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Abstract: Urban wetlands provide cities with unique and valuable ecosystem services but are under
great degradation pressure. Correctly identifying urban wetlands from remote sensing images
is fundamental for developing appropriate management and protection plans. To overcome the
semantic limitations of traditional pixel-level urban wetland classification techniques, we proposed an
urban wetland identification framework based on an advanced scene-level classification scheme. First,
the Sentinel-2 high-resolution multispectral image of Shenzhen was segmented into 320 m × 320 m
square patches to generate sample datasets for classification. Next, twelve typical convolutional
neural network (CNN) models were transformed for the comparison experiments. Finally, the
model with the best performance was used to classify the wetland scenes in Shenzhen, and pattern
and composition analyses were also implemented in the classification results. We found that the
DenseNet121 model performed best in classifying urban wetland scenes, with overall accuracy (OA)
and kappa values reaching 0.89 and 0.86, respectively. The analysis results revealed that the wetland
scene in Shenzhen is generally balanced in the east–west direction. Among the wetland scenes, coastal
open waters accounted for a relatively high proportion and showed an obvious southward pattern.
The remaining swamp, marsh, tidal flat, and pond areas were scattered, accounting for only 4.64% of
the total area of Shenzhen. For scattered and dynamic urban wetlands, we are the first to achieve
scene-level classification with satisfactory results, thus providing a clearer and easier-to-understand
reference for management and protection, which is of great significance for promoting harmony
between humanity and ecosystems in cities.

Keywords: urban wetland; scene classification; DenseNet121; standard deviation ellipse; Shenzhen

1. Introduction

Humanity is increasingly urban but continues to depend on nature for its survival [1].
As a result, many wetlands may remain in urban areas, both as remnants of the natural
environment and as the result of human activities [2]. These urban wetlands provide special
ecosystem services for urban residents, including mitigating runoff, treating wastewater,
cooling urban areas, and contributing to culture and entertainment [3–5]. However, these
urban wetlands should be properly managed to maintain a balance with human activi-
ties [6]. Otherwise, pollution from sediment, such as heavy metal elements and microplastic
pollution, may appear in urban wetlands, and reproduction of biological communities,
such as bat and Chironomidae populations, may cause serious adverse effects on urban
health [7–9].
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Correctly identifying urban wetlands is fundamental for developing effective man-
agement and protection plans, but it is not an easy task. Compared with one-sided and
inefficient manual surveys, remote sensing has become the current mainstream method by
which urban wetlands are identified [10,11]. However, existing research on urban wetland
identification has focused on typical wetland areas in large cities or small typical wetland
cities [12–14], and these studies are thus limited by traditional pixel-level remote sensing
image classification methods. On the one hand, urban wetlands mostly exist in scattered
forms [15], and the pixels containing these small wetlands in remote sensing images are
easily mixed with other surrounding pixels [16]. On the other hand, urban wetlands exhibit
special dynamic changes because they are affected by naturally and artificially controlled
hydrological dynamics [17,18], making it difficult to fully identify the real-time coverage
pixels of a wetland even when considering multitemporal remote sensing observations [19].
In fact, an urban wetland in a real environment is usually a scene composed of vegeta-
tion, water, tidal flats, and other land cover types, rather than a single, static land-cover
type. More recently, remote sensing image classification methods have been moving from
pixel-level interpretation methods to scene-level semantic interpretation methods, thus
aiming to label each image patch with a specific semantic class [20]. Compared with remote
sensing classification methods performed at the pixel level, more semantic meanings can
be understood through scene-level classification, especially for the global spatial patterns
formed by pixels [21,22].

