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1 Life Sciences Center, Institute of Biosciences, Vilnius University, 10257 Vilnius, Lithuania;
alius.ulevicius@gf.vu.lt (A.U.); vaidotas.valskys@gmc.vu.lt (V.V.); arunas.samas@gf.vu.lt (A.S.);
gytautas.ignatavicius@gf.vu.lt (G.I.)

2 College of General Studies, Boston University, Boston, MA 02215, USA; pbusher@bu.edu
* Correspondence: lina.galinskaite@gmc.stud.vu.lt; Tel.: +370-692-86706

Abstract: Vehicle collisions with animals pose serious issues in countries with well-developed
highway networks. Both expanding wildlife populations and the development of urbanised areas
reduce the potential contact distance between wildlife species and vehicles. Many recent studies have
been conducted to better understand the factors that influence wildlife–vehicle collisions (WVCs) and
provide mitigation methods. Most of these studies examined road density, traffic volume, seasonal
fluctuations, etc. However, in analysing the distribution of WVC, few studies have considered a
spatial and significant distance geostatistical analysis approach that includes how different land-use
categories are associated with the distance to WVCs. Our study investigated the spatial distribution
of agricultural land, meadows and pastures, forests, built-up areas, rivers, lakes, and ponds, to
highlight the most dangerous sections of roadways where WVCs occur. We examined six potential
‘hot spot’ distances (5–10–25–50–100–200 m) to evaluate the role different landscape elements play
in the occurrence of WVC. The near analysis tool showed that a distance of 10–25 m to different
landscape elements provided the most sensitive results. Hot spots associated with agricultural land,
forests, as well as meadows and pastures, peaked on roadways in close proximity (10 m), while hot
spots associated with built-up areas, rivers, lakes, and ponds peaked on roadways farther (200 m)
from these land-use types. We found that the order of habitat importance in WVC hot spots was
agricultural land < forests < meadows and pastures < built-up areas < rivers < lakes and ponds.
This methodological approach includes general hot-spot analysis as well as differentiated distance
analysis which helps to better reveal the influence of landscape structure on WVCs.

Keywords: collisions; GIS; hot spots; land-use type; near distance; wildlife–vehicle collisions

1. Introduction

Wildlife–vehicle collisions (WVCs) are considered significant traffic and wildlife safety
issues in Lithuania, as well as in other developed and even in less developed areas of the
world [1–3]. Ecologists analysing problems associated with WVCs often choose the basis
of the georeferenced territories in which WVCs are recorded [4–6]. These studies have
demonstrated that WVCs are not randomly distributed across roadways but that their
frequency varies according to land use and by individual vertebrate species [2,5,7–9].

The desire to reduce the negative effects of WVCs requires the use of research-based
preventive measures [10,11]. In order to increase the cost effectiveness of WVC mitigation,
it is appropriate to apply preventative measures first to the most impacted sections of the
road, which requires knowledge of WVC ‘hot spots’ [12,13]. Along with traffic density and
flow factors, temporal and spatial factors are important and often evaluated together as
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wildlife–vehicle aggregations (WVAs), which largely explain how and why collisions with
animals occur on different sections of roadways.

The analysis of wildlife–vehicle collision hot spots (WVHPs) is an effective way to
determine to which landscape (land-use) factors such collisions are most related [14]. In
the standard case, hot spots are statistical units in mathematical or Geographic Information
System (GIS) models that examine how landscapes, traffic volume, road network, and
wildlife intensity affect WVC intensity in a particular spatial segment or roadway. Studies
indicate that land-use elements and their distribution play important roles in models of
WVCs [15]. The WVHP method is one of the main tools for analysing the spatial associations
of vehicle collisions with wildlife [16,17].

One common conclusion from WVHP spatial analysis is that collisions are clustered
in space and characterised by attributes associated with the landscape and the roadway.
Analysis of these landscape–roadway attributes makes it possible to identify how animals’
habitat use influences collisions with vehicles. The practical use of WVHP analysis is that,
based on the assessment of the circumstances of WVCs, it is possible to create landscape
models that allow the identification and prediction of WVC hot spots on roadways, thus
optimising the use of WVC preventive measures [18–20].

