
 International Journal of

Geo-Information

Article

DeepDBSCAN: Deep Density-Based Clustering for
Geo-Tagged Photos

Jang You Park 1,† , Dong June Ryu 2,† , Kwang Woo Nam 2,*,† , Insung Jang 3 , Minseok Jang 2

and Yonsik Lee 2

����������
�������

Citation: Park, J.Y.; Ryu, D.J.;

Nam, K.W.; Jang, I.; Jang, M.; Lee, Y.

DeepDBSCAN: Deep Density-Based

Clustering for Geo-Tagged Photos.

ISPRS Int. J. Geo-Inf. 2021, 10, 548.

https://doi.org/10.3390/ijgi10080548

Academic Editor: Wolfgang Kainz

Received: 21 May 2021

Accepted: 10 August 2021

Published: 14 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Hanwha Systems Co., Ltd., Seoul 04541, Korea; park202000496@hanwha.com
2 Department of Computer and Information Engineering, Kunsan National University, Gunsan 54150, Korea;

rdj1301582@kunsan.ac.kr (D.J.R.); msjang@kunsan.ac.kr (M.J.); yslee@kunsan.ac.kr (Y.L.)
3 City & Geospatial ICT Research Section, Electronics and Telecommunications Research Institute (ETRI),

Daejeon 34129, Korea; e4dol2@etri.re.kr
* Correspondence: kwnam@kunsan.ac.kr; Tel.: +82-63-469-4862
† These authors contributed equally to this work.

Abstract: Density-based clustering algorithms have been the most commonly used algorithms for
discovering regions and points of interest in cities using global positioning system (GPS) information
in geo-tagged photos. However, users sometimes find more specific areas of interest using real objects
captured in pictures. Recent advances in deep learning technology make it possible to recognize
these objects in photos. However, since deep learning detection is a very time-consuming task,
simply combining deep learning detection with density-based clustering is very costly. In this
paper, we propose a novel algorithm supporting deep content and density-based clustering, called
deep density-based spatial clustering of applications with noise (DeepDBSCAN). DeepDBSCAN
incorporates object detection by deep learning into the density clustering algorithm using the nearest
neighbor graph technique. Additionally, this supports a graph-based reduction algorithm that
reduces the number of deep detections. We performed experiments with pictures shared by users on
Flickr and compared the performance of multiple algorithms to demonstrate the excellence of the
proposed algorithm.

Keywords: density-based clustering; object detection; geo-tagged photos; DBSCAN; big data;
crowdsourcing

1. Introduction

With recent advances in mobile devices, sharing geo-tagged photos has become
popular on social network services such as Facebook, Twitter, and Instagram. Many
researchers use geo-tagged photos to obtain interesting spatial and social knowledge.
This knowledge is used in point-of-interest (POI) applications [1–4], trip recommendation
services [5–8], social media management systems [9–11], etc. The most popular technique
for such knowledge discovery is clustering by using the global positioning information
(GPS) information in the photos. When researchers aim to discover clusters, many of
them use density-based clustering algorithms such as density-based spatial clustering of
applications with noise (DBSCAN) [12] and variants of this algorithm because they are
very intuitive and support arbitrary shape clustering.

A geo-tagged photo contains the GPS information of the picture as well as in-depth
content such as people, cars, trees, and animals. In obtaining knowledge, the objects
that are in the photo are much more important than the location of the photo. Many
applications, including POI recommendations, require in-depth clustering based on the
content of the photo. However, most clustering algorithms have traditionally been used
to construct clusters using only GPS information in geo-tagged photos, since recognizing
objects in photographs and analyzing the relationships among them were very difficult

ISPRS Int. J. Geo-Inf. 2021, 10, 548. https://doi.org/10.3390/ijgi10080548 https://www.mdpi.com/journal/ijgi

https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-4942-8337
https://orcid.org/0000-0003-4095-1196
https://orcid.org/0000-0001-9970-7863
https://orcid.org/0000-0002-4868-1058
https://doi.org/10.3390/ijgi10080548
https://doi.org/10.3390/ijgi10080548
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijgi10080548
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi10080548?type=check_update&version=4

ISPRS Int. J. Geo-Inf. 2021, 10, 548 2 of 24

problems before the recent progress in deep learning technology. Recently, researchers
have been trying to discover POIs by applying these deep learning technologies [13,14].
Let us consider a case in which a researcher wants to find some POI clusters in social
network photos taken around Yellowstone National Park. Figure 1 shows three examples
of the results of density-based clustering with a spatial predicate without and with a deep
content-based predicate. The traditional approach returns large clusters, as shown in
Figure 1a because it is constructed from only the locations of the photos, irrespective of the
contents of them. However, these queries are made very frequently in various application
areas. Many systems already support aggregate functions. The following SQL code shows
one of the most commonly used queries for density-based clustering of tour photos using
a spatial predicate function ST_within(). This query selects only photos that were taken
within Yellowstone National Park.

(a) (b) (c)

Figure 1. Examples of traditional and deep density-based clustering of the geo-tagged photos
(M = Moose, B = Bison, and G = Grizzly Bear in Yellowstone National Park). (a) only spatial predicate;
(b) a spatial predicate and a deep predicate ‘Bison’; (c) a spatial predicate and a deep predicate ‘Bison
AND Moose’.

