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Abstract: Vehicle detection in aerial images is a challenging task. The complexity of the background
information and the redundancy of the detection area are the main obstacles that limit the successful
operation of vehicle detection based on anchors in very-high-resolution (VHR) remote sensing images.
In this paper, an anchor-free target detection method is proposed to solve the problems above. First,
a multi-attention feature pyramid network (MA-FPN) was designed to address the influence of noise
and background information on vehicle target detection by fusing attention information in the feature
pyramid network (FPN) structure. Second, a more precise foveal area (MPFA) is proposed to provide
better ground truth for the anchor-free method by determining a more accurate positive sample
selection area. The proposed anchor-free model with MA-FPN and MPFA can predict vehicles
accurately and quickly in VHR remote sensing images through direct regression and predict the pixels
in the feature map. A detailed evaluation based on remote sensing image (RSI) and vehicle detection
in aerial imagery (VEDAI) data sets for vehicle detection shows that our detection method performs
well, the network is simple, and the detection is fast.

Keywords: vehicle detection; remote sensing image; convolutional neural network; anchor-free

1. Introduction

Using computer technology to complete tasks such as the classification [1], detec-
tion [2], and segmentation of remote sensing images has always been a hot topic in the
field of image research [3,4]. Among these tasks, vehicle detection in remote sensing im-
ages plays an important role in urban vehicle supervision [5–7], defense, traffic planning,
safety-assisted driving, etc. [8–10]. For such tasks, accurate and fast detection methods
are essential. Compared with other detection targets in remote sensing images (such as
buildings [11], ships [12], and airplanes [13]), the task of vehicle detection is more difficult
because there is complex background interference information, an uneven distribution
of vehicle targets, and fewer target pixels. The detection of vehicle targets in remote
sensing images has been developed for many years and has achieved promising research
results [14–16].

Remote sensing image vehicle detection aims to detect all instances of vehicles in
remote sensing images. In early methods, researchers usually directly designed and
extracted vehicle features manually and then classified them to achieve vehicle detection.
The key idea is to extract vehicle features and use classical machine learning methods
for classification. Commonly, the features used for recognition include scale-invariant
feature transform (SIFT) features [17], integration channel features [18], and histogram
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of oriented gradient (HOG) features [19], etc. The methods used for classification are
SVM [20], AdaBoost [21], intersection kernel support vectors (IKSVM) [22], etc.

However, traditional target detection methods pay more attention to the completion
of remote sensing image vehicle detection tasks, and it is difficult to balance accuracy and
speed. Compared with the rapid development of deep learning technology, there is a
big gap in the effectiveness and accuracy of detection. Network models based on deep
learning methods can extract richer features and map complex non-linear relationships.
Thanks to the improvement of hardware technology and massive data, two types of
target detection network model have been continuously formed and optimized: two-stage
networks (such as faster RCNN [23] and cascade RCNN [24]) and single-stage networks
(such as YOLOv3 [25] and SSD [26]).

For vehicle detection in remote sensing images, scholars have proposed various
improvements based on general detection models and achieved good results. The study [27]
presented an accurate vehicle proposal network (AVPN) based on a hyper feature map. The
network first combines multi-layer features to detect small target vehicles in remote sensing
images more accurately. Then, a coupled R-CNN method is constructed on this basis, which
combines AVPN and a vehicle attribute learning network and extracts the vehicle’s location
and attributes at the same time to obtain the final detection result. Lichao et al. [28]
used the principle of residual learning (ResNet) to propose a unified multi-task learning
network that can perform vehicle region segmentation and semantic boundary detection at
the same time. In order to eliminate the influence of the background information in the
horizontally labeled target box on the detection results, some researchers have tried to
introduce a rotating rectangular box in text detection. Researchers began to introduce the
rotatable target box in the text inspection field into the current task to solve this problem.
For example, Li et al. [29] integrated the rotatable region proposal network into the real-
valued flexibly connected neural network (RFCN) [30] to add angle information to the
horizontal rectangular box in the RFCN and then complete the image and video detection
of vehicles in any direction. The studies [31,32] investigated the rotatable rectangular box
proposal by introducing angle information into the anchor definition and achieving the
target detection of vehicles in any direction. Liu et al. [33] proposed a novel algorithm to
generate orientation proposals that can correctly encapsulate vehicle objects as rotating
rectangles with direction.

Current methods focus on adopting anchor-based methods. However, the use of
anchors has led to a variety of shortcomings. (a) The anchor requires the artificial setting of
a large number of parameters, which increases the computational burden of the network
and reduces the detection speed. (b) The discrete anchor scale setting will cause some
vehicle targets to fail to match the anchor, resulting in missing targets. (c) The pre-defined
anchor shape may not meet the requirements of the target in the data set. In order to
ensure the recall rate, too many negative samples are introduced, which will limit the
detection accuracy.

Apart from the above-mentioned defects of the anchor, vehicle detection based on
remote sensing images still has the following difficulties compared with general target
detection: (a) the vehicle targets in remote sensing images usually occupy only a small
area (as shown in Figure 1a, the length and width of the vehicle in the VEDAI data
set are concentrated at 5–40 pixels—i.e., the upper left corner of the figure), which will
cause a serious loss of spatial information in the transmission of the image in the deep
neural network and affect the detection results; (b) since the vehicle targets are naturally
rectangular and have monotone colors in remote sensing images, vehicle-like targets are
common in complex scenes, such as those including trees, lawns, roofs, etc., as shown
in Figure 1b, which will cause false detections; (c) the direction of the vehicle target is
arbitrary in the remote sensing image, which will result in a large number of redundant
areas in the horizontally labeled target and introduce too many negative samples for the
training of the anchor-free model, as shown in Figure 1c.
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Figure 1. Picture information in the VEDAI data set: (a) VEDAI image Scale distribution, (b) similar vehicles, 
(c) FCOS ground truth. 
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Figure 3. Sampling method. (a) FCOS sampling, (b) FoveaBox sampling. 
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Figure 1. Picture information in the VEDAI data set: (a) VEDAI image Scale distribution, (b) similar
vehicles, (c) FCOS ground truth.