Our study evaluated the relationship between the distance to different land-use types
and the frequency of collisions between large wild animals (roe deer, moose, wild boar, etc.)
and vehicles on Lithuanian roadways. The identification of land-use types that significantly
impact WVC allows the development of a general model that may be applicable across
different types of roadways and in both developed and less developed countries.

2. Materials and Methods
2.1. Study Area

Our study analysed wildlife–vehicle collisions in Lithuania that occurred on all road-
way types. Lithuania, with an area of 65,300 km2, is a medium-latitude country (55 degrees
north latitude) in the western part of the eastern European plain situated in the eastern
European mixed forests zone. It is situated between 56◦27′ and 53◦54′ northern latitude
and 20◦56′ and 26◦51′ eastern longitude. The climate of the country is transitional between
the mild marine climate of western Europe and the harsher continental climate of eastern
Europe. The Lithuanian landscape includes forests, meadows, marshes, sands, a variety of
water bodies, and anthropogenic features [21]. The country’s land-use categories, based on
the georeferenced cadastral spatial dataset [22], consist of intensive agricultural areas (46.4%
of the country’s land area), forests (33.0%), meadows and pastures (5.4%), scrubs (2.9%),
built-up areas (3.5%), and other land-use areas (8.8%). Lithuania’s natural environments,
wildlife populations, and biodiversity are influenced by these land-use patterns.

The human population of Lithuania has declined in recent decades, amounting to just
over 2,722,289 in 2020. The human density is unevenly distributed, with the most densely
populated areas in the central and western regions of Lithuania (45–60 inhabitants/km2).
In these parts of Lithuania, the land is relatively flat, and there is developed agricul-
tural land. The eastern and southeastern regions of the country are the least populated
(15–20 inhabitants/km2), where large areas of forests, abundant water bodies, and undu-
lating terrain occur. The Lithuanian road network consists of both national (state) and
local roads, which together form a total network of 91,718 km. The average density of
roads in the country is 0.71 km/km2. Regardless of the population decline, the number
of vehicles in Lithuania has been increasing by about 3.5% per year. Additionally, in 2020,
1,847,571 road vehicles were registered in Lithuania (486 personal cars per 1000 inhabitants).
The average annual traffic volume on roadways has also grown, and as of January 2017, it
was 1566 cars/day [23].

Wildlife species most often involved in WVCs on Lithuanian roadways; included in
the database of this research are the large ungulates: roe deer (Capreolus capreolus), moose
(Alces alces), and the wild boar (Sus scrofa) population, which declined due to African Swine
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Fever, has only rebounded since 2015. The current population estimates for these species
are as follows: roe deer, 180,514; moose, 19,410; wild boar, 13,489 [24].

2.2. Collision Data

We used the Lithuanian Road Police Database, which contains data on all WVCs
recorded in Lithuania. This database documents specific aspects of each WVC event in-
cluding the precise location of the accident (indicating the exact geographic coordinates),
the time of the accident, the species involved (when possible), any individuals injured or
killed during the accident, and additional pertinent information. Available data document
all officially recorded collisions between vehicles and animals (wild, domestic, or unidenti-
fied) on Lithuanian roads from 2014 to 2018 (14,427 collisions with animals were officially
recorded). For further analysis, these data were transmitted to the GIS database according
to the coordinates of the accident based on the LKS 94 coordinate system. Transmitted
records of animal collisions with vehicles whose coordinates were misidentified (points
fell outside Lithuania, or the description of protocol clearly mismatched the location of
WVCs) were removed from the entire dataset. After eliminating these invalid records,
13,988 incidents were used for detailed analysis. Although we focused on wild animal
collisions, we also included domestic or unidentified animal collision cases in the analysis
(Table 1).

Table 1. Structure of dataset on WVCs (number/percent of accidents) used for analysis.

Species
Year

Total
2014 2015 2016 2017 2018

Roe Deer 1162/55.0 1352/55.8 1979/64.5 1561/65.2 2819/70.6 8873/63.4
Moose 160/7.6 183/7.6 210/6.8 173/7.2 260/6.5 986/7.1

Wild Boar 154/7.3 160/6.6 116/3.8 110/4.6 117/2.9 657/4.7
Other * 210/9.9 276/11.4 302/9.8 250/10.4 384/9.5 1422/10.2

Unidentified ** 425/20.2 452/18.6 459/15.1 300/12.6 414/10.5 2050/14.6
Total 2111/100.0 2423/100.0 3066/100.0 2394/100.0 3994/100.0 13,988/100.0

* Includes 23 species of wild and domestic animals that comprise less than five percent of total accidents in any
separate year. ** Includes cases in database with record ‘animal’ (without species assignment).