For scene-level classification, the performance of the classifier largely depends on the
feature extraction ability for remote sensing images [23]. For example, the histogram of an
image can be used as a low-level summary of its features, but the classification accuracies
obtained based on these low-level features are hardly satisfactory [24]. Fortunately, widely
respected deep learning methods have been introduced into scene classification techniques
and applied to remote sensing images. In particular, the convolutional neural network
(CNN) model shows especially powerful image feature-learning capabilities [25]. During
the development of the CNN model, a network named VGGNet proposed in 2014 was
pioneered successfully [26], confirming the importance of network depth to image feature
learning ability and classification accuracy. To further increase network depth, a network
structure using shortcut connections and a network structure using dense connections were
proposed and named ResNet [27] and DenseNet, respectively [28]. Their principle is to solve
the problem of vanishing/exploding gradients with increasing network depth by fusing
feature maps of multiple scales in the network. Although ResNet and DenseNet overcome
the difficulty of increasing network depth and can achieve higher classification accuracy,
they also increase the complexity of the model structure. Therefore, MobileNet [29,30]
and EfficentNet [31], which are mainly characterized by reducing the number of network
parameters, are also of great value under the premise of maintaining high classification
accuracy. Compared with other land cover types, such as cultivated land, forestland,
and construction land, wetlands usually have lower classification accuracy [32], so it is
necessary to apply these high-precision CNN models. In two wetland studies in Canada,
Rezaee et al. [33] and Mahdianpari et al. [34] compared the classification effects of various
CNN models, including VGGNet, ResNet, and DenseNet, with traditional methods, such as
support vector machine (SVM) and random forest (RF), by using RapidEye optical imagery.
Gunen [35] used Sentinel-2 images to compare the capabilities of the CNN model and
traditional methods such as SVM, linear discriminant analysis and K-nearest neighborhood
in wetland water and non-water classification. The comparison results of the above studies
all indicated that the powerful image feature learning ability of the CNN model can achieve
a higher precision classification effect. However, urban wetlands are scattered and dynamic,
different from the typical natural wetlands in the above studies, and the performance of the
typical CNN models in urban wetland classification is still unknown; it is therefore worth
further exploration and discovery.

Shenzhen, a coastal city in southeastern China with a warm and humid climate, was
once covered with large natural wetland areas [36]. However, since the Shenzhen Special
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Economic Zone was established in 1979, urban sprawl has spread very quickly in this
city [37,38]. This sprawl has destroyed many native natural wetlands and created many
new artificial wetlands. As the concept of sustainable development has been emphasized
in recent years [39,40], identifying these scattered and dynamic urban wetlands for appro-
priate protection has become an urgent technical problem. Thus, we used the scene-level
classification method to identify urban wetland patch types from Sentinel-2 remote sensing
images. The objectives of this study are to: (1) construct a technical framework for identify-
ing urban wetland scenes; (2) compare the performances of several typical CNN models
when classifying urban wetland scenes; and (3) analyze the spatial pattern and composition
of urban wetland scenes in Shenzhen.

2. Materials and Methods
2.1. Overall Framework

The overall workflow of this study is summarized in Figure 1. It includes three
stages: data preparation, modelling, and mapping and analysis. In the data preparation
stage, a local classification system and sample dataset were generated for Shenzhen to
further support urban wetland scene mapping and comparative analysis. In the modelling
stage, a variety of typical CNN models were compared to determine the network structure
that is most suitable for urban wetland scene classification. In the mapping and analysis
stage, the urban wetland scene results obtained in Shenzhen were mapped, and spatial
pattern analysis, composition analysis, and comparative analysis with other remote sensing
products based on pixel classification were performed.

