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Abstract: In recent years, electricity production from wind turbines and photovoltaic systems has
grown significantly in Germany. To determine the multiple impacts of rising variable renewable
energies on an increasingly decentralized power supply, spatially and temporally resolved data on
the power generation are necessary or, at least, very helpful. Because of extensive data protection
regulations in Germany, especially for smaller operators of renewable power plants, such detailed
data are not freely accessible. In order to fill this information gap, simulation models employing
publicly available plant and weather data can be used. The numerical simulations are performed for
the year 2016 and consider an ensemble of almost 1.64 million variable renewable power plants in
Germany. The obtained time series achieve a high agreement with measured feed-in patterns over
the investigated year. Such disaggregated power generation data are very advantageous to analyze
the energy transition in Germany on a spatiotemporally resolved scale. In addition, this study also
derives meaningful key figures for such an analysis and presents the generated results as detailed
maps at county level. To the best of our knowledge, such highly resolved electricity data of variable
renewables for the entire German region have never been shown before.

Keywords: satellite-based weather data; wind power; photovoltaics; power generation

1. Introduction

The rapid expansion of renewable energies with the accompanying de-carbonization
of the power provision is essential to mitigate climate change. Despite their dependence
on local weather conditions, variable renewables, i.e., wind power and photovoltaics, play
a crucial role in this de-carbonization. In recent years, variable renewable energies have
continued their strong upward trend around the world with significant progress in cost
reduction and grid integration. For example, 93 GW of new wind turbine capacity was
installed globally in the year 2020, more than ever before in history, resulting in a total
volume of 743 GW [1]. In Germany, the installed capacity of onshore turbines has grown
from 6.1 GW when the Renewable Energy Act (EEG) first entered into force in 2000 to
an almost nine-fold value of 54.4 GW at the end of 2020. During the same period, the
installed capacity of photovoltaic systems increased in Germany from 0.1 to 53.8 GW [2].
These figures are expected to rise substantially because of the further reduction of the
levelized costs of electricity [3] and the necessary transformation of the power sector, e.g.,
to achieve greenhouse gas neutrality by 2045, according to the latest amendment of the
Federal Climate Change Act (KSG 2021).

The growing deployment of variable renewable energies not only has far-reaching
implications for the expansion of existing power grids but also for other areas of the power
sector, so there is a need for additional research. Previous studies on renewable energies
usually provide data on installed capacity or power generation with a very high spatial
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resolution, but lack a corresponding temporal resolution, such as studies on the German
power system [4,5]. Otherwise, there are energy studies that can achieve a high temporal
resolution, such as wind power simulations for various countries of the world [6–9], but
they do not reach the spatial resolution required for investigations at county level or even
below due to the use of global reanalysis products with a low horizontal resolution. In
order to better assess the future challenges of an increasingly decentralized power supply
with a high share of variable renewables, spatiotemporally disaggregated electricity data
will become more important. The lack of detailed and verified data for a desired period
and location, due to data protection regulations in Germany, makes it more difficult for
science and industry to analyze the multiple impacts of rising variable renewables on local
power systems, the environment, and electricity markets. A comprehensive overview of
spatiotemporal modeling approaches for integrated spatial and energy planning can be
found in [10]. In addition, there are also energy studies in which, e.g., the simulated wind
power time series were compared with historical records to obtain data verified on real
systems [11,12].

This work introduces modeling approaches for creating high-resolution electricity
production data of variable renewable energies employing publicly available plant and
weather data that can help to fill the information gap previously described. Moreover, the
use of the same weather product for the wind power and photovoltaic models enables
better combinable and more comparable simulation results, which is also applied in this
study. The content of the remaining paper is structured as follows: Section 2 explains the
required plant and weather data as well as the data used for calibration and validation
of the numerical simulations. The structure of the wind power and photovoltaic models,
including their main calculation steps, is presented in Section 3. Herein, the focus is set on
a joint consideration of these models, which have been considered individually in [13–15],
and on a joint presentation of the simulation results at county level (NUTS-3), where the
abbreviation NUTS stands for Nomenclature of Territorial Units for Statistics. In Section 4,
the simulation models are applied to ensembles of nearly 26 thousand onshore wind
turbines and over 1.61 million photovoltaic systems to obtain spatially and temporally
resolved electricity production data for the German region in the year 2016. After data
aggregation, the resulting time series are compared with the measured total feed-in from
these renewable energies to validate the simulation results. As a further objective of
this study, meaningful key figures for an energy transition atlas are derived and the
results are presented as high-resolution maps at NUTS-3 level. This work, which also
combines disaggregated power generation data from the simulation models with spatially
downscaled electricity consumption data to gain further insights into the energy transition
in Germany, finally ends in Section 5 with brief conclusions.