SELECT id, DBSCAN(gps,eps:=50,mpts:=3) over() AS cid
FROM tourPhotos
WHERE ST_within(gps, $Yellowstone) AND IsDeepTrue(photo,‘Bear’,’CNN_COCO’);

Furthermore, the above example contains a deep content-based predicate (deep predi-
cate) function IsDeepTrue() that can select only photos containing specific animals through
a given deep learning model. isDeepTrue (photo, ‘Bear’, ’CNN_COCO’) will select photos
that contain bears using a convolutional neural network (CNN) model trained by the
Microsoft COCO data set [15]. Integrating deep object detection with clustering queries
could provide researchers with very powerful and convenient features in many applica-
tions. When they want to find only photos containing bears within a specific region, they
can easily make this query by adding or changing the parameters in the deep and spatial
predicate functions. Figure 1b,c show examples for the deep predicates ‘Bison’ and ’Bison
AND Moose’, respectively. Despite the usefulness of these queries, studies so far have
focused only on supporting the two functions. However, supporting these two functions
together remains a performance-critical issue.

Deep content detection in photos is a very time-consuming task that takes a few
seconds per photo, even on a modern computer system. Filtering spatial predicates and
clustering the GPS locations of the photos are relatively fast tasks, and users often modify
their parameters. Consequently, the traditional naive approach first performs deep content
detection for all photos to construct a data set that has information about all objects detected
in the photos in the batch preprocessing step. This data set can be inserted into a table in the
database system or searched itself when the deep predicate is evaluated in the algorithm.
This naive approach has many disadvantages. The most representative disadvantage is
that deep detection is performed on all photos in advance. This is the least efficient method,
considering that most photos do not meet the conditions of the density threshold or the

ISPRS Int. J. Geo-Inf. 2021, 10, 548 3 of 24

spatial predicate. Since the deep detection task consumes a relatively large amount of
computing time, we believe that minimizing the number of deep detections is the key to
an efficient algorithm.

This paper proposes three novel algorithms to efficiently perform deep density-based
clustering of geo-tagged photos.

• SpatialFirst DBSCAN: This algorithm performs spatialSelection first. We can reduce
the number of deep detections by performing deep detection only on the spatially
filtered results.

• ClusterFirst DBSCAN: Spatial selection and density-based clustering are performed
in the first steps. Deep detection and selection are performed only on the photos in
the clusters. However, we need to perform density-based clustering again only for
photos that satisfy the deep predicate.

• DeepDBSCAN: Deep detection is performed by integrating it within the clustering
algorithm. Deep detection is carefully performed on the nearest neighboring graph
that satisfies the density threshold.

The rest of the paper is organized as follows: the related work is described in Section 2.
In Section 3, we describe a naive algorithm for integrating deepSelection and density-based
clustering as preliminaries. Section 4 presents the details of the three novel algorithms
and examples. The experimental results using deep learning models are presented and
discussed in Section 5. The conclusions and future work are described in Section 6.

2. Related Work

In this section, we review previous work including density-based clustering methods
for discovering POIs and deep detection techniques.

2.1. Mining GPS and Trajectory Data

Recently, discovering user POIs has become very popular because POIs are the founda-
tional data for location-based recommendations and advertisement services. Many studies
have traditionally mined POIs from the GPS location and trajectory data of smart phones,
vehicles, text, and photos. The earliest studies simply used location and time information to
find a user’s favorite POIs [2]. The most common algorithms for POI discovery have been
based on density-based clustering methods such as DBSCAN [12] and ST-DBSCAN [16].
Compared to the K-means algorithm, density-based clustering has been more widely used
due to its advantages in discovering clusters with arbitrary shapes.

Another of these studies uses the GPS trajectories of objects to find their preferred
routes [7] or groups [17] with similar patterns. However, GPS and trajectory data are very
difficult to collect and analyze due to concerns such as privacy. In addition, this infor-
mation does not provide rich information other than an object’s movement information.
Therefore, research using geo-tagged photos has been conducted actively. In addition,
various attempts are currently being made to improve the performance of density clus-
tering algorithms. The most relevant of these studies is the G-DBSCAN [18] algorithm.
They proposed a G-DBSCAN [18] which support GPU to solve computational and resource
problems using graph algorithms such as depth-first and best-first traversal. We also
propose a graph-based DBSCAN variant algorithm to increase performance by combining
deep learning detection into DBSCAN algorithms. In this paper, we propose a branch
pruning algorithm on the graph that can minimize the number of deep learning detection.

ISPRS Int. J. Geo-Inf. 2021, 10, 548 4 of 24

2.2. Mining Geo-Tagged Photos

With the development of mobile technology, users posting geo-tagged photos on social
networks and sharing them has become a very generalized and natural social behavior.
This has led researchers to a new opportunity. geo-tagged photos are provided voluntarily,
with some even being publicly available for collection on social networks such as Flickr
and Panoramio. Users can be identified by the ID provided with the photos, and a user’s
travel path can be constructed from the ID. Furthermore, the photos show what the user is
interested in specifically.

Early studies such as [8] focused on discovering tourist movement patterns in relation
to regions of attraction (RoAs) and analyzing the topological characteristics of the travel
routes of different tourists. Ref. [19] proposed a framework to automatically generate
travel routes on Panoramio by crawling approximately 20 million geo-tagged photos and
considering the time of the location information as well as the location information. In [20],
an algorithm was presented to recommend tourist destination routes for specific regions in
a Flickr photo data set. Refs. [21,22] went one step further and presented a fundamental
method for finding the associated rules between POIs identified from geo-tagged photos.
These studies commonly use density-based clustering as the underlying algorithm for
discovering POIs. Photo DBSCAN (P-DBSCAN) [23] is the most commonly used technique
for excluding photos frequently uploaded by the same user from social network photos.
Recent studies have extended it to geo-tagged videos, such as [4,9,11].