Figure 1. Overall urban wetland identifying workflow followed in this study.
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2.2. Study Area

Shenzhen lies between 22.45◦ N and 22.87◦ N and between 113.77◦ E and 114.62◦ E, is
located in the coastal area of Guangdong Province in South China (Figure 2a) and has a
tropical oceanic monsoon climate. The city has abundant rainfall and sunshine, with an
average annual precipitation total of 1882.8 mm and an annual average temperature of
23.7 ◦C, resulting in a wide variety of wetlands [36,37]. In addition, Shenzhen is one of
the fastest-growing cities in China [41]. Since the establishment of the special economic
zone 42 years ago, Shenzhen has developed rapidly into an international metropolis
and by 2018 reached an annual GDP of over RMB 2400 billion and a population of over
12.53 million [41]. Rapid population growth and urban sprawl have caused serious damage
to natural wetlands and have resulted in the creation of a large number of artificial wetlands
and small wetlands. This setting provides an appropriate case study for identifying urban
wetlands from the perspective of remote sensing scenes.

Figure 2. Study area: (a) Is the location map of Shenzhen in Guangdong Province in China; (b) is the
false color Sentinel-2 remote sensing image (bands 8, 4, and 3) of Shenzhen.

2.3. Classification System and Datasets
2.3.1. Classification System

In this study, the classification system referenced is the latest classification system of
China’s 3rd National Land Survey [42], which is extensively different from the previous
classification system of the national wetland survey; the new system is regarded as a
necessary for future wetland surveys and monitoring. On this basis, we conducted a field
survey of urban wetlands in Shenzhen in September 2021 and photographed and recorded
the type, location, vegetation, and other attributes of 18 typical locations (Figure 2b).
Finally, we made appropriate adjustments to the category structure according to the local
wetland types and distribution characteristics in Shenzhen to meet the scene classification
requirements of remote sensing images. In the local classification system, wetlands and
non-wetlands were grouped into 5 subcategories (Figure 3).

2.3.2. Reference Data of the Very High-Resolution Optical Images

According to the classification system, remote sensing scenes were manually selected
from very high-resolution optical images taken in December 2020. The images, obtained
from the Shenzhen Municipal Bureau of Planning and Natural Resources, have a spatial
resolution of 0.2 m. To match the high-resolution multispectral images, the shape of urban
wetland scenes was set at 320 m × 320 m, and 2083 patches were selected from the very
high-resolution optical images.

The coverage area is the main basis for identifying the scene type of a remote sensing
image. Specifically, when the coverage area of a certain wetland type and water exceeds
50% and the coverage area of water is smaller than that of this wetland type, the patch is
identified as a wetland scene of the corresponding type. Conversely, the patch is identified
as a scene of a non-wetland type when a non-wetland covers more than 50% of the area.
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Figure 3. The indigenous classification system of Shenzhen.

2.3.3. Classification Data of the High-Resolution Multispectral Images

Consistent with the timing of very high-resolution optical images, high-resolution
multispectral images captured by the Multispectral Instrument (MSI) sensors onboard
the Sentinel-2A/B satellites in December 2020 were used [43]. In regional wetland re-
search of similar scales, Sentinel-2 images are widely used remote sensing data, and their
high spatial resolution and rich red-edge and infrared bands are beneficial to wetland
identification [44,45]. Furthermore, a new method to aggregate cloud-free Sentinel-2 im-
ages based on the Google Earth Engine (GEE) platform was applied, which has been proven
to be superior than the often-used median image aggregation and greenest pixel mosaic
methods [46]. This new method can input all archived Sentinel-2 images in Shenzhen in
December 2020 and calculate the quality score of cloud and shadow cover to synthesize a
cloud-free image. After resampling to 10 m resolution, Shenzhen remote sensing images
with 13 bands were downloaded (Table 1). Sentinel-2 images with sufficient spectral infor-
mation and easy access were used to generate the sample datasets and identify the urban
wetlands. The sample dataset was randomly divided into a training set, a validation set,
and a test set at a ratio of 5:3:2, and all patches within Shenzhen were input into the CNN
model to classify their scene types.

Table 1. Information on the Sentinel-2 high-resolution multispectral images used in this study.