2. Data

In this section, all data used for the simulations, including their characteristics and
origin, are introduced.

2.1. Power Plant Datasets

For the numerical simulations, specific information about the wind turbines and
photovoltaic systems to be investigated is necessary. The associated plant datasets contain
the geographical location, the date of (de-)commissioning, and technical parameters such as
the rated or peak power, as shown in Table 1. It should be mentioned in this context that the
locations of many small photovoltaic systems are only available with a municipal resolution
due to extensive data protection regulations in Germany. Thus, the geographical position of
these municipal areas has to be used for the numerical simulation and the specific latitude
and longitude coordinates are optional parameters for the photovoltaic model. Moreover,
the rotor diameter is not applicable in the wind power model because this simulation model
employs the power curve of a wind turbine, which already incorporates this technical
parameter.
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Table 1. Parameters of the plant datasets necessary for the wind power and photovoltaic models.

Parameter Wind Power Model Photovoltaic Model

Latitude required optional
Longitude required optional
LAU-Id 1 optional required

Commission date required required
Decommission date optional optional

Rated power required required
Hub height required not applicable

Rotor diameter not applicable not applicable
Turbine type optional not applicable

1 The LAU-Id is an eight-digit identifier for the unique determination of a local administrative unit (LAU).

The initial information about onshore turbines in Germany with available data until
the end of 2015 comes from the EE-monitor project [16], which can be freely downloaded
from the UFZ data portal (www.ufz.de/drp (accessed on 5 March 2020)). As already
known from various studies on renewable energies [5,6,17], turbine datasets for countries
or widespread regions are hardly complete and often erroneous because of the high number
of wind turbines with specific technical parameters. To mitigate this, appropriate machine
learning methods are available to complete and improve the data of individual turbines
with the knowledge about the residual plant ensemble. For the EE-monitor dataset, the
random forests technique was used to close the existing gaps, applying as many predictor
variables as possible [17]. To expand this turbine dataset to the whole of Germany and
update it by the end of 2016, the missing plants of the German city states, as well as the
plants erected in 2016, were inserted with the help of extra requested information from all
federal states. Subsequently, all onshore turbines of the updated dataset were matched
with the Core Energy Market Data Register (MaSTR) of the Federal Network Agency [18]
by means of a spatial join. If the geographical location of the two plants were nearly equal
in this data operation, i.e., having a horizontal distance of less than 75 m, the corresponding
wind turbine data was completed with the available data from the MaSTR. Through this
spatial join, the date of (de-)commissioning, the actual hub height (instead of the value
predicted by random forests), and the turbine type could be often included in the plant
dataset. Hence, the exact date of commissioning can be applied in many cases instead of
the less accurate commissioning year, which allows the wind power model to account for
plant changes during the investigated year. After filtering this compiled dataset for the
year 2016, it comprises nearly 26 thousand onshore turbines corresponding to a capacity
of 43.6 GW, depicted in Figure 1a as disaggregated spatial sums at NUTS-3 level. The
total capacity reaches almost the officially installed capacity of 45.3 GW, according to the
AGEE-Stat report [2], of all onshore wind turbines in Germany for 2016. A difference of
less than 4% from this official value shows that most onshore turbines are contained in the
final dataset.