In this paper, to solve the problems mentioned above, we propose an anchor-free
network that supports end-to-end training to complete the rapid and accurate detec-
tion of vehicle targets in remote sensing images. The main contributions of this article
are as follows:

(1) The multi-attention feature pyramid network (MA-FPN) module is designed to filter
remote sensing images and noise information. This method has incorporated a variety
of attendance information into the feature pyramid network (FPN) [34], including
channel attention (CA) and spatial attention (SA) mechanisms. At the same time, it
can also increase the feature representation of the vehicle.

(2) The more precise foveal area (MPFA) method is proposed to avoid redundant informa-
tion in the target box in vehicle detection. We propose this new method to distinguish
between positive and negative sample pixels. By determining the ground truth with
a uniform distribution and reasonable sampling, high-quality training samples with a
proper distribution that will eliminate redundant information can be provided for
network training.

(3) We use a single-stage anchor-free detection model to detect vehicle targets in remote
sensing images. Our method eliminates the negative impact of anchor detection
and completes the end-to-end design of vehicle detection in remote sensing images
compared with the existing anchor model. Moreover, our model has the advantages
of precision and speed. Thus, it is easier to apply in practical engineering applications,
such as in small multi-axis aircraft with limited computing ability.

The rest of this study is organized as follows. Related work is discussed in Section 2.
In Section 3, the details of the proposed method are presented. In Section 4, experiments
on VHR remote sensing image data sets are carried out to verify the proposed framework’s
effectiveness. The results and conclusion are provided in Section 5.

2. Related Work

First, we briefly introduce anchor-free vehicle detection models and attention mecha-
nisms for enhancing the feature extraction of vehicle targets in remote sensing images.

2.1. Anchor-Free Models

As shown in Figure 2, RetinaNet [35] provides a good network structure and focal loss.
On the basis of RetinaNet, two anchor-free target detection networks, fully convolutional
one-stage object detection (FCOS) [36] and FoveaBox [37], were derived using the FCN [38]
network to predict the classification and position of the pixels in the feature map to replace
the anchor of RetinaNet. By predicting the dense points on the input images, FCOS and
FoveaBox eliminate the setting of anchor hyperparameters, reduce the computational
burden of the network, and increase the strength of the network’s fitting of vehicle targets.
The core difference between FCOS and FoveaBox is that the processing methods for the
low-quality pixels are different in the input ground truth minimum enclosed rectangle.
FoveaBox limits the network artificially to learn the pixels that deviate from the center of
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the object in the ground truth minimum enclosed rectangle, while FCOS filters out the
low-quality edge detection box automatically by adding a sub-network.
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In the training process, FCOS uses each position in the label box as a training sample
(as shown in Figure 3a). To solve the problem of the low-quality prediction boxes generated
at positions far from the target center, Lin et al. added a branch, called “centerness”, which
is defined as follows:
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In the training processes of FoveaBox, the impact of pixels far away from the target on
the detection result is considered. In the selection of the training samples, the parameter
σ1 is used to shrink the real box position to the center of the target, while the points in
the shrinking area are used for training. (x1, y1, x2, y2) represent the upper left and lower
right corners of the ground truth of the target. The positive sample area

(
x′′1 , y′′1 , x′′2 , y′′2

)
is

determined as follows: 
x′′1 = c′x − 0.5(x′2 − x′1)σ1
x′′2 = c′x + 0.5(x′2 − x′1)σ1
y′′1 = c′y − 0.5(y′2 − y′1)σ1
y′′2 = c′y + 0.5(y′2 − y′1)σ1

, (2)

where
(

x′1, y′1, x′2, y′2
)

is the mapping of the ground truth of the object on the corresponding
feature map, and (c′x, c′y) are the center coordinates of the rectangular box represented by(

x′1, y′1, x′2, y′2
)
. In this paper, we chose a novel positive sample selection method to avoid

the shortcomings caused by the direct use of FCOS and FoveaBox in remote sensing image
vehicle target detection.

2.2. Attention Mechanism

The attention mechanism is widely used in computer vision to extract the main
information and filter out interference information [39–42]. It can make the network
sensitive to the region of interest by assigning different weights to different features at the
same level. Park et al. [41] inferred an attention map along two separate pathways, channel
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and spatial, and proposed a bottleneck attention module (BAM). The proposed method
could be trainable in an end-to-end manner jointly with any feed-forward models. Woo
and Park et al. [42] also proposed a convolutional block attention module (CBAM). The
proposed CBAM is a lightweight and general module, and it is also end-to-end trainable
along with base CNNs.

Although a deeper network can obtain better semantic information about vehicle
targets and is more conducive to the determination of vehicle categories when extracting
vehicle targets in remote sensing images, the loss of vehicle target spatial information
is serious, and is not conducive to vehicle bounding box regression. Due to the special
perspective of the remote sensing image, the vehicle detection task is disturbed by factors
such as complex background information, inconsistent scale distribution, and noise. As
shown in Figure 4, after the input image is resized to 1333 × 800, the scale decreases
exponentially, which means that the learnable offset during pixel regression will be very
small. The underlying feature map is not conducive to the classification of pixels due to
the low amount of semantic information.
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Figure 4. Scale change of feature pyramid network (FPN) after image resize.

The attention mechanism makes the network sensitive to the region of interest in the
task by assigning different weights to different features at the same level. Through the
channel attention mechanism, different channels in the feature map are given different
weights. After training and screening, it can be ensured that the underlying feature map
can still successfully represent the semantic information of the vehicle. Through the spatial
attention information, the value weight of the non-vehicle target area becomes lower. In
the subsequent processing, these uninteresting areas will be filtered out, thereby reducing
background information and noise interference in the remote sensing image.

3. Methods

We propose a VHR remote sensing image detection method based on the anchor-free
detection model. The model consists of three parts, as shown in Figure 5. (1) MA-FPN: FPN
structure that integrates multiple attention mechanisms; (2) MPFA: a more accurate method
for calculating pit regions; (3) prediction subnet: classification and minimum enclosed
rectangle regression subnets are used to obtain the classification information of the pixels
in the feature map and the offset of the current position pixels from four directions—i.e.,
up, down, left, and right.