Band Name Spectral Region Spatial Resolution (m)

Band 1 Coastal Aerosol 60, resampled to 10
Band 2 Blue 10
Band 3 Green 10
Band 4 Red 10
Band 5 Vegetation red edge1 20, resampled to 10
Band 6 Vegetation red edge2 20, resampled to 10
Band 7 Vegetation red edge3 20, resampled to 10
Band 8 Near-infrared 10

Band 8A Narrow Near Infrared 20, resampled to 10
Band 9 Water vapor 60, resampled to 10
Band 10 Shortwave infrared-Cirrus 60, resampled to 10
Band 11 Shortwave infrared 1 20, resampled to 10
Band 11 Shortwave infrared 1 20, resampled to 10
Band 12 Shortwave infrared 2 20, resampled to 10
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2.3.4. Comparison Dataset of Land Cover Products

Two remote sensing products based on pixel-level classification were used for compar-
ison with the results of this study, namely, GlobeLand30 and GLC_FCS30. GlobeLand30 is
a 30-meter-resolution global surface cover product that was released by the Chinese gov-
ernment in 2014 [47] and recently updated with a new dataset to produce the 2020 version
(http://www.globallandcover.com, accessed on 26 December 2021). GlobeLand30 contains
a total of 12 land cover types, among which wetlands, water bodies, and sea areas were
reclassified as wetlands in this study, while all other types were reclassified as non-wetlands
(Table 2). GLC_FCS30 is a long-time-series global surface cover product generated from the
GEE platform and Landsat satellite imagery, with a resolution of 30 m and a stable accu-
racy [48]. The GLC_FCS30 dataset for 2020 was downloaded from the website of the Earth
Big Data Science Project (http://data.casearth.cn, accessed on 26 December 2021); from
this dataset, wetlands and water bodies were reclassified as wetlands in this study, while
all other types were reclassified as non-wetlands (Table 2). To match the scene classification
results of this study, the range of segmented scenes was used to count the wetland areas in
the GlobeLand30 and GLC_FCS30 datasets. When the wetland area in the examined range
exceeded 50%, the range was converted to a wetland scene.

Table 2. The reclassification and original categories of two land cover products.

Reclassification
Categories

Original Categories of GlobeLand30 Original Categories of GLC_FCS30

Name Code Name Code

Wetland
Wetland

Water
Sea areas

50
60

255

Wetlands
Water body

180
210

Non-wetland

Cropland
Forest

Grassland
Shrubland

Tundra
Impervious Surface

Bareland
Snow/Ice
No data

10
20
30
40
70
80
90

100
0

Rainfed cropland
Herbaceous cover

Tree or shrub cover
Irrigated cropland

Open evergreen broadleaved forest
Closed evergreen broadleaved forest
Open deciduous broadleaved forest

Closed deciduous broadleaved forest
Open evergreen needle-leaved forest

Closed evergreen needle-leaved forest
Open deciduous needle-leaved forest
Closed deciduous needle-leaved forest

Open mixed leaf forest
Closed mixed leaf forest

Shrubland
Evergreen shrubland
Deciduous shrubland

Grassland
Lichens and mosses
Sparse vegetation
Sparse shrubland
Sparse herbaceous

Impervious surfaces
Bare areas

Consolidated bare areas
Unconsolidated bare areas
Permanent ice and snow

Filled value

10
11
12
20
51
52
61
62
71
72
81
82
91
92

120
121
122
130
140
150
152
153
190
200
201
202
220
250

http://www.globallandcover.com
http://data.casearth.cn
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2.4. Deep Learning Scene Classification Model

A CNN model is composed of multiple convolution layers, pooling layers, and other
layers. This combination of multiple layers may show different feature extraction capabil-
ities, thus allowing the formation of a variety of CNN models. Excluding some models
that do not support the minimum size of 32 pixels × 32 pixels, a total of twelve typical
CNN models were tested in this study, including VGG16, ResNet50, ResNet101, ResNet152,
MobileNet, MobileNetV2, DensNet121, DenseNet169, DenseNet201, EfficientNetB0, Effi-
cientNetB5, and EfficientNetB7 [26–31]. Based on the ImageNet classification dataset [49],
these models were pretrained and integrated into the Keras application implementation
(https://keras-cn.readthedocs.io, accessed on 26 December 2021), so we can easily transfer
their weights to the classification task of urban wetland scenes. Specifically, we fine-tuned
the output structures of these models by adding a global average pooling layer, three fully
connected layers, and two dropout layers to optimize the output features and reduce the
overfitting phenomenon (Figure 1).