2.3. Data Analysis

To enhance data reliability associated with geospatial factors influencing the occur-
rence of WVCs, additional geospatial and statistical databases available for Lithuania
were used, including forest, georeference, and official statistical databases. These datasets
required high-quality calculations and data verification procedures. Each WVC record was
associated with a specific land-use type based on its distance from the land-use type. Six
land-use types were analysed: forests, agricultural land, meadows and pastures, built-up
areas, rivers, as well as lakes and ponds. Each vector layer of land-use type was extracted
from the georeferenced cadastral spatial dataset [22] (scale M 1:10,000).

Near analysis tool in ArcMap 10.8.1 software was used to calculate the precise distances
and additional proximity information between the input features (points of WVCs) and
the closest feature (land-use type) in another layer or feature class. Near analysis was
performed from 5 m to 200 m of distance from a WVC to evaluate the relationship between
distance to different land-use types and the occurrence of WVC. Within the 200 m range
6 ‘hot spot’ distances were considered (5 m, 10 m, 25 m, 50 m, 100 m, 200 m), and WVCs
that occurred within a specific radius in relation to a land-use type were assigned to that
category, and hot spots were generated. The optimised hot-spot analysis tool was used to
identify statistically significant spatial clusters of high values (hot spots) and low values
(cold spots). The hot-spot analysis tool considered the distribution of all WVCs across our
entire study area (the country of Lithuania) and generated hot spots in areas where points
of incidents (WVCs) aggregate as well as cold spots, where points of incidents (WVCs)
were rare. This tool automatically aggregates incident data, identifies an appropriate scale
of analysis, and corrects for both multiple testing and spatial dependence. Given incident
points (points of WVCs) or weighted features (polygons of different land-use types), it
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creates a map of statistically significant hot and cold spots using the Getis-Ord Gi statistic.
This statistic evaluates the characteristics of the input feature class to produce optimal
results [25,26]. This tool is appropriate for all data (points or polygons), including sampled
data. Moreover, this tool is effective and reliable even in cases where there is oversampling.
With many features (oversampling), the tool has more information to compute accurate
and reliable results. With few features (undersampling), the tool will still do all it can to
produce accurate and reliable results, but there will be less information to analyse. In our
study, there were 13,999 points (WVCs), which means that the dataset had many features
(oversampling). A high z-score and small p-value for a feature indicate a spatial clustering
of high values. A low negative z-score and small p-value indicate a spatial clustering of
low values. The higher (or lower) the z-score, the more intense the clustering. A z-score
near zero indicates no apparent spatial clustering. In our study, only 99% of confidence
level data were used.

The resultant z-scores and p-values indicate where features with either high or low
values cluster spatially. This tool works by analysing each feature within the context of
neighbouring features. To be a statistically significant hot spot, a feature must have a high
value and be surrounded by other features also with high values [27].

3. Results

The hot-spot analysis and generated maps clearly show that the influence and im-
portance of a specific land-use type depend on its distance to WVCs. The distribution
of hot spots associated with different land-use types is divided into two groups based
on distance—short range (Figure 1A) and long range (Figure 1B). Short-range land-use
types include essential elements of the species’ habitat (forests) and primary food resources
(agricultural land and meadows and pastures), while anthropogenic factors (built-up areas)
and migration corridors associated with water (rivers and lakes and ponds) are long-range
(B) land-use types.
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Figure 1. Total number of hot spots and distance to different land-use types: (A) short-range sensitive
land-use types and (B) long-range sensitive land-use types.

WVC hot spots primarily were associated with agricultural lands and forests, as well
as meadows and pastures, and most occurred within a 10 m radius. In total, these land-use
types accounted for 4777 (86%) of hot spots, with a confidence level of 99%. Anthropogenic
built-up areas were also associated with hot spots (446, 8%), but the most critical distance
was 200 m. Rivers and lakes and ponds together were associated with lower numbers of
hot spots (940, 10.2%) throughout the 200 m range and showed a significant increase at
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200 m. These land-use types are significant as migration corridors (rivers) and water supply
(rivers and lakes and ponds).