The process of vehicle detection can be described as follows. First, the image is
inputted into MA-FPN to generate multiple feature maps with different scales containing
attention information. Second, the vehicle instance information in the rectangular box in
the image will also be inputted during network training. Combined with the corresponding
feature map scale, to determine a more accurate foveal area, the pixels in this area will



ISPRS Int. J. Geo-Inf. 2021, 10, 549 6 of 22

be regarded as positive samples. Finally, the feature map obtained by MA-FPN will be
inputted first into the classification branch and then into the box regression branch to
determine the category and regression information of the pixels in the feature map.
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3.1. Feature Pyramid That Combines Multiple Attention Information (MA-FPN)

After the image is input into the neural network layer through operations such as
pooling, the low-level feature map will slowly become a high-level feature map with a
reduced scale and increased channel count. The proposed FPN method proves the effec-
tiveness of multi-level feature map information fusion. We chose to add this mechanism to
the feature fusion process from the top to the bottom of the feature pyramid. The specific
fusion method is as follows.

The neural network performs feature extraction on the input image to obtain feature
maps of different scales. First, channel attention information is extracted from the feature
maps of two adjacent feature maps with a small scale, and they are added to adjacent
feature maps with larger scales. Then, spatial attention information is extracted from the
obtained feature map and the result we need is obtained.

In this paper, we use ResNet [43] as the backbone of the feature extraction and select
the last layer of each residual block to form a bottom-up feedforward network. After the
image passes through the network, a multiple feature map with a decreasing scale and
increasing channel number will be generated. For an input image with a size of W × H × 1,
the scale change of the output feature map {p1, p2, p3, p4} is {W/8 × H/8, W/16 × H/16,
W/32×H/32, W/64×H/64} and the number of channels changes to {256, 512, 1024, 2048}.
After obtaining multiple feature maps, we perform a convolution operation on each feature
map to unify the channel numbers to facilitate subsequent attention fusion between the
feature maps. The channel unification formula can be expressed as:

Pi = Conv3×3(Ci, 256, 1, 1) (3)

where Conv(·) represents the convolution operation in the neural network, the 3 × 3
subscript of the convolution operation is the size of the convolution kernel used in the
convolution operation, Ci is the number of input feature map channels, 256 means the
output feature map channel number, and the last two parameters in the brackets represent
stride and padding, respectively.

Then, in the process of horizontal linking and the top-down transmission of the
feature map in the upper left area, the channel attention operation and the spatial attention
operation are successively carried out. Each feature map fusion always has two adjacent
high-level features and low-level features participating in the procedure. As shown in
Figure 6, maximum channel pooling and average pooling are performed on low-level
features. Then, the sigmoid function (Equation (4)) is used to activate the merged block
to obtain the feature map Bc with rich channel attention information. Finally, a 1 × 1
convolution is input to reduce the dimensionality to obtain a block with 256 channels and
a scale of 1.
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This block will be multiplied by a low-level feature map of a channel to obtain a
low-level feature map containing channel attention.

s(z) =
1

1 + e−z (4)
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Bc = sigmoid
(

cat
(

Cmaxpool(Pi), Cavgpool(Pi)
))

(5)

Finally, through the residual connection, the feature map containing the channel
attention and the high-level feature map after double-down sampling are added to obtain
Pc

i−1. The process can be expressed in the following form:

Pc
i−1 = Conv1×1(Bc)× Pi−1 + Unsample(Pi) (6)

where Pc
i−1 represents a feature map incorporating channel attention information c, Pi−1

is the next layer network of Pi, and cat(·) represents the concatenate operation of the
feature map. After merging the two blocks, the sigmoid function is activated. Cmaxpool(·)
represents the maximum pooling of the feature map in the channel direction, Cavgpool(·)
represents the average pooling of the channel, and Unsample(·) double upsamples the
feature map.

Bcs = sigmoid
(

cat
(

Smaxpool
(

Pc
i−1
)
, Savgpool

(
Pc

i−1
)))

(7)

The feature map Pc
i−1 obtained by the channel attention information extraction will

be successively subjected to maximum spatial pooling Smaxpool(·) and average spatial
pooling Savgpool

(
Pc

i−1
)
. After concatenating and convolution, the sigmoid will be used to

activate the obtained feature map to obtain a feature map Bcs with rich channel attention
information and spatial attention information. Finally, the result is multiplied by Pc

i−1 again,
and the final feature map Pcs

i−1 is obtained, which will form a feature pyramid together
with other feature maps rich in attention information obtained by the same operation and
used for subsequent network classification and regression.

Pcs
i−1 = Conv1×1(Bcs)× Pc

i−1 (8)

Through a series of feature fusion operations, the current structure is dedicated
to integrating attention information into the feature information extracted from remote
sensing images. The output feature map can express vehicle information more abundantly
without significantly increasing the computational complexity of the network, which
facilitates the subsequent network classification and the regression of the pixels in the
feature map.
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3.2. More Precise Foveal Area (MPFA)

This section introduces detected vehicle instance segmentation information to remove
redundant information in the positive sample selection stage to make the target semantic
information clearer. We also propose a new way to distinguish positive and negative
samples by determining a more accurate concave point area in the vehicle target box and
using the pixel coordinates as a positive training sample, which provides a new ground
truth selection method that is anchor-free. The specific implementation steps of the MPFA
method are shown in Table 1 and Figure 7.

Table 1. The operation flow of accurate area point sampling.

The Input Is the Ground Truth Minimum Enclosed Rectangle Scaled by the Corresponding
Feature Map and the Instance Segmentation Information of Vehicle 1.

1. For the marked rectangle, the pixel of the point in the vehicle segmentation area is set to 1;
otherwise, it is 0.
2. After setting the network hyperparameters, assign the current vehicle target box to a feature
map of a specific scale.
3. Zoom the input image to the corresponding ratio of the feature map, and mark the
corresponding input vehicle with a rectangular box, and the binary image M will also be zoomed.
4. Combine the segmentation information of the vehicle to determine the binary map M in the
minimum enclosed rectangle.
5. Calculate the weight wi,j of all pixels in the binary image M, and Pi,j is the value at the current
coordinate i,j.
wi,j = ∑ ∑ Pi,j, where i ∈ {i, i− 1, i + 1}, j ∈ {j, j− 1, j + 1}.
6. Recording threshold thr ≤max

(
wi,j ).

