloud,
as they provide an intuitive way to link datasets from different fields such as life sciences,
humanities, heritage, media, social networks, etc. [34]. Following the Ordnance Survey
example [35], many national mapping agencies have published their geographic data in
compliance to Web of data good practices and standards [36-39]. In order to go a step
further than directly translating geographic vector data into a RDF graph, [40] proposes a
set of metrically refined approximate topological relations to enrich a geographic knowl-
edge graph and improve its question answering capabilities. Geographic knowledge graph
summarization is largely covered in [41]. The work covers topics such as understanding,
representing, and reasoning about POI but does not propose ways to learn geographic area
descriptors. Finally, Trisedya et al. [42] propose an entity alignment model for knowledge
graphs based on the popular earlier Trans-E approach [43] which models relationships by
interpreting them as translations operating on low-dimensional embeddings of the entities.
However, the method is only applicable for 1 to 1 linking between two graph databases
and uses triples instead of graphs to learn the embeddings, so it cannot be directly used
in our scenario. Finally, Ling Cai et al. [44] propose a unified GCN encoder framework,
named TransGCN, which can learn entity embeddings and relation embeddings simultane-
ously. The work is similar to ours in the idea to use the graph embedding to encode the
neighboring structure; however, the authors target node embedding and not a whole graph
embeddings as we do.

7.2. Graph Kernels and Graph Distances

Similarity search based on graph kernels is a well-known research subject with a
great number of various kernels proposed for various specific cases and data types, many
are available in Grakel library [45]. The similarity is typically defined by either exact
matches (full-graph or subgraph isomorphism) [46], random walks or paths on graphs [47],
propagation of the information in the graph structure [48] or others. A recent survey
on graph kernels can be found in [49]. It should be noticed that the kernels themselves
are hand-designed and motivated by graph theory, and only some of them are designed
to handle continuous attributes on edges and nodes of a graph. Graph kernels can be
formulated as first computing the feature vectors for each graph, and then taking the inner
product between these vectors to compute the kernel value, no learning involved with the
exception of [50]. Graph kernels have shown themselves as very efficient tools for graph
comparison, but often take a significant time to compute.

Hand-engineered or learned graph distances are very similar to graph kernels. Com-
mon choices include spectral distances and distances based on node affinity. [51] compares
commonly used graph metrics and distance measures, and demonstrates their ability to
discern between common topological features found in both random graph models and
real world networks. Many of the classical graph kernels are also based on the graph
distances [45,52]. Recently, graph distances caught researchers attention, with recent works
exploiting attention mechanisms to make learnable metrics [53].
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7.3. Graph Embeddings

Recently different Machine Learning and Deep Learning algorithms were proposed
for graph data. The data mining community has a strong interest in (knowledge) graph
summarization because graph structure is ubiquitous: all kinds of data from social networks
and up to research publications can be represented as graphs. A popular idea is to learn
the embeddings for nodes [54] or even the whole graph [55,56] based on their features
and structure. There is also an example of the use of such a node embedding method in
a geographical context. Yan et al. [57] propose to estimate the similarity and relatedness
of place types with their surroundings using place types embeddings. However, all these
algorithms are based on the models coming from text processing, so they were designed to
produce embeddings such that nodes with similar network neighbourhoods are embedded
close together: the nodes are handled as words taken from a vocabulary. Moreover, these
methods can handle structure or label information but not both at the same time, which
limits their application for our scenario.

7.4. Convolutional Graph Networks

In the past few years, graph neural networks (GNNs) have emerged as an effective
class of models for learning representations of structured data and for solving various super-
vised prediction problems on graphs. Such models are invariant by design to permutations
of graph elements and compute graph node representations through a propagation process
which iteratively aggregates local structural information. Nodes on isomorphic graphs
(with the same node and edge features) will have the same representations regardless of
the ordering. GNN networks have different architectures and can be roughly classified
into several categories: spectral methods [58] perform graph convolution by employing the
eigen vectors of the graph Laplacian as the transformation matrix, methods that work in
the spatial domain [16] and methods complementary to GNNs and agnostic to the choice
of a GNN itself (i.e., pooling, attention) [59]. GNNs have been successfully used in many
domains from drug discovery [60] to social network classifications [61]. Independently of
the network nature, the common task accomplished by them is the supervised learning of
the node embeddings. These node representations are then either used directly for node
classification, or pooled into a graph vector for graph classification. Problems beyond su-
pervised classification or regression are relatively less well studied for GNNs. Xu et al. [62]
proved that with Convolutional Neural Networks, we can measure the graph’s similarity
such as Weisfeiler-Lehman similarity test. However, the graph isomorphism problem is not
very relevant for our use case. More general graph similarity learning approaches were
recently proposed by [63,64]. These learned models can adapt to the desired metric and
are potentially interesting for our target scenario. However, Li et al. [63] demonstrate the
performance of the method on graphs with only minor changes and no node attributes.
In this paper, we focus on representation and similarity metric learning for attributed
graphs representing the same geographic area across time.