Detecting the content of POIs was begun by analyzing the geo-tagged text of mi-
croblog data [24,25]. However, geo-tagged photos contain much more content than textual
information. They even contain content that users did not intend, allowing the implicit
meaning of POIs to be discovered. Recent advances in deep learning technology have
made this possible. For example, object detection models such as You Only Look Once
(YOLO) and RetinaNet can detect the location of an object with a bounding box [26,27].
Mask RCNN [28] supports pixel-level segmentation. These RCNN algorithms differ in
their detection rates, and RCNN algorithms trained by Microsoft COCO data [15] can find
and recognize 80 object categories in photos. Refs. [1,13] are good examples of studies that
seek to apply deep learning technology to geo-tagged photos. In these studies, it is also
essential to use density-based clustering to determine POIs. However, both papers use a
naive algorithm that performs deep detection at the preprocessing stage.

3. Preliminaries

In this section, the naive method for content-based selection of geo-tagged photos
is reviewed, and the limitations of this method are discussed. In general, the content-
based selection of geo-tagged photos requires detection by a deep learning engine. Most
systems utilize deep learning engines to detect images, which are configured separately
from database queries and clustering algorithms. These systems perform image detection
in batches using a deep learning engine for all stored geo-tagged photos, select photos that
satisfy the image predicates, and then perform density-based clustering on these images.
In other words, the naive approach is to perform image detection on the entire data set P
and then to perform spatial filtering and clustering on the image data set that meets the
image retrieval predicate (dp).

As shown in Algorithm 1, NaiveDBSCAN [12] requires an photo data set (P), a spatial
predicate (sp) and deep content-based predicate (dp) as the input conditions and a radius
(ε) and minimum number of points (k), which are required to form a core in DBSCAN.
The algorithm consists of four stages: deepSelection, spatialSelection, density-based nearest
neighbor graph (NNG) construction, and cluster extension. The deepSelection function
performs image detection and imagefiltering as the dp for the geo-tagged photo set P. It
returns the photos that meet the dp criteria to P

′
. In the second step, the spatialSelection

function performs spatial filtering, which satisfies the spatial condition sp for P
′

to extract
the required data. In the third step, the constructNNGraph function is used to create an
NNG that has information about adjacent vertices that meet the density criteria (ε) and

ISPRS Int. J. Geo-Inf. 2021, 10, 548 5 of 24

the minimum number (k). The function constructNNGraph quickly uses spatial indexes
to perform searches on adjacent vertices. Finally, expandCluster uses an NNG to perform
density-based clustering. The nearest neighbor graph (NNG) used in this algorithm can be
defined as:

NNG = {(vk, Nk)||vk ∈ V ∧ vj ∈ Nk ∧ dist(vk,vj) < ε}.

Given that V is a set of vertices v with coordinates x and y, where V = {v0, v1, . . . , vn},
and N is a set of subsets of V, NNG is a set of pairs of a vertex in V and a set of neighboring
vertices connected to that vertex. A connected neighbor vertex is a set of vertices that are
within a radius ε of any vertex. NNG has auxiliary isCore and isNoise properties. Table 1
shows the symbols frequently used in this paper.

Algorithm 1 NaiveDBSCAN.
Input : P, sc, dp, ε, k
Output : C = {C1, C2, . . . , Cn}

1 P
′ ← deepSelection(P, dp)

2 P
′′ ← spatialSelection(P

′
, sc)

3 NNG ← constructNNGraph(P
′′
, ε, k)

4 C ← expandCluster(NNG)
5 return C

Table 1. Notations and description.

Notation Description
P Geo-tagged photos

NNG Nearest neighbor graph
C A set of clusters
V A set of vertices for geo-tagged photos
sp Spatial predicate
dp Deep content-based predicate
k Minimum number of points
ε Threshold of the radius for neighbors

Figure 2 shows an example of an NNG. Set V contains all the vertices. Figure 2a
plots the relationship between each vertex of V and the vertices within a certain radius
of it. Figure 2c shows the contents of each vertex. For example, vertex v1 has three cars.
Vertices v10, v12, v16, and v17 have both people and cars. Figure 2d is a table of vertices
and their neighbors. Each of V’s vertices has a set of neighbors consisting of itself and its
neighbors. If the number of neighbors at the vertex is greater than or equal to k, the vertex
becomes the core vertex (T); otherwise, if it is less than k, it becomes boundary vertex (F).
In other words, the vertex is the core vertex when |vertex.neighbors| ≥ k. Figure 2d is an
NNG graph table created when k = 5. Vertices v3, v5, v6, v7, v10, v12, v13, v15 and v19 have
more than five neighbors. These vertices are the core vertices. If the clustering method’s
minimum number of points is greater than five, core vertex and its neighbors become a
cluster. Vertex v14 does not form neighboring relationships with all vertices because no
vertex is included within a certain radius. V’s vertices would comprise a cluster, as shown
in Figure 1b, if dp were a person, considering content-based clustering.