7. Traverse the binary graph M, the list stores all sampling points, list ≤ wi,j ≥ thr.
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In the network training stage, in addition to inputting the horizontal rectangular frame
marked in the original remote sensing image, we also select the instance segmentation
information for the vehicle in the current marked rectangular box. For the data set designed
by us, the points around the vehicle target in the VHR remote sensing image have been
marked in the preliminary marking process, and the area composed of these points forms
the segmentation information of the vehicle. In the public data set VEDAI, the four
corners of the vehicle are provided to form the smallest rectangular box surrounding the
vehicle; therefore, it can simply be considered that the smallest rectangular box has the
same meaning as the instance segmentation information of the vehicle. In addition, it is
very simple to obtain the horizontal rectangular box of the vehicle from the minimum
target area surrounding the vehicle target—i.e., the combination of the extreme values of
the horizontal and vertical coordinates of the surrounding area points. The supervision
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information will be sent to the network together for subsequent learning after data labeling
and preprocessing operations. The remote sensing images will undergo a series of random
flip, resize pooling, and attention information fusion operations, and finally form a set of
feature maps with an increasing scale and constant channel number—i.e., the top-down
feature pyramid in the middle part of Figure 5. The important point in the feature pyramid
is that the prediction of the input supervision information is hierarchical—i.e., the feature
map that should be used is determined according to the size of the input target box. The
larger target selects the higher-level features, and the smaller target selects the lower-level
features. This is caused by changes in the semantic information and spatial information
of the feature map of the input image in the feature pyramid. In the VHR remote sensing
image target detection, because the area of the vehicle targets is relatively clustered, we
know that most of the vehicle targets selected the lowest-level feature map during the
training and testing process—i.e., the output feature map corresponding to the P1 feature
map in Figure 5.

It can be seen from the ResNet scaling of the picture that the lowest-level feature
map is eight times larger than the original input image. In the network training stage,
the supervision information following the input VHR remote sensing image will also be
scaled proportionally. At this time, the point in the input vehicle target box aggregates the
8 × 8 area information in the input remote sensing image. To show whether the pixels in
the rectangular box belong to the segmentation information of the vehicle, we binarize
the values of the pixels in the rectangular box, which indicate that 0 in the rectangular
box represents the redundant information mentioned above, and 1 is the pixel in the
rectangular box that belongs to vehicle information. After completing the processing of the
input information, we calculate the new pixel value at each position in the rectangular box
on the binary image. These values express the abundance of vehicle information around the
current pixel and indicate whether the point should be selected as the weight of supervision
information during training. In the two-dimensional binary matrix of the target, the pixel
points are traversed from top left to bottom right, the surrounding eight direction values
are accumulated for each point, and, finally, the accumulated result is added to its value.
For the pixels on the border of the rectangular box, the missing positions are filled with 0.

In the process of accumulating the pixel value, the record of the maximum value of the
pixel is updated with the number of traversals as the sampling point selection threshold.
When the traversal accumulation is completed, we perform another traversal to select the
final trainable pixel points and record all the points in the rectangular frame whose pixel
values are not less than the threshold value. At this point, these selected pixels represent
the supervision information in the rectangular box of the input VHR remote sensing image
vehicle target that can be used for subsequent network learning.

After the above steps, we will completely obtain the vehicle target training points
in an input remote sensing image. As can be seen in Figure 8, the pixels obtained by our
sampling method completely filter out the influence of redundant information in the target
box. The pixels obtained by our sampling method are close to the center of the object and
away from the surrounding rectangular box, keeping a certain distance from it, which
facilitates the return of subsequent pixels to the surrounding rectangular box.

3.3. The Prediction Network

As shown in Figure 5, the feature map of the obtained multi-attention mechanism
will be sent to class subnets and box subnets. Both of these two sub-networks use the
FCN structure for the dense prediction of pixels. According to the different tasks of the
sub-network, the same feature map head is convolved four times (on the dotted line × 4 in
Figure 9), and the W × H × 1 and W × H × 4 outputs are obtained by one dimensionality
reduction. The 1 of the class subnets indicates whether it belongs to the vehicle class, and
the 4 of the box subnets indicates the offset of the distance between the current pixel and
the four sides of the box.
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where x and y represent the coordinates of the positive sample pixels in the feature map; 
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It can be seen from Figure 9 that the prediction network first generates feature maps
with sizes W × H × 1 and W × H × 4 with a value of 0. For the determined positive
sample pixels, the label of the corresponding position in the W × H × 1 feature map will
be set to 1, indicating that the current pixel position contains the vehicle target. At the same
time, the offset of the distance between the pixel and the four sides of the ground truth is
calculated and assigned to W × H × 4. The mapping relationship is as follows:{

txmin = log 2l(x+0.5)−xmin
z , tymin = log 2l(y+0.5)−ymin

z

txmax = log xmax−2l(x+0.5)
z , tymax = log ymax−2l(y+0.5)

z

, (9)

where x and y represent the coordinates of the positive sample pixels in the feature
map; xmin, ymin, xmax, ymax represent the values of ground truth on the feature map scale;
l represents the reduction factor of the feature map relative to the input image; z is a nor-
malization factor that can map the output space to space with a center of 1 to make the
training stable. Finally, the log space function is used for regularization.

The loss function consists of two parts. The first part, Lreg, represents the regression
loss function of the pixels in the feature map, and the second part, Lcls, is the category
loss function of the pixels in the feature map. Using focal loss, it is convenient to reduce
the weight of a large number of simple negative samples in training, and it can also be
understood as a difficult sample mining method that provides a good solution to the
classification problem of imbalance between positive and negative samples. The specific
form of the total loss function can be represented as follows:

L =
1

Npos
Lcls +

λ

Npos
Lreg, (10)
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where Npos represents all the positive targets in the ground truth, and λ is an adjustable
parameter to balance two different loss functions. For the loss function Lreg, we use the
common smooth L1 loss to minimize the objective function. It is defined as follows:

Smooth L1 =

{
0.5x2, |x| < 1

|x| − 0.5, x < 1 or x > −1
, (11)

Focal Loss = −α(1− Pc)
γ log(Pc), (12)

where Pc represents the probability that the classifier predicts the car class, α and γ are
adjustable parameters. Of these, α is used to balance the uneven proportion of positive and
negative samples. α and γ are determined by the grid search method. Because the negative
samples are easy to distinguish and to make the proportion of positive samples smaller
than that of negative samples, α is searched in [0,0.5]. Focal loss becomes a cross-entropy
loss function when γ = 0, and the increase in γ will slow down the rate of weight reduction
in simple samples, so γ is searched in [0,10]. Throughout the experiments, α = 0.15 and
γ = 2.5 are selected. In the training stage, the selected positive samples are used to adjust
the parameters of the network. In the prediction stage, the two sub-networks output the
category information and regression information of the pixels and form the target box. The
final VHR remote sensing image vehicle target detection result is obtained by setting the
category confidence threshold and non-maximum suppression (NMS).