The plant dataset of the photovoltaic systems comes from freely accessible data of the
four Transmission System Operators (TSO) in Germany. After merging and filtering the
raw data provided by the TSO on their information portal (www.netztransparenz.de (ac-
cessed on 30 July 2020)) [19], the final dataset contains more than 1.61 million photovoltaic
systems for the year 2016. This compiled dataset, which was also compared with official
figures [2,18], includes all roof-top and ground-mounted systems that obtain guaranteed
feed-in tariff rates under the EEG. The installed capacity of the plant dataset has a total
value of 40.4 GW, which almost agrees with the official sum of 40.7 GW in Germany for
2016 [2]. The corresponding installed capacity at NUTS-3 level is shown in Figure 1b.

www.ufz.de/drp
www.netztransparenz.de
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renewables, especially for wind energy studies [6–8]. This kind of weather product is 
created using forecast models, re-running these numerical models for a given period in 
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products, e.g., MERRA [20], MERRA-2 [21], and the more recent ERA5 data [22], generally 
provide a low horizontal resolution and, thus, do not match the level of geographical 
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Figure 1. Installed capacity of (a) onshore turbines and (b) photovoltaic systems shown as spatial
sums at NUTS-3 level in Germany for the year 2016. In the grey areas of Figure 1a no wind turbines
are installed.

2.2. Applied Weather Product

Verified weather products are a prerequisite for realistic modeling of the electricity
production from variable renewables, and the spatiotemporal resolution of such data is
crucial to the accuracy of the simulated time series. For Germany, weather products with
various spatial and temporal resolutions are publicly available on the internet platforms
of diverse meteorological services around the world. In recent years, reanalysis weather
data have become a frequently used source for power generation simulations of variable
renewables, especially for wind energy studies [6–8]. This kind of weather product is
created using forecast models, re-running these numerical models for a given period in
the past, and making final corrections with the help of measured data. Global reanalysis
products, e.g., MERRA [20], MERRA-2 [21], and the more recent ERA5 data [22], generally
provide a low horizontal resolution and, thus, do not match the level of geographical detail
required for this work. Regional reanalysis products have usually higher spatial resolutions,
e.g., the COSMO-REA6 data covering the entire German region with a horizontal resolution
of approximately 6 km [23,24], which would already provide highly resolved results with
the presented simulation models.

The numerical simulations performed for this publication go one step further and
employ satellite-based weather data from the Satellite Application Facility on Climate
Monitoring (CMSAF) collaboration [25] using the provided features of the Photovoltaic
Geographical Information System (PVGIS) [26]. The CMSAF weather product via the web
interface of PVGIS provides a spatial resolution of approximately 2.5 km and a temporal
resolution of an hour for Germany. Moreover, the determination of solar irradiance on
the ground from satellite images is calculated using complex algorithms, which do not
only consider the highly resolved satellite data but also use atmospheric information on
ozone, aerosols, and water vapor. Although these algorithms usually work very well they
can also fail under certain conditions, e.g., snowy landscapes which can be misinterpreted
as clouds. Thus, solar irradiances determined from satellite images should be verified by
measurements on the ground in order to quantify the uncertainty of the radiation data.
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For the region of Germany, the accuracy of the CMSAF data is near the confidence level
of measurements from terrestrial stations and is far better than the target accuracy of
10 W/m2 [27].

The time series provided by PVGIS (version 5.1) in hourly resolution for a desired
period and location includes the following data required for the simulations: date and time,
photovoltaic output power, ground elevation, air temperature at 2 m, and the wind speed
at 10 m above the ground. Although the wind speed is only available at this low altitude,
which may affect the accuracy of the extrapolated wind speed at turbine hub height, the
weather data are provided accurately for each requested geographical location. This fact
eliminates the need for further horizontal interpolations to the plant sites and, hence, the
deviations caused by such interpolation routines, which may be higher than the loss of
accuracy due to vertical wind speed extrapolations. In addition, PVGIS delivers the ground
elevation for each onshore turbine location required for the estimation of the air pressure at
hub height in the wind power model. Another advantage of retrieving the weather data via
the PVGIS web interface is that the wind power and photovoltaic models can use the same
weather product with, e.g., the same time base. This facilitates the mutual combinability
and comparability of the simulation results.