Finally, the softmax loss function [50] was used to classify the output features of
the CNN models. All the above models were implemented in the Ubuntu 20.4 long-term
support (LTS) operating system, and TensorFlow 2.5, CUDA 11.4, CUDNN 8.2, and NVIDIA
GeForce RTX 3090 GPU with 24 G of memory provided support for the deep learning
process applied to images.

2.5. Evaluation Metrics

The training and validation datasets were iterated through each CNN model 300 times
to allow the model to learn the optimal parameters. The test dataset did not participate in
this process at all but was used only to evaluate the model performances, including the
classification effects of the subcategories and the whole datasets. The overall accuracy (OA)
and kappa coefficient were used to evaluate the overall performance of each model, and
the F1-score and confusion matrix table were used to evaluate the model performances in
each subcategory.

Accordingly, the calculation formulas of the OA and kappa metrics are as follows:

OA =
ntrue

ntotal
(1)

kappa =
(OA − P)
(1 − P)

(2)

P =
∑

j
1(∑ labelj × ∑ predictj)

n2 (3)

where ntrue and ntotal represent the number of correctly classified samples and the total
number of samples, respectively, and labelj and predictj are the true and predicted values
of class j, respectively. In fact, the kappa coefficient is calculated based on the confusion
matrix, which considers the accuracy balance among multiple types of urban wetlands more
than the OA does. In addition, the reclassified GlobeLand30 and GLC_FCS30 products
correspond to the scene classification results obtained in this study, and there are only two
types of scenes: wetlands and non-wetlands. Therefore, the OA and kappa metrics used
to evaluate the model performance were also applicable for evaluating the consistency
between the classification results and land cover products.

To evaluate the effect of a model in discerning among subcategories, the F1-score is a
commonly used metric; this metric consists of the weighted mean of precision and recall
and is calculated as follows [51,52]:

https://keras-cn.readthedocs.io
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F1score = 2 × precision × recall
precision + recall

(4)

precision =
TP

TP + FP
(5)

recall =
TP

TP + FN
(6)

where TP represents the number of samples that were correctly predicted, and FP and
FN represent the numbers of samples incorrectly predicted for a certain subcategory and
incorrectly predicted for other subcategories, respectively.

2.6. Pattern Detection Method

Drawing a standard deviation ellipse of objects on a map is a widely used spatial
pattern detection method [53], and this method was used in this study. The reference with
which the spatial pattern is interpreted includes the position, range, shape, and center of
each ellipse, as this information can indicate the coverage, distribution trend, and discrete
state of the urban wetland distribution. In ArcGIS 10.6 software (https://www.esri.com,
accessed on 26 December 2021), the ellipses of different urban wetland scenes were drawn
one by one using the Directional Distribution tool, and their centers were calculated using
the Mean Center tool.

3. Results
3.1. Classification Performances of Models

As shown in Table 3, the overall performance of each model is good. The OA values of
all models were greater than 0.7, and the kappa coefficients were greater than 0.6. Compared
with the performances of the same models with different layers, the overall performance
differences between different types of models were greater. In general, the DenseNet models
showed better effects in identifying urban wetland scenes. In particular, DenseNet121
performed best, with OA and kappa values of approximately 0.89 and 0.86, respectively.

Table 3. The overall performance evaluation of each model.