4. Experimental Results

In this section, we will first introduce the two data sets used in the experiments. Then,
we will describe several sets of comparative experiments to explore the performance of
the proposed framework. The ablation experiment will also be demonstrated to show the
effectiveness of our proposed method. All the programs in our experiment were completed
in PyTorch, developed by Facebook. The operating environment includes an Nvidia RTX
2080Ti graphics card with 12 GB memory and a multi-core (Intel Xeon E5-2667 v3) CPU.

4.1. Data Set and Settings

In this study, we conducted experiments on the data set RSI (designed by us) and the
public data set VEDAI, which came from Utah AGRC, USA [43].

RSI includes 50 images from different environments (including cities, deserts, and
ports) collected from the public source Google Maps, USA, which has a resolution of
4.92 in. × 4.92 in. per pixel. The image size is 5000× 5000 pixels, and the ground sample
distance (GSD) is 12.5 cm/pixel. In order to enrich the vehicle remote sensing image data
set, the geographic attributes of the image were considered in the image selection, and
different areas, such as city center, city suburbs, desert, port, etc., were selected, respectively.
In the RSI data set, the annotation of the vehicle target not only includes (xmin, ymin, xmax,
ymax) but also includes the instance label of the vehicle in the target box, which consists
of a series of point sets. We performed the random segmentation of these large images
without overlap, selected images with a resolution between 512 × 512 and 1500 × 1500,
and instantiated the vehicle targets in them. We obtained 500 images in total. We randomly
selected 250 images for training, and the remaining 250 images were used for testing. At
the same time, we used data enhancement operations on the training images, including
rotation (90◦, 180◦, 270◦), flip (up and down, left and right, main diagonal flip), and adding
Gaussian noise. The final training data set totaled 2000 sheets.

The VEDAI is a data set for vehicle detection in the aerial image, provided as a tool to
benchmark automatic target recognition algorithms in unconstrained environments, and
collected from Utah, USA. The VEDAI contains color and infrared images. The color images
have three 8-bit channels (R, G, B) while the infrared images have only one 8-bit channel.
In addition, the VEDAI data set provides two different image resolutions: 512 × 512 and
1024 × 1024. In the VEDAI data set, eight-point coordinates of the vehicle target are
provided, which form a minimum rectangular box. We use this smallest rectangular box as
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the instantiation label of the vehicle. Compared with other public data sets, the average
vehicle targets available for training in each picture in the VEDAI data set are few and
small. Therefore, we chose VEDAI512 to verify the robustness of our proposed model
in the case of a few targets and small target boxes, and its ground sampling distance
was 25 cm/pixel. Additionally, after screening the vehicle targets, there were a total of
1066 different images in the VEDAI512 data set, and each image contained three visible
color channels, corresponding to an image of one near-infrared channel.

However, the infrared image in the VEDAI data set can be regarded as a three channel
image, and only the values of the three channels are the same. Hence, to ensure the number
of the training and testing images, we uniformly processed the infrared image and the color
image according to the color image and collected the values of the RGB three channels as
training and test data. First, we randomly selected half the image set from the three visible
color channels; then, we selected the corresponding near-infrared channel image set. The
ratio of the training set to the test set was 1:1.

The backbone of all models involved in the paper was based on the ResNet50 pre-
trained on ImageNet [44]. The batch size during training was set to two, and the initial
learning rate was 0.01. We used stochastic gradient descent (SGD) [45] for 24 epochs, and
weight decay and momentum were set as 0.001 and 0.9. The learning rate was reduced by
a factor of 10 at the end of the last 20 K training steps.

4.2. Evaluation Metrics

The output of our model was the category information of the pixel in the feature map
and the offset of the pixel in the top, bottom, left, and right directions. First, the detection
box with a confidence level of less than 0.05 in the detection result was filtered out. Next,
the non-maximum suppression method was used to eliminate some overlapping detection
boxes, where the intersection over union (IoU) of NMS was set to 0.5.

To evaluate the performance of different models on the data set, similar to the litera-
ture [14], we also used average precision (AP), average recall (AR), precision–recall curve
(PRC), F-measure (F1), and frames per second (FPS) as the basis for judging the results.

TP (true positive) means the positive samples are correctly identified as positive
samples, representing the number of vehicles correctly detected; FNs (false negatives) are
the positive samples predicted as negative samples, representing the quantity of undetected
or missed vehicles; FP (false positive) represents the quantity of falsely detected vehicles.
The precision rate reveals the proportion of the number of target boxes that are confirmed
as vehicle target boxes in the predicted result target box in the remote sensing image. In
contrast, the recall rate indicates the proportion of the predicted vehicle target boxes in all
real target boxes of the remote sensing image. The larger the ratio, the better the model can
be expressed. The definitions of accuracy and recall are as follows:

Precision =
TP

TP + FP
, (13)

Recall =
TP

TP + FN
. (14)

The F1 score takes into account both the precision and recall of the model. The
F1 score can be regarded as a harmonic average of model precision and recall. It is defined
as follows:

F1-score =
2× Precision× Recall

Precision + Recall
. (15)

4.3. Comparison with Other Target Detection Methods

To verify the effectiveness and comparative advantages of our proposed model, we
selected some advanced detection models for comparative experiments, including two-
stage models such as faster RCNN, cascade RCNN, and FPN, and single-stage models
such as SSD512, RetinaNet, FCOS, and FoveaBox. To further illustrate the effectiveness of
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the proposed method in remote sensing image vehicle detection, some results on vehicle
detection, including VCSOP detector [46], convolutional neural networks (CNNs) [47], and
Oriented_SSD512 (Oriented_SSD300) [31], are directly used to compare the advantages of
the proposed method, because it is difficult for us to reproduce the experimental results
due to lack of open-source code and data set.