2.3. Calibration and Validation Data

For a reasonable calibration of the simulation models and subsequent validation of
the obtained results, additional data are necessary. For calibrating the wind power model,
in particular, the power curves of the applied onshore turbines with their specific cut-in,
rated, and cut-out speeds are required. These curves, which are usually provided as a table
of values, describe the correlation between the wind speed at hub height and the output
power of wind turbines achieved at a standardized air density of 1.225 kg/m3. Such power
curves can be looked up in the datasheets of the turbine manufacturer or on the internet,
e.g., at the wind energy platform (www.thewindpower.net (accessed on 25 June 2020)) [28].

The blue line in Figure 2a displays the plotted power curve of a typical onshore turbine
including its specific parameters. The black points on this power curve show the discrete
values from the datasheet of the manufacturer [29]. Figure 2b outlines the development
process with all involved data from calibration to validation of the simulation models. In
this flowchart, the input and output data are depicted as grey boxes and the arrows show
the data flow.
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For power losses of onshore turbines that are not covered by numerical calculations
using the power curve, a corresponding reduction of the output power must be added

www.thewindpower.net
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in the simulation model. These additional turbine losses are mainly due to the following
reasons:

1. Power reduction because of mutual shading of adjacent turbines (wake effect).
2. Loss of power due to ice or dirt on the rotor blades of the wind turbines.
3. Feed-in interruptions because of energy surpluses in the power grids.
4. Switch-offs due to turbine overhauls or bat and bird protection.

Since this information is not available for each individual wind turbine, such losses
are considered as an overall reduction value of 16% in the wind power model. This value,
which is usually between 5 and 30% for onshore turbines according to [30], has been shown
in previous simulations to be a realistic average value for the investigated turbine ensemble.

Reasonable calibration data are also needed for the photovoltaic model. Since the
technical parameters for each individual photovoltaic system are not fully known to the
public, especially for the many existing small roof-top systems, realistic average values must
be used in the simulation model as well. For example, the technology of the photovoltaic
modules and the amount of the system loss have to be known for the simulations. This
system loss describes all losses of a photovoltaic system that results in the electricity fed
into the power grid being lower than that actually generated by the solar panels. There are
various reasons for this loss, e.g., electrical losses in cables and power inverters of the plants
or optical losses due to snow and dirt on the module surfaces. For the system loss, an overall
value of 14% is recommended by PVGIS [26], which is applied to the entire ensemble of
photovoltaic systems. The used solar cell technology is also not known for each individual
plant. Up to now, crystalline silicon is the world’s most widely deployed semiconductor for
photovoltaic modules [31]. Hence, crystalline silicon is chosen as semiconductor material
for the simulations. Moreover, the azimuth and inclination angles of the photovoltaic
modules are also required. The azimuth angle is set to zero for all photovoltaic systems,
which means a fixed orientation of the solar panels in the southern direction. A fixed value
of 20◦ is adopted for the inclination angle, since ground-mounted systems are typically
erected with tilt angles in this range to reduce mutual shading of the photovoltaic modules,
especially in winter when the maximum elevation angle of the sun reaches only low
values [32]. Additionally, previous simulations have shown that 20◦ is also a reasonable
average value for the existing roof-top systems.

In general, the results obtained with simulation models should be checked against
measurements on real systems to verify the model algorithms and evaluate their accuracy.
The used wind power and photovoltaic models have been validated with measurements
of technically known single plants in [14,15]. However, the simulations presented in this
study consider large ensembles of onshore turbines and photovoltaic systems. Thus, the
simulation results showing the power generation from variable renewable energies have to
be verified with measured feed-in data. Due to the lack of publicly available feed-in data of
variable renewables with high spatial resolutions, it is not possible to verify the simulation
results on a highly resolved spatial scale. But, if the simulated time series are spatially
aggregated over the entire German region, they can be validated with measured feed-in
patterns for all of Germany, which are freely accessible via the web interface of SMARD
(www.smard.de (accessed on 18 March 2020)) [33]. Using this interface, the total feed-in
from onshore wind turbines and photovoltaic systems were downloaded for 2016. It should
be noted for this period that there were no measurements by SMARD on three days, so
the concerned zero values are not taken into account in the validation and suppressed in
the diagrams.