ISPRS Int. J. Geo-Inf. 2021, 10, 548 6 of 24

(a)

V (lat,long) photos
v1 (x1, y1) p1
v2 (x2, y2) p2
v3 (x3, y3) p3
v4 (x4, y4) p4
v5 (x5, y5) p5
v6 (x6, y6) p6
v7 (x7, y7) p7
v8 (x8, y8) p8
v9 (x9, y9) p9
v10 (x10, y10) p10
v11 (x11, y11) p11
v12 (x12, y12) p12
v13 (x13, y13) p13
v14 (x14, y14) p14
v15 (x15, y15) p15
v16 (x14, y16) p16
v17 (x14, y17) p17
v18 (x18, y18) p18
v19 (x19, y19) p19

V deep contents
v1 {car, car, car}
v2 {tree, car}
v3 {car, car, tree}
v4 {person}
v5 {car}
v6 {person}
v7 {person}
v8 {person}
v9 {person}
v10 {bicycle, car, person}
v11 {person }
v12 { car, person }
v13 { bicycle, tree}
v14 { person }
v15 { person }
v16 { car,person }
v17 { car, person }
v18 { person }
v19 { person }

V isCore isNoise neighbors(N)
v1 F F {v1, v2, v3, v4}
v2 F F {v1, v2, v3}
v3 T F {v1, v2, v3, v4, v5}
v4 F F {v1, v3, v5}
v5 T F {v3, v4, v5, v6, v7}
v6 T F {v5, v6, v7, v10, v12, v13}
v7 T F {v5, v6, v7, v8, v10}
v8 F F {v7, v8, v9, v10}
v9 F F {v8, v9, v10, v11}
v10 T F {v6, v7, v8, v9, v10, v11, v12}
v11 F F {v9, v10, v11, v12}
v12 T F {v6, v10, v11, v12, v13}
v13 T F {v6, v12, v13, v15, v17}
v14 F F {v14}
v15 T F {v13, v15, v16, v17, v19}
v16 F F {v15, v16, v18, v19}
v17 F F {v13, v15, v17, v19}
v18 F F {v16, v18, v19}
v19 T F {v15, v16, v17, v18, v19}

(b) (c) (d)

Figure 2. Example of a nearest neighbor graph. (a) ε-nearest neighbors graph; (b) geo-tagged photos table, P; (c) real deep
contents table; (d) initial nearest neighbor graph, NNG.

Algorithm 2 shows the expandCluster function as pseudocode. Algorithm 2 takes
an NNG as input and assigns cluster numbers to each vertex. That is, vertices vi are
taken in order from the NNG. The algorithm determines whether vi is a core vertex and
assigns a cluster number to the core vertex and its neighbors. A core vertex is a vertex
with more than k neighboring vertices within a radius of ε. Then, if the cluster contains
other core vertices, it is recursively extended by assigning the same cluster number. This
algorithm is identical to the existing DBSCAN algorithm except that it uses NNG. All
vertices in an NNG are visited, and cluster numbers are assigned to core vertices that are
not assigned cluster numbers or classified as noise. The same cluster number is assigned
in recursively touring the neighboring vertices of the vertex that are core vertices and are
assigned cluster numbers. This algorithm uses depth-first traversal algorithms using a
stack for visits in the NNG. If vi is a core vertex, V.neighbors() is used to select unprocessed
vertices from the NNG vertex’s neighbors, put them in a stack, and continue to extend
them to neighboring vertices. When the visit to all the vertices in the stack is complete,

ISPRS Int. J. Geo-Inf. 2021, 10, 548 7 of 24

the loop terminates. The cluster number is increased by 1 to build another cluster. The
algorithm continues to visit the unvisited core vertices in the NNG to expand the cluster.
This task is performed repeatedly until all core vertices of the NNG are visited. The total
number of image detection by the naive method is equal to the number P, which sets
all photos. The deepSelection function that recognizes images uses the most time, and an
efficient way of dealing with this is required to reduce the cost.

Algorithm 2 expandCluster.
Input : NNG
Output : C = {C1, C2, . . . , Cn}

1 C← ∅, clusterNum← ∅;
2 foreach vi ∈ NNG.V do
3 if vi is already processed ∨ vi.isCore == F then
4 continue;

5 while True do
6 if vi is an unprocessed vertex then
7 Add vi to a cluster CclusterNum
8 if vi.isCore == T then
9 foreach vj ∈ V.neighbors(vi) do

10 if vj is an unprocessed vertex then
11 Stack.push(vj)

12 if Stack.isEmpty() then
13 break;
14 vi ← Stack.pop()
15 C← C ∪ CclusterNum
16 clusterNum← clusterNum + 1
17 return C

4. Deep Content-Based Density Clustering

In this section, we propose a novel strategy to reduce the cost of image detection
incurred by clustering techniques with deep learning models and DBSCAN.

4.1. Spatial-First Approach

The naive approach performs spatial filtering after image filtering. This is inefficient in
terms of the time cost because performing image filtering takes more time than performing
spatial filtering. Therefore, reducing the number of images used in performing image
detection tasks has a significant impact on improving the time performance. Approaches
that perform spatial filtering first import data from only a given spatial domain, so we
can expect fewer image detection tasks than for naive approaches. Algorithm 3 is the
pseudocode of a method that performs spatial filtering before image filtering.