The initial learning rate was 0.001 and maximum training steps was 10 k times; the
learning rate for the previous 80,000 times remains unchanged and the learning rate of
the latter 20,000 times is decreased to 0.0003, the weight is attenuated to 0.0001, and
the momentum is 0.9. The initial values of the weights and bias are obtained by the
randomization method.

4.3.1. VEDAI Data Set Experimental Results

Table 2 shows the experimental results for all the models for the public data set VEDAI.
The precision and recall are the average values of the confidence level in the interval of
0:0.1:1. It can be seen that our detection method performs well in many contrasting models.
The detection precision and recall rates are 90.1% and 96.0%, respectively, and the harmonic
average F1 is increased by 1.9%, compared to the second-ranked RetinaNet detection
method. Our detection method FPS also has certain advantages.

Table 2. Comparison of multiple detection methods in VEDAI.

Precision (%) Recall (%) F1 (%) FPS Million
Parameters

Two-stage
Faster R-CNN [23] 82.1 87.7 84.8 5.8 3.39

Faster R-CNN w FPN 88.9 91.6 90.2 17.4 4.14
Cascade R-CNN [24] 84.1 86.9 85.5 2.3 3.31

Cascade R-CNN w FPN 88.4 90.1 89.2 14.6 6.92

Single-stage
SSD512 [26] 77.2 91.5 83.7 22.9 2.44

RetinaNet [38] 87.8 94.7 91.1 18.6 3.63
FCOS [35] 86.9 93.0 89.8 24.7 3.21

FoveaBox [36] 86.5 90.4 88.4 22.7 5.69

Ours 90.1 96.0 93.0 21.5 3.80

Compared with faster RCNN in the two-stage experiments, it can be seen that the
detection results for faster RCNN are significantly improved by adding an FPN. This can
also be verified by two groups of experiments—cascade RCNN and cascade RCNN with
FPN. The results show that the FPN can improve the detection performance in vehicle
target detection in VHR remote sensing images. The low-level feature maps can be rich
while maintaining sufficient spatial information by combining high- and low-level feature
maps. The semantic information enhances the detection of vehicle targets in remote sensing
images.

As an anchor-based detection network, SSD512 only performs a single target recog-
nition and regression on the prior box. Although the detection is fast, the accuracy of
the detection is reduced. The detection accuracy of 77.2% is much lower than the 82.1%
accuracy of faster RCNN. In the experimental results for the single-stage target detection
model, the proposal of RetinaNet makes it possible for the detection performance of a
single-stage network to exceed the two-stage result. The detection result of RetinaNet is
not only better than that of faster RCNN but also significantly higher than that of cascade
RCNN. The above results also verify the excellent network structure of RetinaNet and the
effectiveness of the focal loss.

However, as an anchor-free variant of the RetinaNet network, it can be seen from the
results that FCOS and FoveaBox are inferior to RetinaNet in terms of precision, recall, and
F1 score. It can be seen that the direct introduction of the two anchor-free networks to
the VHR remote sensing image vehicle target detection task did not improve the results.
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This is because the detection models based on FCOS and FoveaBox cannot eliminate the
redundant information in the horizontally labeled target in the VHR remote sensing image
well. Unlike the FCOS, although FoveaBox shrinks the training area to avoid the influence
of low-quality samples around the center of the target on the training results, it is difficult
to take into account the characteristics of the arbitrary direction of the target and the
complex background information. Compared with the best-performing RetinaNet network
in Table 2, we have incorporated an attention mechanism (MA-FPN) into the FPN structure
to enhance the feature extraction of vehicle targets and reduce the influence of background
information and noise in the VHR remote sensing images. The experimental results show
that the proposed method has obvious advantages; the precision not only reaches 90.1%,
but the proposed method also leads the other models in the table in terms of recall, reaching
96.0%.

In addition to detection accuracy, another important performance indicator of the
target detection algorithm is speed and the space complexity of the detect model. In
order to further illustrate the effectiveness of our model, we performed statistics on the
parameters of each model and the FPS. Due to the addition of modules to improve detection
accuracy, such as MA-FPN and MPFA, the parameters of the proposed model are 3.8 million.
However, this is still lower than the number of parameters of the faster R-CNN with
FPN, cascade R-CNN with FPN, and FoveaBox. It also can be seen that the performance
improvement does not depend on the complex models with many more free parameters,
but on an effective pipeline and beneficial architectural modifications.

For the superiority of the proposed method in VHR remote sensing image vehi-
cle detection, we directly compared the results of the vehicle detection methods pro-
posed in [31,46,47] on the VEDAI data set, including a vehicle center, scale, and orien-
tation prediction-based detector (VCSOP detector) [46], convolutional neural networks
(CNNs) [47], and Oriented_SSD512 (Oriented_SSD300) [31]; the results are shown in
Table 3. Among these methods, the proposed outperforms the aforementioned methods in
terms of recall, precision, and F1 score for vehicle detection in remote sensing images. In
order to improve the detection performance, the VCSOP detector for orientation-aware
vehicle detection contains four subtasks to directly predict high-level vehicle features, and
the detection precision and recall rates are 86% and 94.62%, respectively. The proposed
method introduces the MA-FPN module for background information filtering and vehicle
target enhancement, and the MPFA method is designed to determine the training sample
selection area of the vehicle target in the VHR remote sensing image. Hence, the detection
precision and recall rates are the best, reaching 90.1% and 96%, respectively. The higher
accuracy and recall in this data set further demonstrate the effectiveness and efficiency of
the proposed method in the remote sensing image vehicle detection.

The PR curve is used to measure the performance of the models. First, the detection
box with a confidence level of less than 0.05 in the detection result was filtered out. Next,
the non-maximum suppression method was used to eliminate some overlapping detection
boxes, where the intersection over union (IoU) of NMS was set to 0.5. Then, the confidence
of the box with IOU greater than 0.5 was calculated. Finally, the precision and recall were
calculated under different confidence which changes from 0:0.01:1.

Table 3. Results of different methods on the VEDAI512 data set.