Model
Metric Metric

OA Kappa OA Kappa

VGG16 0.819 0.778 DenseNet121 0.887 0.863
ResNet50 0.831 0.796 DenseNet169 0.856 0.827
ResNet101 0.828 0.793 DenseNet201 0.861 0.832
ResNet152 0.769 0.723 EfficientNetB0 0.762 0.716
MobileNet 0.840 0.807 EfficientNetB5 0.793 0.750

MobileNetV2 0.807 0.763 EfficientNetB7 0.706 0.647

As seen from the performance of each model in identifying the subcategories, there
are great differences among models. The F1-scores obtained for different subcategories
with each model are shown in Figure 4. The classification results for the forestland, open
water, and built-up scenes were good, while the classification results for the marsh, other,
and pond scenes were relatively poor. In general, the identifiability for wetland scenes
reflected by each model was lower than that for non-wetland scenes.

https://www.esri.com
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Figure 4. The F1-scores of different subcategories in each model.

It is worth noting that the subcategories misclassified by each model were mainly wet-
land scenes; less mixing occurred with other non-wetland scenes (Figure 5). For example,
in DensNet121, the ratios of the swamp, marsh, tidal flat, pond, and open water scenes
that were misclassified as non-wetland scenes were 0.08, 0.45, 0, 0.14, and 0, respectively,
while all other non-wetland scenes were not misclassified as wetland scenes. This result
illustrated that it is more difficult to classify wetland subcategories than non-wetland sub-
categories. Specifically, the accuracy of DensNet121 when identifying open water and tidal
flat scenes is high, reaching 0.83 and 0.99, respectively. The ratios of correctly identified
swamp and pond scenes were 0.67 and 0.57, respectively. Swamp scenes were occasion-
ally misidentified as marsh, tidal flat, pond, or forestland scenes, and pond scenes were
occasionally misidentified as tidal flat, open water, grassland, or built-up scenes. Only
0.27 of the total number of samples were correctly identified as marsh scenes, which were
often misidentified as grassland or open water and occasionally as pond, cropland, or
built-up scenes.

Figure 5. Cont.
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Figure 5. Tables containing the normalized confusion matrices of different models.

3.2. Scene Classification Results in Shenzhen

After comparing the performances of various models, we chose the DenseNet121
model to generate an urban wetland scene map of Shenzhen. As shown in Figure 6, the
scene classification performance of this model was generally good. The built-up, forestland,
and open water scenes constituted the main spatial pattern. To examine the classification
results in more detail, we selected three important wetland areas, namely, Tiegang Reservoir,
Futian Mangrove Nature Reserve, and East Coast Aquaculture Base; these areas were
marked A, B, and C on the map, respectively. The classification results of these three areas
showed good quality. Compared with the real remote sensing image shown in the last row
of Figure 6, the classification results of these three areas can correspond to actual features.
In addition, the spatial distribution of various scenes conforms to familiar ecological law.
In area A, the reservoir was centered on, and surrounded by, wetland scenes, including
swamps, marshes, tidal flats, and ponds. Area B shows a typical mangrove wetland
pattern, ranging from open water to tidal flats and swamps. Moreover, area C reflected the
dike-pond system wetland scene with Guangdong characteristics [54].
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Figure 6. Mapping scene classification results derived from the DenseNet121 model and comparison
of true color high-resolution images (bands 4, 3 and 2). (A) Tiegang Reservoir, (B) Futian Mangrove
Nature Reserve, and (C) East Coast Aquaculture Base.

3.3. Comparison with Pixel Classification Products

As shown in Table 4, in 4139 relevant scenes, the wetland area indicated by Glo-
beLand30 accounted for more than 50%; among these scenes, 4028 were coincident with the
classification results obtained in this study, and the OA and kappa values between them
reached 0.96 and 0.87, respectively. Moreover, in 3954 relevant scenes, the wetland area of
GLC_FCS30 accounted for more than 50%, among which 3900 were coincident with the
classification results of this study; the OA and kappa values derived between them were
0.96 and 0.86, respectively. The two products based on pixel-level classification showed
good consistency with our scene classification results, indicating that the framework and
methods we constructed are effective for urban wetland identification.
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Table 4. Comparison between the scene classification results and pixel classification products.