Algorithm 3 SpatialFirst DBSCAN.
Input : P, sp, dp, ε, k
Output : C = {C1, C2, ..., Cn}

1 P
′ ← spatialSelection(P, sp)

2 P
′′ ← deepSelection(P

′
, dp)

3 NNG ← constructNNGraph(P
′′
, ε, k)

4 C ← expandCluster(NNG)
5 return C

The algorithm changes only the procedure of the functions deepSelection and spatialS-
election in NaiveDBSCAN. The result of the two filters, P′′, is the same. However, the

ISPRS Int. J. Geo-Inf. 2021, 10, 548 8 of 24

number of images used in performing image filtering is the number of P in the naive
method, whereas it is the number of P′ in SpatialFirst DBSCAN.

Figure 3 shows the sequence of how SpatialFirst algorithms generate clusters. This
figure shows the results of performing SpatialFirst algorithm based on data from Figure 2.
Figure 3a shows queries for spatial predicates in a given initial state. After that, Figure 3b
shows extract geo-tagged photos extracted from a given spatial area of the photo database.
Figure 3c shows deepSelection results performed under the condition of the deep predicate
‘person’ for 19 extracted spatial pictures. At this point, four vertices v1, v2, v5, and v13
that are dissatisfied with the given condition dp = ‘person’ are removed. Finally, Figure 3d
shows the results of density-clustered based on k = 5. For vertices v3, v4, and v14, dp is
satisfied but is removed when performing density clustering because it does not satisfy the
number of neighbors k of each vertex. At this time, the number of image filtering for the
algorithm is 19.

The time cost of the spatial-first algorithm can be expressed as follows:

CostSF = Θ(P, sp) + Π(P′, dp) + Γ(P′′, ε, k) (1)

where Θ(P, sp) is a time cost of spatial selection, Π(P′, dp) is a time cost of deepSelection,
and Γ(P′′, ε, k) is a time cost of density clustering including constructNNGGraph() and
expandCluster() functions together.

This paper uses cost notation methods independent of implementation algorithms to
simplify the cost comparison of the proposed algorithm. Θ(P, sp) means a time cost that
retrieves the photos satisfying given spatial predicate sp from a geo-tagged photo set P.
When a spatial selection is implemented using spatial indexes, the cost will be O(log N).
Sometimes, it is more efficient to implement it as a naive loop with O(N) than to use an
spatial index under conditions with a large selectivity rate of sp. Regardless of how the
spatial selection is implemented, the time cost is proportional to the size of the target data,
as shown in the following equation:

Θ(P, sp) ∝ |P| ∗ θs
P,sp (2)

where |P| is a number of geo-tagged photos in P, and θs
P,sp is a selectivity of a spatial

predicate sp for P. When the selectivity for spatial predicate sp increases by 10 percent
to 20 percent, the time costs will increase proportionately with or without the use of the
index.

Π(P′, dp) means a time cost to filter photos that satisfying the deep predicate dp from a
data set P′ by using a deep detection model. The time cost can be estimated approximately
as the following equation:

Π(P′, dp) ≈ |P′| ∗ πt ≈ |P| ∗ θs
P,sp ∗ πt (3)

where |P′| is a number of geo-tagged photos in P′, and πt is the average time taken
to perform a deep detection on a single photo. In addition, |P′| can be represented by
|P| ∗ θs

P,sp.
Γ(P′′, ε, k) means a time cost to do density clustering for P′′ with the parameter ε and

k. The density clustering can be implemented by various techniques with O(N log N) or
O(n2) as like grid-based or tree-based approaches. Therefore, we can represent the time
cost as shown in the following equation:

Γ(P′′, ε, k) ∝ |P′′| ∝ |P| ∗ θs
sp ∗ πs

P′ ,dp (4)

where |P′′| is a number of geo-tagged photos in P′′. In addition, |P′′| can be replaced by
|P| ∗ θs

sp ∗ πs
P′ ,dp, where πs

P′ ,dp is a selectivity rate of Π(P′, dp).

ISPRS Int. J. Geo-Inf. 2021, 10, 548 9 of 24

(a) (b)

(c) (d)

Figure 3. An example of SpatialFirst DBSCAN. (a) initial state and spatial predicate; (b) after
spatialSelection; (c) after deepSelection (dp = ‘person’); (d) after constructNNGGraph (k = 5). and density
clustering.

4.2. Clustering-First Approach

The DBSCAN algorithm does not assign clusters to points that do not meet the condi-
tions. Therefore, the points that are not allocated to a cluster are classified as noise. The
clustering-first approach improves the algorithm’s performance by performing cluster-
ing before image filtering and not performing image filtering on the noise generated by
clustering. Algorithm 4 is the pseudo code of the clustering-first approach.

The clustering-first approach consists of three steps. In the first step, we first select
the photos that meet the spatial conditions and then perform spatialSelection and density
clustering on these photos with only the GPS coordinates. In the second step, the clustering
result C is converted into a data set, and image filtering is performed on only the images
belonging to the cluster other than noise to generate P′′. In the third step, the cluster is
built by reclustering for only the set of images P′′ that meets the image detection criteria.
The ClusterFirst algorithm performs less image detection than the SpatialFirst algorithm
because it performs detection on images that have passed spatial density clustering except
for the images classified as noise in the first step. This approach performs density clustering
twice, which entails a greater clustering cost overhead. However, if the ratio of spatial
density noise is high due to the low selectivity of the deep learning detection condition

ISPRS Int. J. Geo-Inf. 2021, 10, 548 10 of 24

dp or if the distribution of the location of the photo data set is sparse, it will operate much
more efficiently than the SpatialFirst algorithm.