7.5. Siamese Networks

Siamese network architectures aim to construct embeddings, where two extracted
features corresponding to the same real world entity are more likely to be similar than
features representing different real world entities [65]. They are a popular choice for
scenarios dealing with so-called one-shot learning problems, when a single training sample
is available for each class. The efficiency of Siamese networks was previously demonstrated
for visual object tracking [66], person re-identification [67], cross-view image matching [68]
and other tasks. Siamese networks can also be used for graph similarity learning as
demonstrated in [63]. The closest to ours is the recent work of [69] where the authors
successfully use a Siamese Graph Convolutional architecture for indexing and retrieving
remote sensing images represented as region adjacency graphs.

We follow the similar idea to use the descriptive power of graph representation
along with a Siamese-based GCN; however, the graph creation process differs from region
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adjacency graph (RAG) approach [69], and the architecture we propose is conceived for our
type of data and corresponding features. The final scenario also differs: we want to retrieve
the exact location and not the similar classes, hence we deal with a more challenging
problem with many classes and a few examples per class (mostly, a single correspondence).
Moreover, our end goal is to make an image-to vector data correspondence.

8. Conclusions

With the growing availability of large volumes of historical and modern geographic
data of different modalities (image, structured, or textual data, etc.), the development of
a unified framework for their joint analysis is of great interest. In this work, we started
to move towards such a framework by exploring models for geographic area similarity
learning, which is itself a relevant research direction.

This article proposes an approach to the problem of vertical cross-time image indexing
and retrieval from a new point of view: we interpret the geographic entities represented
in photographs and their geometric and semantic properties as a connected graph. We
then proposed a novel deep learning-based method to learn graph representations of
geographic entities and their spatial relationships and compare them across time. To test this
approach, we created two original same source and cross source datasets. The proposed GCN-
based model is currently outperformed by the unsupervised method based on attributes
similarity we used as a baseline. But in contrast to this baseline, our model is robust to the
presence of noise in the attributes, which makes it credible in a real-world scenario, such as
indexing and retrieval of automatically segmented and vectorized aerial images or even
an heterogeneous vector databases matching task or a spatio-temporal pattern retrieval
application. The integration of GIS data and Machine Learning allowed us to successfully
match the geographical areas across time, obtaining a correct match in more than 50% of
cases, up until across 15 years. Besides, the proposed approach can be directly used to learn
graph embeddings in any attributed graph similarity problem.

We see the proposed approach to be used by historians and archivists working with
large amounts of historical visual sources and looking for ways to retrieve the images—
photographs, maps, engravings, etc.—representing the same geographical zones, or to
locate these images when poor location indication is given. However, using our approach
is not straightforward as aerial photographs or ancient maps are rarely segmented, and the
proposed GisGCN method requires the segmentation as the prior step. It can be done
manually for one image at the query time provided that the database is coming from
geographical vector data as it is done in this work. Exploiting image and vectorial data
together is more complicated in the case of matching across oblique aerial images sets
for example. We see two possibilities here. The automatic segmentation CNN-based
methods are gaining more and more accuracy, and they can be used to annotate the data
as a prior step. Another approach would be using the proposed graph-based learning
methods, but getting the graph nodes by the means of object detection. Further, some
additional nodes can be introduced capturing the textual annotations, partly present on
many historical data. However, it will bring a new difficulty of encoding textual features
such as toponyms, a challenge we leave for future research. Another interesting direct
application of our work is the search for particular spatial configurations (buildings wedged
between a road and a river, for example) regardless of location, useful for professions that
study land use, space organization and urbanization.

Lastly, there are still a number of interesting challenges to resolve: to improve on the
efficiency of the matching models, to study different matching architectures, to adapt the
GCN so it can use graphs of different sizes, and to apply our model to new application
domains. We think that the graph models with attention can work efficiently in the aimed
application, and we plan to adopt an attention mechanism in the future. Another possible
direction is to improve the graph representation, which could lead to better retrieval results.
We leave these directions for future research. We also provide the new cross source and cross-
time dataset along with dataloaders (including an adaption of the dataloader for Pytorch
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Geometric library [70]). We hope that this work can spur further research in geographical
graph matching and provide the first benchmark for learning on graphs for cross-time
area matching.
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