For forests (43.5% of hot spots), agricultural land (35.5%), and meadows and pastures
(36.8%), the highest percentage of hot spots with a confidence level of 99% for all species
were distributed within 10 m and 25 m (Figure 2A–C). The percentage of hot spots based
on the distance to built-up areas was uneven, distributed irregularly, and no clear pattern
was observed (Figure 2D, % ranged from 4.1% to 29.1%). The percentage of hot spots
associated with rivers (Figure 2E) showed a general pattern of increasing for all species at
25 m and 50 m, decreasing at 100 m, and then increasing at 200 m. This is especially true
for wild boar and roe deer, as well as the ‘other species’ category. For example, wild boar
hot spots increased from 6.8% at 10 m to 27.3% at 200 m. A higher percentage of hot spots
associated with lakes and ponds were generated at farther distances from this land-use
type (Figure 2F). At 10 m from lakes and ponds, the percentage of hot spots ranged from
7.4% to 11.5%, while at 200 m, the percentage of hot spots ranged from 28.8% to 31.3%.

We found no statistically significant differences (Fisher’s exact test, p > 0.05) in hot-spot
distribution among species at any distance for forests (p = 1.17) (Figure 2A), meadows
and pastures (p = 2.39) (Figure 2C), and lakes and ponds (p = 1.0) (Figure 2F). We did find
some significant differences in hot-spot distribution among species near agricultural land
(p = 0.014) depending on the distance. The most pronounced difference (Fisher’s exact
test, p < 0.05) was between roe deer (more WVC closer to agricultural land) and moose
(more WVC mid-distances to agricultural land). Not surprisingly, the ‘other animals’ group
(domestic animals are in this category) generated a higher number of hot spots at shorter
distances from built-up (p = 0.001) areas (Fisher’s exact test, p < 0.05).

Combining all land-use types and distances to generate country-wide generalised
WVC hot-spot regions (Figure 3) revealed how each separate land-use type and distance
(here combined into three categories of 10 m, 50 m, and 200 m) contributed to the overall
pattern. Generally, the combined hot-spot regions did not coincide with any individual
land-use type pattern. For example, agricultural land at the closest distances (10 m and
50 m) did not positively contribute to the generation of one of the largest hot-spot regions
around the capital city of Vilnius (first two of the three smaller maps below the larger
map in Figure 3). However, the input of agricultural land did positively contribute when
WVCs occurred at a farther distance (200 m), while meadows and pastures, and forests at
this farthest distance did not contribute either negatively or positively in generating the
hot-spot region around Vilnius. In some regions of the country, specific land-use types
were very closely related to the WVC hot-spot generation (for example, agricultural land at
10 m in northern Lithuania or forests at 10 m in southeastern Lithuania).

The hot-spot analysis allowed all land-use types to be ranked based on their sig-
nificance (according to the Getis-Ord Gi statistic used in the hot-spot analysis tool) in
relation to WVCs in the following order: agricultural land < forests < meadows and
pastures < built-up areas < rivers < lakes and ponds. Agricultural land and forests are the
dominant land-use types in Lithuania and the most important wildlife habitats; thus, they
were associated with the highest number of WVC hot spots. Distance analysis revealed
that forests had the smallest mean distance to WVC hot spots and that distances to hot
spots were less variable for this land-use type. All other land-use types had higher mean
distances and more variable distributions of distances to WVC hot spots.
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Figure 3. Distribution of hot spots (red) and cold spots (blue) of WVCs in Lithuania combining all
land-use types and distances (large map) and by land-use type at three distance categories—10 m,
50 m, and 200 m (small maps).
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4. Discussion