Algorithm 4 ClusterFirst DBSCAN.
Input : P, sp, dp, ε, k
Output : C = {C1, C2, ..., Cn}

1 P
′ ← spatialSelection(P, sp)

2 NNG ← constructNNGraph(P
′
, ε, k)

3 C ← expandCluster(NNG)
4 P

′′ ← deepSelection(flat(C), dp)
5 NNG

′ ← constructNNGraph(P
′′
, NNG)

6 C
′ ← expandCluster(NNG

′
)

7 return C
′

Figure 4 shows the sequence of how ClusterFirst algorithms generate clusters based
on Figure 2a. Figure 4a shows the results of generating an NNG graph under the condition
of the minimum number of neighbors k within the vertex radius ε for geo-tagged photos
satisfying a given spatial predicate (sp). At this point, the spatial predicate (sp) process for
the specified data are skipped. Figure 4b shows the results of density-based clustering. For
density-based clustering, outlier vertices are removed. Thus, we can see that v14 has been
removed. Figure 4c shows the result of deepSelection on the generated cluster. Figure 4c
is the result of deleting geo-tagged photo that does not satisfy dp = ‘person’, such as (c)
in Figure 3c. Figure 4d shows the result of density clustering. Vertices v4 and v3 do not
become core vertexes due to dissatisfaction with the number of neighbors k, respectively.
Therefore, it is removed at clustering time. In the case of ClusterFirst, image filtering is
performed for all vertices in the nearest neighbor graph that satisfy the minimum number
of neighbors k. However, when re-clustered, for an NNG graph with only vertices that
meet dp, the vertices that do not satisfy the minimum number of neighbors k while vertices
are removed.

The time cost of the clustering-first algorithm can be expressed as follows:

CostCF = Θ(P, sp) + Γ(P′, ε, k) + Π(C, dp) + Γ(P′′, ε, k) (5)

where Θ(P, sp) is a time cost of spatial selection, Γ(P′, ε, k) is a time cost of first density
clustering step for P′, Π(C, dp) is a time cost of deep selection for C, and Γ(P′′, ε, k) is a
time cost of the last density clustering step for P′′.

The clustering-first algorithm performs pre-spatial density clustering step first to
reduce the target data of time-dominant Π(C, dp) operation, and finally do a density
clustering. For this reason, Θ(P, sp) and Γ(P′′, ε, k) are equivalent with Equations (2)
and (4). First, Γ(P′, ε, k) means a time cost to do density clustering for P′ with the parameter
ε and k. Therefore, we can represent the time cost as shown in the following equation:

Γ(P′, ε, k) ∝ |P′| ∝ |P| ∗ θs
sp (6)

where |P′| is the number of geo-tagged photos in P′, and |P′| can be replaced by |P| ∗ θs
sp.

In this equation, |P| ∗ θs
sp is equal with the number of target data in Equation (3). As a

result, we can predict that |C| will be equal to or less than that of (3) after Γ(P′, ε, k).
Π(C, dp) means a time cost to filter photos that satisfying the deep predicate dp from a

data set C by using a deep detection model. The time cost can be estimated approximately
as the following equation:

Π(C, dp) ≈ |C| ∗ πt ≈ |P| ∗ θs
P,sp ∗ γs

P′ ∗ πt (7)

ISPRS Int. J. Geo-Inf. 2021, 10, 548 11 of 24

where |C| is a number of geo-tagged photos in C, πt is the average time taken to perform a
deep detection on a single photo, and γs

P′ is a selectivity rate of Equation (6). Therefore, |C|
can be represented by |P| ∗ θs

P,sp ∗ γs
P′ .

In this equation, we can recognize that time cost is increased by processing Γ(P′, ε, k),
and decrease in proportion to γs

P′ . In another respect, if the πt is very large, the total time
cost will be reduced in proportion to the amount of data reduced by γs

P′ even if the time
cost is increased by processing Γ(P′, ε, k). We will show that πt is very large enough to
ignore the increase in Γ(P′, ε, k) in experiments using real data in Section 5.

(a) (b)

(c) (d)

Figure 4. An example of ClusterFirst DBSCAN. (a) after constructNNGGraph (k = 5); (b) after density
clustering; (c) after deepSelection (dp = ‘person’); (d) after re-density clustering.

ISPRS Int. J. Geo-Inf. 2021, 10, 548 12 of 24

4.3. DeepDBSCAN Approach

DeepDBSCAN is an approach that compensates for the shortcomings of the clustering-
first approach by using the nearest neighbor graph technique. In the clustering-first
approach described earlier, if the deep content-based predicate dp is not met, the vertex
is a noise vertex, and the core vertex is sometimes dropped due to the failure to meet
the minimum number of vertices used in the cluster creation condition k. In other words,
dropped cores are vertices that do not meet k or dp. This dropped core can occur while
traversing the NNG graph and affects neighborhood vertices when removed. When
dropped cores affect core vertices that have not yet been visited, reducing the number of
neighbors, and when the number of neighbors on those vertices is less than the minimum
number of neighbors k, image filtering candidates can exclude neighbors from the vertex.
Using this property, DeepDBSCAN first creates an NNG graph, then arranges the core
vertex list in descending order by the vertices with the largest number of vertices, and
performs image filtering on the vertices in the list and their neighbors. At this point, a core
vertex that does not meet the dp condition may occur. If so, it removes groups that do not
satisfy the minimum number of neighbors k, reflecting the relationship of the neighbor
vertices being removed. It then traverses and performs image filtering until there are no
unvisited core vertices.