Dataset
Number of Scenes Evaluation Metric

Related Overlapping OA Kappa

Global30 4139 4028 0.959 0.870
GLC30 3954 3900 0.956 0.859

3.4. Spatial Pattern of Wetland Scenes in Shenzhen

As shown in Figure 7, five types of urban wetland scenes were extracted from all
classification results, and standard deviation ellipses were drawn to detect their spatial
patterns. First, judging from the locations, ranges, and shapes of the ellipses, the scenes
were roughly distributed in an east–west pattern. This was consistent with the basic shape
of Shenzhen, thus illustrating that the distribution of various wetland scenes within the
city was roughly balanced. Next, we mapped the centers of the ellipses to detect the spatial
pattern of the urban wetland scenes in more detail. The black cross symbol in Figure 7 is the
geometric center of Shenzhen and can be used as a reference to judge the locations of other
urban wetland scene centers. Obviously, the open water scenes, including a large area of
coastal wetlands, were more distributed to the southeast. In addition, the remaining swamp,
tidal flat, marsh, and pond scenes showed small but intensified westward distributions.

Figure 7. Spatial pattern of the urban wetland scenes of Shenzhen.

3.5. Composition of Wetland Scenes in Shenzhen

In Figure 8, the classification results of all 23,027 scenes in Shenzhen were counted.
Among them, 4096 scenes were identified as urban wetland scenes, accounting for approx-
imately 21.1% of all scenes. This percentage may seem high, but it includes the offshore
waters covered by the study area and identified as open water scenes, accounting for 78% of
the wetland scenes. In addition, 457, 230, 191, and 191 tidal flat, marsh, swamp, and pond
scenes were identified, accounting for 9.41%, 4.73%, 3.93%, and 3.93% of the wetland scenes,
respectively. The state of urban wetlands in Shenzhen is not good, and the remaining four
urban wetland scenes other than open water accounted for only 4.64% of the total.
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Figure 8. Composition of scene classification results.

4. Discussion

An urban wetland scene may contain a mixture of multiple water bodies, tidal flats,
vegetation, and even facilities. The scattered and irregular dynamic characteristics fur-
ther increase their complexity in real environments. However, the traditional pixel-level
classification method does not perform satisfactorily when identifying urban wetlands
and is usually applied to some typical wetland cities or typical urban wetlands [12–14].
Therefore, this study proposed an urban wetland identification framework based on the
remote sensing scene-level classification method. In a remote sensing image patch with
a size of 320 m × 320 m, if the wetland covered more than 50% of the patch, the patch
was defined as a wetland scene. Compared with pixel-level classification, this scene-level
classification method combines multiple types of wetland semantics to identify them and
includes dynamic changes that may not be observed in the scene.

This study utilized and compared 12 typical CNN models, including VGG16, ResNet50,
ResNet101, ResNet152, MobileNet, MobileNetV2, DensNet121, DenseNet169, DenseNet201,
EfficientNetB0, EfficientNetB5, and EfficientNetB7. Compared with classification studies
conducted in natural wetlands (OAs are generally higher than 90%) [33,34], the OAs
achieved in this study are lower because the classification task for urban wetlands is more
complex. However, the performance of classical models in different classification tasks
is similar, and the differences between different models are large. In general, the model
performances gradually deteriorated from DenseNet to MobileNet to ResNet to VGG to
EfficientNet. There is no substantial difference in the performance of the same model with
different numbers of layers, probably because the size of the images limits its ability to
learn features. Finally, the DenseNet121 model was verified as the best choice for wetland
scene classification in Shenzhen. The classification results showed good consistency with
the GlobeLand30 and GLC_FCS30 products classified at the pixel level, and both OAs
were above 0.96. It is worth noting that our classification results identified five specific
subcategories of wetlands, and the main content identified by the above two products was
water bodies.