Our study found that WVC hot spots depended on the distance between the accident
point and a specific land-use type. The highest numbers of WVC hot spots were generated in
close proximity to agricultural land and forests, as well as meadows and pastures. All three
land-use types form important habitat constituents for large wild ungulates [28,29]. The
use of agricultural land and forests, as well as meadows and pastures, by large ungulates
and the influence of these habitats on their ecology (habitat preferences, foraging, mating
behaviours, population dynamics) is significant. Thus, their association with WVC hot
spots is expected. Meadows and pastures, as well as agricultural lands, are used by roe
deer, red deer, and wild boar as important feeding habitats in all seasons, while forests are
considered their core habitat. Moose, a typical browser, is associated more with forests
than other ungulate species [28]. Some spatially explicit models on the abundance of
ungulates across the landscape have demonstrated the influence of variables such as forest
habitat and the interspersion of forest habitat within an agricultural matrix [30]. This
mosaic pattern of forest distribution within the agricultural landscape is characteristic of
Lithuania. Interspersion between forest and open habitats (agricultural land and meadows
and pastures) may explain the similarity in WVC hot-spot distribution at shorter distances
to these habitats in our study. Seasonal and daily movements of large ungulates between
forested and open plots may inevitably overlay with road networks and increase the
probability of WVCs [31].

We found differences in absolute hot-spot numbers among land cover types, which
might be related to the contribution of a land-use type to the general structure of the land
and its importance to wildlife. Agricultural land (46.4% of land in Lithuania) was associated
with the highest number of WVC hot spots and generated hot spots with higher confidence
values than meadows and pastures (5.4% of all land). Forest habitat (approximately 30% of
all land) also played a significant role in the generation of WVC hot spots across the entire
Lithuanian landscape.

The generation of WVC hot spots was statistically weaker at distances farther from
these three habitats. We found that the probability of habitat change for agricultural land
(p = 0.00039), forests (p = 0.00024), and meadows and pastures (p = 0.00011) increased
as the distance from an accident point increased, which would reduce the importance of
these habitats in a hot-spot generation. Additionally, we found a relatively low association
between WVC hot spots and most habitat types at the closest distance (5 m) from the
accident point. We believe that 5 m may be too short a distance for the GIS tool to effectively
discriminate among habitat types, as well as 5 m could be smaller than the size of the road
where a collision occurs. For example, even if a road passes through a forest, in most cases,
the forest margin is farther than 5 m from the roadway, and the GIS tool does not indicate
this habitat as being associated with an accident point at 5 m. Therefore, we recommend
that the distance of 5 m be considered the ‘road maintenance zone’ and be excluded from
future models explaining hot spot–habitat distance relationships.

A different pattern of hot spot–habitat distance relationship was found for the other
three land-use types (built-up areas, rivers, and lakes and ponds). Hot spots tended to
increase with increasing distance to these habitat types for all species. In general, there
were fewer hot spots associated with these habitats at 5, 10, and 25 m and more at distances
greater than 50 m. This pattern was clearest for lakes and ponds but more variable for
built-up areas and rivers. Lakes and ponds could act as ‘attraction patches’ for wildlife, and
these species may have developed permanent routes to these water bodies [32,33]. When a
lake or pond is farther from the roadway there may be more potential routes that cross the
roadway, which would increase the probability of WVCs. In dryer climates, the proximity
of water sources could influence WVC clusters since water is a limiting resource for many
wildlife species in these environments [34]. Additionally, Boroski and Mossman [35] found
that mule deer distribution in northern California, USA, was influenced by the location of
water sources.
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The relationship between hot-spot number and distance was not as clear for built-up
areas. For example, WVC hot spots for other species (which includes domestic animals)
and wild boar had relatively high numbers near built-up areas (5 m), then decreased at
10–25 m, increased at 50 m, and then decreased at 100 m, before increasing again at 200 m.
On a national level, we found higher hot-spot generation near large urban areas. The
most reasonable explanation for this pattern is the vehicle intensity factor rather than
the habitat preferences of wildlife. More urban WVC hot spots most likely result from
high-density traffic flow, especially along suburban roads close to forest habitats [36]. This
has been reported in Europe for roe deer and wild boar, for countries in which population
densities of these animals are high [37], and these species may be especially tolerant of
humans and urbanisation. In Lublin, Poland, high roe deer road mortality was found
on exit roads crossing green areas at the periphery of the city [38]. Another explanation
may be that a high number of WVCs in the dataset used in our study were recorded as
‘other animals’, which contains domestic animals, and it is reasonable that they more often
are involved in WVCs near the cities. We found some species-specific patterns of hot-
spot number and habitat proximity relationships. Hot spots of roe deer–vehicle collisions
were generated more than for any other species group, which is not surprising since roe
deer is the most abundant (of the analysed species) wildlife species in Lithuania. As an
ecologically plastic species, roe deer showed less relationship in WVC hot-spot number
depending on the distance to forests, agricultural land, and meadows and pastures than
moose, an ecologically more specialised species. The number of moose WVC hot spots
was strongly related to the distance to forest habitat. WVC hot-spot number by wild boar
showed a more variable relationship based on distance from a specific habitat than the two
abovementioned species.