Algorithm 5 shows pseudocode of DeepDBSCAN. Algorithm 5 has the same input
parameters as Algorithm 4 described earlier and performs the same spatial filtering and
NNG generation. The NNG_DeepFiltering function removes noise from the NNG that
does not meet the dp while performing image detection on the vertices in the cluster. The
noise is removed, resulting in a dropped core that does not satisfy the cluster conditions.
Image filtering is not performed on the vertices in the dropped cores, improving the
performance of the algorithm. This is described in detail in Algorithm 6. The NNG

′
that

passes the filtering is clustered, and the results are returned.

Algorithm 5 DeepDBSCAN.
Input : P, sp, dp, ε, k
Output : C = {C1, C2, ..., Cn}

1 P
′ ← spatialSelection(P, sp)

2 NNG ← constructNNGraph(P
′
, ε, k)

3 NNG
′ ← NNG_DeepFiltering(NNG, dp, k)

4 C ← expandCluster(NNG
′
)

5 return C

Algorithm 6 shows the pseudocode of the NNG_DeepFiltering function. The key goal
of Algorithm 6 is to continue examining the cluster’s k condition while removing from the
NNG the noise vertices that do not satisfy the cluster’s deep content-based condition (dp).
When a vertex does not satisfy the dp, it is considered “noise”.

Algorithm 6 first sorts the V in descending order based on the number of neighbors.
The next step is to obtain the core vertices from NNG

′
and check the deep content-based

predicate after the deep detection. The algorithm performs the algorithm on the next v
vertex of the NNG graph without v being detected if the vertex v is a noise vertex, or if it
has only v itself as a neighbor of v. Therefore, the function isNOISE(vi) is defined:

vi.isNoise == T ∨ |vi.neighbors| ≤ 1.

Then, if the number of neighbors at the vertex vi is less than k, we switch the vertex
vi to the boundary vertex and perform the algorithm on the next vertex. The DeepTrue
function returns true when vertex vi satisfies the image predicate dp. If vi does not satisfy
dp, it performs cascadeRemove function. The cascadeRemove function is described in
Algorithm 7. If vi satisfies dp, the DeepTrue function is performed on the neighbor of vi. For

ISPRS Int. J. Geo-Inf. 2021, 10, 548 13 of 24

vertices that do not satisfy dp for the neighboring vertex of vi, the cascadeRemove function
is performed. Change vj’s state to noise. If the number of neighbors in vi is less than k, vi is
changed to not core. Finally, the NNG graph is returned.

Algorithm 6 NNG_DeepFiltering.
Input : NNG, dp, k
Output : NNG

1 NNG
′ ← Sort_by_number_of_neighbors(NNG)

2 foreach vi ∈ NNG
′
.V do

3 if isNOISE(vi) then
4 continue

5 if |vi.neighbors| < k then
6 vi.isCore← F
7 continue

8 if isDeepTrue(vi, dp) then
9 foreach vj ∈ vi.neighbors do

10 if !isDeepTrue(vj, dp) then
11 NNG

′ ←cascadeRemove(NNG
′
, vj, k)

12 vj.isNoise← T

13 if |vi.neighbors| < k then
14 vi.isCore← F
15 break
16 else
17 NNG

′ ← cascadeRemove(NNG
′
, vj, k)

18 return NNG
′

Algorithm 7 cascadeRemove.
Input : NNG, id, k
Output : NNG

1 v← NNG.Vid

2 foreach vj ∈ v.neighbors do
3 Remove v from vj.neighbors.

4 if |vj.neighbors| < k then
5 vj.isCore← False
6 return NNG

Algorithm 7 performs the removal of vertex v from v’s neighbors. The algorithm
removes vertex v and uses vertex v as a neighbor to update the state of the number of
neighbors on the other vertex to determine if it meets the minimum number of neighbors k
and reflects that it is not a core vertex for a vertex vj. Finally, the NNG graph is returned.

The dropped cores occurred because there are fewer than five vertices that satisfy
the ‘person’ condition. As such, if the core vertices fail to satisfy dp or if the core vertices
satisfy dp but have noise vertices generated when passing through and detecting adjacent
vertices one by one, we can improve the time-cost performance by switching to boundary
vertices and excluding detections on these sub-graph. DeepDBSCAN, the cost reduction
algorithm for content-based clustering proposed in this paper, improves the performance
of the algorithm by excluding the vertices of the dropped core from image filtering.

As an example to help understand Algorithm 5, given NNG, as in Figure 2d, dp
represents a ‘person’, and k is 5.