Method Precision (%) Recall (%) F1 (%)

VCSOP detector 86 94.62 90

CNNs 56 79 66

Oriented_SSD512 80.46 60.12 69

Oriented_SSD300 78.36 52.6 63

Ours 90.1 96 93
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Figure 10 shows the P–R curves of various models, indicating the pros and cons of
our model and other models. In Figure 10a, our model can still maintain the lowest decline
in detection accuracy as the recall rate increases. This means that our model can detect
vehicle targets as possible, the accuracy is higher, and the error rate is lower. On the
contrary, in the other detection models, such as faster RCNN and SSD512, the curve decays
faster, the detection accuracy rate also drops significantly, and the recall rate stops when
it approaches 90%. AUC is the standard for judging the pros and cons of the two-class
prediction model, which reflects the ranking quality predicted by the model, i.e., the ratio
of positive examples in front of negative examples. The AUC value of our proposed model
in the public data set VEDAI is 0.973. Compared with the comparative model, it shows the
superiority of our model.
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The example images of the detection result are shown in Figure 11. Figure 11a shows
the test picture, Figure 11b shows the faster RCNN detection result, and Figure 11c shows
the SSD512 detection result. In the results, the green box means the detected vehicle, the
red box means the missed vehicle, and the yellow box means the error detection. It can be
seen that many false and missed detections in faster RCNN and SSD512 will lead to low
precision and recall.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 2 of 3 
 

 

 

(a) test image (b) Faster-RCNN (c) SSD512

 
(a) (b) (c) 

Figure 11. The detection results for faster RCNN and SSD512: (a) test image, (b) faster RCNN, (c) 

SSD512. 

Recall

1.0
0

0 0.2 0.4 0.6 0.8

RSI Vechicle Dataset

1.0

0.2

0.4

0.6

0.8

P
recisio

n

1.Faster-RCNN & 

AUC=0.912

2.Faster-RCNN w FPN & 

AUC=0.917

3.Cascade-RCNN & 

AUC=0.857

4.Cascade-RCNN w FPN & 

AUC=0.877

5.Ours & AUC=0.963

 
Recall

1.00 0.2 0.4 0.6 0.8

RSI Vechicle Dataset

0

1.0

0.2

0.4

0.6

0.8

P
recisio

n

1.RetinaNet & AUC=0.907

2.SSD512 & AUC=0.930

3.Fcos & AUC=0.878

4.FoveaBox & AUC=0.946

5.Ours & AUC=0.963

 

(a) (b) 

Figure 13. PR curve of the RSI experiment: (a) two-stage, (b) single-stage. 

 

 
(a) (b) 

 
(c) (d) 

Figure 11. The detection results for faster RCNN and SSD512: (a) test image, (b) faster RCNN,
(c) SSD512.

In order to show the detection results for this model for the VEDAI data set, the detec-
tion results are visualized. Figure 12 shows some test results for the proposed model. The
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results show that this model has a good detection performance for both three-color images
and monochrome images and can accurately detect the vehicle targets to be inspected in
remote sensing images.
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4.3.2. Experimental Results for the RSI Data Set

In the entire VEDAI512 data set, there are only 1.11 vehicle targets in each image. Thus,
the task of vehicle detection is relatively simple for the existing detection model. Hence,
as a supplement to the VEDAI data set, the RSI we designed focuses on rich background
information and dense vehicle targets. There are 38.2 vehicle targets, on average, in each
VHR remote sensing image, and the scenes are diverse, which increases the difficulty of
vehicle detection. Table 4 shows the experimental results for all models in the RSI data set.

From the results, we can see that our detection model is still better than other compa-
rable models. Our detection results are better in the RSI data set, and the accuracy rate,
recall rate, and F1 indicators are improved by at least 5.2%, 8.2%, and 7.2%, respectively.

Table 4. Comparison of multiple detection methods in RSI.

Precision (%) Recall (%) F1 (%) FPS Million
Parameters

Two-stage
Faster R-CNN [23] 72.9 79.6 76.1 5.3 3.39

Faster R-CNN w FPN 73.2 78.0 75.5 16.8 4.14
Cascade R-CNN [24] 73.2 78.6 75.8 2.2 3.31

Cascade R-CNN w FPN 75.9 80.3 78.0 13.6 6.92

Single-stage
SSD512 [26] 71.3 85.7 77.8 23.1 2.44

RetinaNet [38] 78.1 86.4 82.0 18.7 3.63
FCOS [35] 80.3 87.1 83.6 24.2 3.21

FoveaBox [36] 80.7 86.8 83.6 22.3 5.69

Ours 85.9 95.3 90.4 21.4 3.80

Table 4 shows the experimental results for the RSI data set. Compared with the
detection results for the VEDAI data set, the detection performance has significantly
decreased, which means that the detection difficulty of the RSI data set is higher than that
of the VEDAI data set. However, the pros and cons of the performance between the models
do not change with different data sets. From the experimental results, it can be seen that
the detection results for the anchor-free models—i.e., FCOS and FoveaBox—surpass those
of the anchor-based model, indicating that the anchor-free model has more advantages
with respect to the RSI data set. This is because the remote sensing images of the RSI data
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set contain more vehicle targets, which may even exceed the upper limit of the proposed
area in the anchor-based model, and the vehicle targets also have complex backgrounds
and rich colors. Additionally, the vehicle targets are interfered with by environmental
factors such as shadow, occlusion, and reflection, which also increase the difficulty of
detecting vehicle targets in the RSI data set. As a result, the discrete anchor point scale in
the anchor-based method makes it difficult to match the vehicle target well, and it may
introduce too many negative samples. The FCOS and FoveaBox based on the anchor-free
model can detect vehicle targets as well as possible by predicting all the pixels in the feature
map. At the same time, the focal loss compensates effectively for the imbalance between
foreground and background categories and reduces the impact of negative samples on
the detection performance. Therefore, the anchor-free method can still maintain a good
detection performance in complex scenes.

Compared with FCOS and FoveaBox, as an anchor-free method, our model still has the
best detection performance, reaching 85.9%, 95.3%, and 90.4% in terms of precision, recall,
and F1 score, respectively. The reason why our model has better detection results is that, on
the one hand, our model uses the MA-FPN to decrease the influence of image background
information and noise in the feature map and enhance the semantic information of the
vehicle target in the feature map. For a vehicle target in shadow or occlusion, the channel
that represents the semantic information of the current pixel area is highlighted through
the channel attention mechanism. However, in FCOS and FoveaBox, all channels in the
pixel area of the current feature map are treated equally, making the normal vehicle target
different from the vehicle target in terms of shadow or occlusion, which affects the learning
and detection of the subsequent network. On the other hand, by using the MPFA, the
training samples of our model do not contain background information in the VHR remote
sensing images, which further reduces the influence of negative samples on the network.