3. Models

The following subsections describe the simulation models for the electricity production
from variable renewables employing publicly available plant and weather data. From a
mathematical point of view, the power generation from these renewable energies can be
determined either with statistical models, e.g., Monte Carlo and auto-regressive methods,
or with physical models [6,7,34,35]. Opposed to statistical models [36,37], the simulation

www.smard.de
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results of physical models, such as the presented wind power and photovoltaic models, are
predicated on high-resolution data from weather models or real measurements. Thus, one
benefit of physical over statistical models is the ability to create electricity production data
on a highly resolved spatiotemporal scale.

3.1. Wind Power Model

The main calculation steps and data flows of the wind power model are shown in
Figure 3, where the plant and weather data are the input data for the calibrated simulation
model. Herein, the calculation steps are depicted as blue boxes, and the other symbols have
the same meaning as explained in the description of Figure 2b.
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Figure 3. Flowchart of the wind power (WP) model showing the calculation steps and data flows.

For this model, a new approach is used for the wind-to-power conversion, which
employs a sixth-order polynomial approximation for the normalized power curve of a
wind turbine. Once such an analytical representation is derived for a needed power curve,
the output power can be easily calculated using the rated power of the onshore turbine
along with the wind speed and the air temperature and pressure at its hub height. Since the
type of a wind turbine is often not available, because of missing information from official
sources [5], the turbines of the plant dataset are sorted into corresponding power classes
with typical power curves. These classes with the assigned turbine type and range of rated
power are listed in Table 2.

Table 2. The used power classes with the assigned turbine type and range of rated power (PR).

Power Class (kW) Turbine Type Power Range (kW)

100 Fuhrländer FL100 PR ≤ 150
200 Enercon E-30 150 < PR ≤ 250
500 Enercon E-40 250 < PR ≤ 750

1000 Vestas V52 750 < PR ≤ 1500
2000 Enercon E-82 1500 < PR ≤ 2500
3000 Vestas V112 2500 < PR ≤ 3500
5000 Enercon E-126 PR > 3500
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For example, for onshore turbines with a rated power of between 2500 and 3500 kW,
the normalized power curve of a Vestas V112 with 3000 kW rated power is used for the
numerical simulations. However, the geographical location, the date of (de-)commissioning,
the rated power, and the hub height are taken into account individually for each wind
turbine. In the subsequent calculation step, the achieved electricity production also consid-
ering additional losses and the date of commissioning is determined for each wind turbine.
In the end, the simulated time series of the investigated turbine ensemble are converted
into local time, aggregated in time, and saved as comma-separated values (CSV) for further
data processing and use. A more detailed description of the wind power model with all
the underlying physical laws, e.g., employing Hellmann’s law for the extrapolation of the
wind speed to the hub height, and its properties can be found in [14].

3.2. Photovoltaic Model

Figure 4 outlines the main calculation steps and data flows of the photovoltaic model.
The calculation steps are drawn as orange boxes and the other symbols in the flowchart
have the same meaning as already described in Figure 2b. As with the wind power model,
the plant and weather data are required as input data for the calibrated simulation model.
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This photovoltaic model can be structured into three successive calculation steps, as
shown in Figure 4, which are carried out for the photovoltaic systems of the plant dataset.
Firstly, the determination of the output power from the solar panels with the help of the
sunlight-to-power algorithms of PVGIS [26]. Secondly, the calculation of the generated
electricity considering the date of (de-)commissioning for each photovoltaic system. Thirdly
and finally, the resulting time series of the entire ensemble are transformed into local time,
temporally and spatially aggregated, and stored in CSV format for subsequent processing
and use. A detailed explanation of the photovoltaic model and its characteristics can be
found in [15].