Our analysis demonstrates that the consideration of only one habitat type on the
WVC hot-spot distribution pattern may overemphasise the importance of that habitat
type, leading to less effective prevention measures on a country-wide scale. However,
regionally or even locally, one habitat type at a specific distance may adequately explain
hot-spot distribution patterns. We assume this applies best where one habitat dominates the
landscape. For example, in southeastern Lithuania, forest habitat dominates, which results
in hot-spot generation at close distances to roadways. Built-up areas, with high human
density and vehicle density, are significantly associated with WVC hot spots around large
cities. We conclude that the integrated hot-spot distribution pattern in any region should
be supported by additional analysis of how individual habitat types at different distances
from VWC influence hot-spot generation. The use of generalised hot-spot patterns and
regionally specific habitat–distance hot-spot patterns can lead to the implementation of
more effective WVC preventive measures.

The statistical method of hot-spot analysis is a valuable tool for identifying the sec-
tions of roadways most associated with wildlife–vehicle collisions and allows mitigation
measures to be effectively and economically applied where the need is most urgent. WVC
hot-spot analysis is considered among the most important approaches to predict and man-
age wildlife mortality threats on roads [17,39]. This methodology can be reliably applied
for abundant species but has been reported to be much less sensitive for rare species [39].
Our study adds support for using hot-spot analysis with large wild ungulates that were
abundant in Lithuania during the period of our research [40].

5. Conclusions

Results of our research have confirmed the links between land-use types and the
spatial distribution of animal collisions on roadways.

Individual habitat types differently contribute to hot-spot distribution patterns de-
pending on the distance. Agricultural land, meadows and pastures, and forests were tightly
related with hot-spot generation at closest distances (10 m) from WVCs, whereas built-up
areas, rivers, and lakes and ponds—at farthest distances (200 m).
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We found slight differences in hot spots and habitat proximity relations among specific
animal species. The roe deer, as a generalist species, showed less sensitivity in hot-spot
generation depending on the distance to forests, agricultural land, and meadows and
pastures than the moose which is a specialised browser.

Integrating all the habitat types to generate WVC hot-spot patterns on a country-wide
scale revealed a different pattern than for any individual habitat type. Areas near cities
including suburban areas with a high human population density and a high vehicle density
generated major hot-spot regions when all habitat types and distances were combined.
However, individual habitat type analysis may help implement effective prevention means
at a regional scale or local scale.

The results of our study may be valuable resources for informing management policies
and developing WVC prevention measures. Studies such as ours should be used during
the road safety planning process and in the future development of roadside areas.
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Service: Vilnius, Lithuania, 2013; pp. 8–15.

22. Geoportal. Available online: https://www.geoportal.lt/geoportal/en/web/en/search#queryText=GRPK (accessed on 27
March 2021).

23. Statistics of Fatal and Injury Road Accidents in Lithuania, 2014–2017. The Lithuanian Road Administration under the Ministry of
Transport and Communications of the Republic of Lithuania. Available online: https://lakd.lrv.lt/lt/eismo-saugumas/eismo-
ivykiu-statistika (accessed on 15 April 2021).

24. Ministry of Environment of the Republic of Lithuania. Available online: https://am.lrv.lt/lt/veiklos-sritys-1/gamtos-apsauga/
medziokle/medziojamuju-zveriu-apskaita (accessed on 10 May 2021).

25. Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [CrossRef]
26. Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27,

286–306. [CrossRef]
27. Mitchell, A. The ESRI Guide to GIS Analysis, 2nd ed.; ESRI Press: Redlands, CA, USA, 2005; pp. 161–187.
28. Baleišis, R.; Bluzma, P.; Balčiauskas, L. Lietuvos Kanopiniai Žvėrys, 2nd ed.; Asveja: Vilnius, Lithuania, 1987.
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