In summary, the proposed model can still maintain good detection results for the
RSI data set, which further demonstrates its performance and robustness. The overall
performance is shown in both the VEDAI data set and the RSI data set. In order to illustrate
the effectiveness of the MA-FPN and MPFA modules, corresponding ablation experiments
are subsequently described in the next section.

From the P–R curves in Figure 13a,b, it can be seen that the PR curves of some models
have a rapid decline when the recall rate is increased to a certain level; this is especially
obvious for the two-stage network. This is because there are too many vehicle targets in
the VHR remote sensing image. As the percentage of the total number of vehicles correctly
detected by the network increases, the ratio of all the detected vehicles that are indeed
vehicle targets decreases, and the detection accuracy is seriously attenuated. The results
also show that the anchor-based model has an upper limit on the detection result due to
the anchor.
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Figure 14a–g show the detection results for different anchor-based models on the RSI
data set. The green box is the detection result, and the red box is the undetected vehicle. It
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can be seen that our detection method has a high detection limit, especially for partially
occluded vehicle targets, with which it still has a good detection performance. The AUC
values also show the superiority of our model.
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4.4. Ablation Experiment

In this section, we verify the effectiveness of the proposed method through ablation
experiments.

4.4.1. Evaluation of MA-FPN

The image is forwarded through a multi-layer network, and the scale is doubled and
reduced, causing the object’s location information to be lost quickly, which is unfavorable
for the minimum enclosed rectangle regression of the vehicle target. Therefore, we in-
corporate a variety of attention information into the FPN top-down process to improve
the representation of vehicle targets in the feature map from the channel and space levels.
The specific fusion experiment results are shown in Tables 5 and 6. It can be seen that the
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addition of attention information improves the detection effect significantly. The accuracy
rate is increased from 86.5% to 89.1%, and the recall rate is increased from 90.4% to 96.2%
by fusing spatial and channel attention information. The F1 score is improved by 4.1%.

Table 5. Performance of the FPN that incorporates multiple attention mechanisms in RSI.

Spatial Attention Channel Attention Precision (%) Recall (%) F1 (%)

FoveaBox [36]
80.7 86.8 83.6√
83.7 90.9 87.2√
84.3 90.8 87.4

MA-FPN
√ √

84.7 91.3 87.9

Table 6. Performance of the FPN that incorporates multiple attention mechanisms in VEDAI.

Spatial Attention Channel Attention Precision (%) Recall (%) F1 (%)

FoveaBox [36]
86.5 90.4 88.4√
87.9 95.7 91.6√
87.2 95.7 91.3

MA-FPN
√ √

88.5 96.0 92.1

In summary, adding an attention mechanism to the top-down process of the feature
pyramid is a simple and effective method. To preserve the spatial information of the vehicle
target, the missing semantic information will be screened by the channel attention so that
the semantic information that is more suitable for vehicle target detection can receive a
higher weight. Additionally, the spatial attention makes the vehicle target area information
clearer and reduces the interference of complex backgrounds and noise in remote sensing
images in the detection results.

4.4.2. Evaluation of MPFA

The existing anchor-free method discards the manually specified anchor and chooses
to classify and regress the target in the image at the pixel level. The original anchor-based
method is based on the IOU of the proposal and ground truth to determine the positive
and negative samples, but the optimal solution has not yet been found to determine the
positive and negative samples in the anchor-free method. In this paper, by combining the
instance information of the vehicle target to determine the true foveal area of the vehicle,
the uncertainty of the redundant pixels in the ground truth is eliminated.

From the experimental results in Tables 7 and 8, we can see that, by re-determining
more accurate positive sample pixels, the accuracy, recall, and F1 score are improved by
3.4%, 5.6%, and 4.4%, respectively.

Table 7. Performance of a more precise foveal area in RSI.

Precision (%) Recall (%) F1 (%)

Foveabox [36] 86.5 90.4 88.4
MPFA 89.9 96.0 92.8

Table 8. Performance of a more precise foveal area in VEDAI.

Precision (%) Recall (%) F1 (%)

Foveabox [36] 80.7 86.8 83.6
MPFA 82.9 91.6 86.8

In short, the positive sample pixels we determined all represent the vehicle itself and
are evenly distributed. There will not be a situation in which the entire vehicle can be
determined only through certain points. Due to the shrinkage of the vehicle instance area,
the positive sample pixels we obtained can make the regression interval more relaxed when
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performing minimum enclosed rectangle regression, which can eliminate the interference
of redundant areas well.

5. Conclusions

In this paper, we have proposed a novel end-to-end anchor-free single-stage target
detection model for detecting vehicle targets in remote sensing images. First, we used the
anchor-free single-stage target detection framework to alleviate the contradiction between
detection speed and detection accuracy. Second, to solve the contradiction between the
insufficient semantic information of low-level feature maps and the low amount of spatial
information in high-level feature maps, the spatial and channel attention mechanisms were
integrated in the top-down process of FPN. For the task of vehicle detection in remote
sensing images, we added the instance information of vehicles to determine a more accurate
foveal area and chose a novel positive sample determination method in the anchor-free
model. Compared with the existing methods, the area determined using the proposed
method is closer to the central area and does not change with the shape and direction of
the object. Finally, our experimental results show that our proposed model performs well
in terms of detection accuracy and speed.

However, the proposed method cannot identify the type of vehicle and uses a rotating
frame to detect vehicles. In future work, we need to enrich the types of data sets to achieve
multi-class detection of vehicle targets. Additionally, we will directly detect rotating vehicle
targets through a single-stage anchor-free model. At the same time, although the MA-FPN
module has proved that the attention mechanism is simple to use in target detection, and it
has improved obvious characteristics, the advantages of MA-FPN cannot be judged from
the structure, and there is still some room for the actual use of attention information. The
influence of the spatial resolution, height, angle, vehicle color, and other information of
remote sensing images on the detection results is also the focus of our future research.
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