4. Results

In this section, the simulation results obtained with the previously described input
data and physical models are presented. The simulated time series are checked against
measured feed-in data to validate the performed simulations and to discuss reasons for
the existing deviations. After this, meaningful key figures for an energy transition atlas are
derived and the achieved results are shown as high-resolution maps at NUTS-3 level. In
this context, also the electricity consumption data of Germany for 2016 are scaled down to
county level and related to the corresponding simulation results.
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4.1. Wind Power Generation

The wind power model is used to simulate the electricity production from onshore
wind turbines in Germany for the year 2016. After model validation with measured wind
speed and feed-in data of a technically known single turbine [14], the simulations were
performed for an ensemble of nearly 26 thousand wind turbines. For these simulations,
each turbine of the plant dataset was simulated individually and the weather data were
retrieved via the PVGIS web interface for each turbine site, using its geographical position.
As described in Section 2.3, for additional turbine losses an overall reduction value of 16%
was applied to the entire plant ensemble. After carrying out the numerical simulations
for all onshore turbines, the hourly resolved time series of the power generation were
aggregated into one time series to check the simulation results against measured feed-in
data for the whole of Germany. For better comparability and visual representation, the
simulated and measured time series depicted in Figure 5 were transformed from hourly to
daily resolutions.
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Germany for 2016.

In this diagram, it is easy to see that the simulated power generation matches the
measured pattern well over the entire period. In addition, it is also visible in Figure 5 that
most of the electricity is generated during the winter months. The existing deviations are
primarily due to the following causes:

1. Deviations caused by the wind speed extrapolation from 10 m to the hub height.
2. The uncertainties of the weather data and the fact of hourly averaged values.
3. Weather-related variations in air pressure are not considered in the model.
4. The assignment of turbines to power classes with typical power curves.

The corresponding statistical measures for the daily values of both time series, as
shown in Figure 5, are listed in the overview table of Section 4.3 for better comparability of
all simulation results.

4.2. Photovoltaic Power Generation

This section uses the photovoltaic model to simulate the electricity production from
photovoltaic systems in Germany for the year 2016. After model validation with measured
feed-in data of a technically known roof-top system [15], the simulations were carried out
for the investigated ensemble. Due to the large number of more than 1.61 million single
plants, the photovoltaic systems were sorted into their municipal areas and the center
coordinates of these areas were used for the numerical simulations to limit the runtime.
However, the date of (de-)commissioning and the peak power were considered individually
for each photovoltaic system. Since no further information about these photovoltaic systems
was publicly available, realistic average values (as given in Section 2.3) have to be used for
a reasonable calibration of the photovoltaic model. After performing the simulations with
the described calibration data, the hourly resolved time series were aggregated into one
time series in order to check the simulation results against the measured feed-in from all
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photovoltaic systems in Germany. The simulated and measured power generation data are
shown in Figure 6 with a daily resolution.
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The simulated electricity production, as displayed in Figure 6, agrees well over the
annual period with the measured pattern. Furthermore, it can be also deduced that most
of the electricity is generated during the summer months. The resulting deviations have
mainly the following reasons:

1. The use of average values due to the lack of specific data for photovoltaic systems.
2. The uncertainties of the weather data and the fact of hourly averaged values.
3. Decrease of the power generation because of snow on the modules.
4. Feed-in reductions due to energy surpluses or maintenance work.

The corresponding statistical measures for the daily values of the simulated and
measured time series (Figure 6) are also given in the overview table of the next subsection.

4.3. Common Power Generation

For a joint consideration of the presented variable renewables, which is very helpful
for investigations on the energy transition in Germany, Figure 7 shows the sum of the daily
electricity production from onshore turbines and photovoltaic systems.
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In Figure 7 can be clearly seen that the common electricity production from these
renewable energies also reproduces the measured feed-in pattern very well. With a Root-
Mean-Square Error (RMSE) of 46.5 GWh determined for the daily values, as a statistical
measure for the existing deviations, the joint simulation results show a high agreement
with the measurements as well. In relation to the total electricity production of 97.9 TWh,



ISPRS Int. J. Geo-Inf. 2022, 11, 90 11 of 17

generated by all onshore turbines and photovoltaic systems in Germany for 2016 [33], the
RMSE reaches a value of 0.05%. As a further statistical evaluation of the simulation results,
a Pearson correlation between the first differences for the daily values of both time series
was applied according to Equation (1):

RXY =
∑n−1

i=1 (Xi − Xm) (Yi − Ym)√
∑n−1

i=1 (Xi − Xm)2 ∑n−1
i=1 (Yi − Ym)2

(1)

In this expression, RXY is the correlation coefficient (denoted as R-value in Table 3), Xi
and Yi stand for the first differences of the simulated and measured time series of length
n, and Xm and Ym are the corresponding mean values. This Pearson correlation shows
a strong positive linear relationship with a correlation coefficient of 0.96, indicating that
the trends of both time series vary in the same magnitude and direction. Table 3 gives an
overview of the most important values and statistical measures for the individual and joint
simulation results.