Similar to urban wetlands in other regions [13,18], the urban wetlands in Shenzhen
presented an obvious scattered distribution pattern overall. Standard deviation ellipses
were drawn to detect the detailed spatial pattern of the wetland scenes. Affected by coastal
wetlands in the southeast and southwest, the center of the open water scenes was obviously
skewed towards the southeast. The remaining wetland scenes of the swamps, tidal flats,
marshes, and ponds showed only slight westward offsets. The open waters near the coast
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accounted for a large proportion of the wetland scenes composition, thus providing Shen-
zhen with extensive ecological service benefits [37,55,56]. However, the remaining urban
wetland scenes other than open waters accounted for only 4.64% of the total, confirming
the severity of the situation in Shenzhen in mitigating wetland degradation [57,58]. For
city managers who want to achieve sustainable development, it may be an innovative idea
to consider the scene classification results to formulate appropriate plans and policies for
urban wetland conservation. A square scene target is easier to understand and protect than
many fuzzy pixels, and a wetland scene composed of multiple components is more realistic
and warrants than many static sections of land cover pixels.

With the continuous improvement in data collection capabilities, the limitations im-
posed by data availability on ecological research have weakened, and more attention has
been given to the research frameworks and models [57]. Similarly, the high-resolution
multispectral data used in this study meet the classification requirements for identifying
urban wetlands, but there is still room for improvement. The Sentinel-2 images we used
were resampled to a 10-meter resolution, but the input size of the CNN model was still
limited. Although the very high-resolution optical images we used are clearer, they lack
spectral information and are difficult to obtain and apply on the whole Shenzhen scale, so
they are used only as a reference for building multispectral data samples. In the future,
multispectral remote sensing images with higher resolutions and more CNN models will
be considered.

5. Conclusions

Urban wetland patches in remote sensing images are usually a complex whole com-
posed of a variety of land cover types with scattered distributions and irregular dynamic
characteristics that differ from those of natural wetlands. This makes it difficult for tradi-
tional pixel-level classification methods to completely distinguish among specific wetland
types, and in many cases, only water bodies can be effectively identified. Therefore, we
interpret the patch types of remote sensing images at the scene level, breaking through the
semantic limitation of pixel-level interpretations. In Shenzhen, we developed an urban
wetland identification framework combining the latest national classification system, field
surveys, very high-resolution optical images, and high-resolution multispectral images.
Twelve typical CNN models were used for comparative experiments, among which the
DenseNet121 model had the best performance, with OA and kappa values reaching 0.89
and 0.86, respectively. The urban wetland scenes of Shenzhen classified by the DenseNet121
model maintained good consistency with the pixel-level classification results of the Glo-
beLand30 and GLC_FCS30 products, and finer identification between subcategories was
achieved. In addition, the standard deviation ellipse method was used to detect the spatial
pattern of urban wetland scenes in Shenzhen, and we found that the spatial distribution
was generally balanced in the east–west direction. In the wetland scenes, the proportion of
open water was as high as 78%, and the open water center showed an obvious southward
pattern. It is worth noting that the remaining urban wetland scenes, including swamps,
marshes, tidal flats, and ponds, were more scattered and accounted for only 4.64% of
the total area of Shenzhen, presenting a serious challenge for wetland management and
protection. Therefore, we suggest that the sustainable development of Shenzhen should
pay more attention to urban wetland scenes such as swamps, marshes, tidal flats, and
ponds rather than being limited to land cover pixels and water body boundaries.

In summary, this study proposed an identification framework for urban wetlands
based on scene-level remote sensing classification for the first time. Compared with pixel-
level classification, our classification results are more conducive to being understood
and accepted by city managers and can provide an effective reference for formulating
appropriate urban wetland management and protection policies.
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