Table 3. Installed capacity, feed-in, and statistical measures for the simulation results.

Data Onshore Turbines Photovoltaics Common Values

Installed capacity 45.3 GW 40.7 GW 86.0 GW
Feed-in 64.0 TWh 33.9 TWh 97.9 TWh
RMSE 45.6 GWh 13.9 GWh 46.5 GWh

RMSE/Feed-in 0.07% 0.04% 0.05%
R-value 0.97 0.97 0.96

The numbers in this table also indicate that the calculated statistical measures of the
joint simulation results correspond well with the individual simulations of the wind power
and photovoltaic models. Table 3 additionally shows that onshore wind turbines have
generated almost twice as much electricity as photovoltaic systems in Germany for 2016,
although the installed wind turbine capacity was only 11% higher.

4.4. Energy Transition Atlas

Regional and local progress in transforming the power sector towards higher shares
of variable renewables can be confidently tracked using spatiotemporal distributions of
installed capacity and power generation. Thus, the plant datasets and simulation models
presented in this work can enable closer monitoring of the energy transition in Germany.
As a first example for such an energy transition atlas, Figure 8 displays the intra-annual
capacity increase of onshore turbines and photovoltaic systems at NUTS-3 level for the
year 2016.

Based on the numerical simulations performed for this paper, Figure 9 shows the
monthly electricity production from variable renewables, i.e., onshore wind turbines and
photovoltaic systems, at NUTS-3 level.
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Moreover, understanding the impact of existing variable renewables on the power
supply at a highly resolved spatial and temporal scale can be very helpful in identifying op-
timal pathways for a sustainable transition to de-carbonized power generation. For this, the
simulation results presented in Figure 9 are related to the installed capacity data of variable
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renewable power plants (as depicted in Figure 1) to investigate their efficiency depending
on the considered period and area. Similar to the definitions in [14,15], the spatiotemporal
capacity factor CFst of variable renewables can be calculated by Equation (2):

CFst =
Evr

T·Cvr
× 100% (2)

In this relationship, T stands for the specified period of time, Cvr is the sum of the
onshore turbine and photovoltaic system capacity installed in the considered area, and Evr
stands for the produced electricity from these renewable energies in this period and area.
The following figure (Figure 10) shows the monthly capacity factors at NUTS-3 level in
Germany for the year 2016.
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Figure 10. Monthly capacity factors of variable renewables at NUTS-3 level in Germany for 2016.

From Figure 10, it can be derived that the capacity factors of variable renewables in
the coastal regions of Germany were significantly higher from October till February than
in the rest of 2016. This is mainly caused by the high wind power generation during the
winter months. For this period, the electricity production from photovoltaic systems plays
a minor role, which also leads to very low capacity factors in South Germany. In January
and February, the spatiotemporal capacity factors rise to the highest values with an annual
peak of 39% in the county of Emden. It is noteworthy as well that the northern areas of
Germany, especially the coastal regions, have the highest capacity factors over the entire
year due to the installed high wind turbine capacity. From November till February, the
lowest capacity factors can be mainly found for 2016 in the southern parts of Germany and
in the Rhine-Ruhr metropolitan region with values well below 10%.

In order to provide further insights into the energy transition in Germany, also the
coverage rate of the power generation from variable renewables on the total electricity
consumption is calculated on a highly resolved scale. For this, the disaggregated data from
the numerical simulations are set in relation with the electricity consumption according to
Equation (3):

CRst =
Evr

Utot
× 100% (3)
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In this expression, CRst describes the spatiotemporal coverage rate, Evr has the same
meaning as for Equation (2), and Utot is the total electricity consumption in the considered
period and area. In this context, a coverage rate of 100% means that the power generation
from variable renewables fully offsets the electricity consumption. The total consumption
is defined by the sum of electricity consumptions from the following four main sectors,
household Uhh, trade and commerce Utc, industry Uin, and transport Utr, as given in
Equation (4):

Utot = Uhh + Utc + Uin + Utr (4)

Since no pooled data on the electricity consumption at NUTS-3 level exist for the
whole of Germany, publicly available data of the federal states are extrapolated to their
counties using a top-down approach based on socioeconomic characteristics. The power
consumption of households can be scaled down by the number of inhabitants and regional
figures on real income, household, and apartment size [38–43]. The determination of the
electricity consumption in the trade and commerce sector is based on the ratio of power
consumption, population, gross domestic product, and real income [44]. The basic aspect
of this consideration is that with a higher gross domestic product and a higher real income
per capita, more services are provided and consumed, which leads to higher electricity
consumption in this sector. The power consumption of industry is calculated on the basis
of people which are employed in different industrial sectors. The calculation is based on
the assumption that the production and processes in these sectors require approximately
the same number of employees to be competitive, resulting in comparable electricity
demand. The estimation for the transport sector refers only to electricity consumption in
rail transport and is based on the relationship between power consumption, population,
mobility behavior (expressed as distance traveled by public transport), and line supply. The
data on electricity consumptions are from [45] and the figures on real income, household
and apartment size, gross domestic product, employment, mobility behavior, and line
supply are taken from [46,47].

Using the information presented in Figure 11a,b for the investigated year, 2016, the
coverage rate of the electricity production from variable renewables on the total electricity
consumption can be determined according to Equation (3), which is depicted in Figure 11c
at NUTS-3 level.
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production from variable renewable energies, and (c) coverage rate reached with variable renewables
at NUTS-3 level in Germany for 2016.

It can be easily seen in Figure 11c that the total electricity consumption, especially in
urban areas with a high population density, like the metropolitan region of Rhine-Ruhr,
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is not sufficiently covered by variable renewables, i.e., the corresponding coverage rates
are well below 10%. Furthermore, the three largest German cities, Berlin, Hamburg, and
Munich, cover only a small share of their power consumption with self-generated variable
renewable energies (with coverage rates of less than 5%), although there is potentially
enough roof space for photovoltaic systems available. Due to the relatively high share of
variable renewables in the northern and north-eastern parts of Germany combined with a
low population density, coverage rates of about 100% are achieved for 2016, especially in
some coastal regions with peak values above 400%.

5. Conclusions

One objective of this work was to create a highly resolved power generation time
series of variable renewable energies in Germany for an annual period using publicly
available plant and weather data. Herein, the focus was set on a joint consideration of the
wind power and photovoltaic models and on a joint presentation of the simulation results.
The year 2016 was chosen since the thoroughly compiled and verified plant datasets were
only available until the end of 2016 at the time of writing. Nevertheless, the simulation
models are applicable to other years and countries, if the required information about the
renewable power plants is available. In addition, the presented models can be used with
other weather products in PVGIS [26], which offer different resolutions and cover many
countries of the world. For the numerical simulations performed in this study, an ensemble
of nearly 1.64 million variable renewable power plants was taken into account. It could be
shown that sufficiently precise simulation results can be achieved for onshore turbines and
photovoltaic systems, i.e., the calculated power generation closely follows the measured
feed-in pattern for all of Germany over the entire year. To the best of our knowledge,
such highly resolved spatiotemporal electricity data of variable renewables using the same
weather product for the wind power and photovoltaic models have never been shown
before. Moreover, it is intended to make these simulation results also available on the data
portal of the UFZ.

As a further objective of this paper, meaningful key figures for an energy transition
atlas have been derived and the obtained results are presented as high-resolution maps at
NUTS-3 level. In addition, this study has also combined highly resolved power generation
time series from our simulation models with spatially downscaled electricity consumption
data to gain further insights into the energy transition in Germany. Such data can be
advantageous to investigate the multiple impacts of increasing variable renewables on
local power systems or to find appropriate policy instruments to better meet the needs of
different German regions. Many other applications, such as site assessment studies for wind
farms [48] and photovoltaic systems [49,50], can also benefit from the presented results.
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