ISPRS Int. J. Geo-Inf. 2021, 10, 548 14 of 24

Table 2. Sorted NNG.

vertex isCore isNoise neighbors

v10 T F {v6, v7, v8, v9, v10, v11, v12}
v6 T F {v5, v6, v7, v10, v12, v13}
v3 T F {v1, v2, v3, v4, v5}
v5 T F {v3, v4, v5, v6, v7}
v7 T F {v5, v6, v7, v8, v10}
v12 F F {v6, v10, v11, v12, v13}
v13 T F {v6, v12, v13, v15, v17}
v15 T F {v13, v15, v16, v17, v19}
v19 T F {v15, v16, v17, v18, v19}
v1 F F {v1, v2, v3, v4}
v8 F F {v7, v8, v9, v10}
v9 F F {v8, v9, v10, v11}
v11 F F {v9, v10, v11, v12}
v16 F F {v15, v16, v18, v19}
v17 F F {v13, v15, v17, v19}
v2 F F {v1, v2, v3}
v4 F F {v1, v3, v5}
v18 F F {v16, v18, v19}
v14 F F {v14}

Table 2 is the result of sorting the V in the NNG in Figure 2. The next step is to obtain
the core vertices from NNG′ and check the conditions for performing image filtering. The
first core vertex is v10. The DeepTrue function returns a value of true when vertex vi satisfies
the image predicate dp. The results of performing image filtering on images in v10 satisfy
dp = ‘person’. Then, all images are detected among v10’s neighbors. All of v10’s neighbors
contain a ‘person’. next core vertex is v6. v6 contains a person. Therefore, the DeepTrue
function is performed on the neighbors of v6. The first neighbor of v6 is v5, so vj is v5. There
is no ‘person’ in the image of v5. Algorithm 7 is performed to remove v5 from the NNG
graph. In Algorithm 7, v is v5. From the neighbors of v5, v5 is deleted and v5 becomes a
noise vertex.

Now, the information in v5 is as follows:

vertex isCore isNoise neighbors
v5 F T {v3, v4, v6, v7}

Next, visit v5’s neighbors and remove v5. Now, the information in v3, v4, v6, and v7 is
as follows:

vertex isCore isNoise neighbors
v3 F F {v1, v2, v3, v4}
v4 F F {v1, v3, v4}
v6 T F {v6, v7, v10, v12, v13}
v7 F F {v6, v7, v8, v10}

The next neighbor vertex of v6 is v13. Image content of v13 is unknown. Therefore, it
performs object detection. There are no person in v13, so neighbor vertices of v13 remove
v13 from the neighbors. At this point, v6 has less than five neighbors, so it changes from
core vertex to boundary vertex. After that, visit v19 to perform image filtering and also
perform image filtering for neighboring vertices v19 to satisfy dp = ’person’ and terminate
the algorithm.

Finally, Algorithm 6 is finished, NNG is as shown in Table 3.

ISPRS Int. J. Geo-Inf. 2021, 10, 548 15 of 24

Table 3. NNG after the algorithm ends.

vertex isCore isNoise neighbors
v10 T F {v6, v7, v8, v9, v10, v11, v12}
v6 F F {v6, v7, v10, v12}
v3 F F {v1, v2, v3, v4}
v5 F T {}
v7 F F {v6, v7, v8, v10}
v12 F F {v6, v10, v11, v12}
v13 F T {}
v15 F F {v15, v16, v17, v19}
v19 T F {v15, v16, v17, v18, v19}
v1 F F {v1, v2, v3, v4}
v8 F F {v7, v8, v9, v10}
v9 F F {v8, v9, v10, v11}
v11 F F {v9, v10, v11, v12}
v16 F F {v15, v16, v18, v19}
v17 F F {v15, v17, v19}
v2 F F {v1, v2, v3}
v4 F F {v1, v3, v5}
v18 F F {v16, v18, v19}
v14 F T {v14}

the vertices on which the algorithm performs image filtering are v10, v6, v7, v8, v9, v11,
v12, v5, v13, v19 ,v15, v16, v17, and v18 in order (14 total). Given the same condition k = 5
and dp = ‘person’, the ClusterFirst (CF) approach has 18 detections, but the DeepDBSCAN
approach takes less time than the ClusterFirst approach because it has 14 detections.

Figure 5 shows an example of DeepDBSCAN clustering when the minimum number of
neighbor vertices is five (k = 5 , dp = ‘person’). Figure 5a shows the results of the generated
NNG graph based on k = 5. Vertices that satisfy number of neighbors k are marked core
vertex, otherwise boundary vertex. In the table in Figure 2d, the vertices v3, v5, v6, v7,
v10, v12, v13, v15 and v19. have more than five (k = 5) neighbors, and they will be changed
to core vertices and their neighbors changed to boundary vertices. The DeepDBSCAN
approach visits the core vertices with the most neighborhood vertices in order to perform
deep selection. Figure 5b shows the process of deep selection while traversing from the
core vertex. At this time, when deepTrue is performed on v6’s neighbor vertices v5 and v13,
these vertices are dropped because they do not meet the dp condition.

Thus, the vertices dropped in Figure 5c show the effect on their neighbors. With v5
removed, v4, v3 is the vertex at which the number of neighbors that have not been visited
is adjusted. v13 is also removed and affects the number of neighbors in v15 and v17. We can
see that v3 is not satisfied with the number of k neighbors by removing v5. DeepDBSCAN
does not perform deep selection on a sub-graph that does not have core vertices. Therefore,
v1, v2, v3, and v4 are excluded from the image filtering candidates. The next core vertex
is v19. v19 satisfies dp, and it performs image detection for neighborhood vertices of v19.
Figure 5d shows the results after density clustering. The results are the same as those of
the SpatialFirst and ClusterFirst algorithms shown earlier but show that the number of
image detection is less. Consequently, the vertices that can construct clusters in the table in
Figure 2d are v3, v5, v6, v7, v10, v12, v13, v15, and v19. Of these vertices, v3, v5, v6, v7, v12, v13,
and v15 do not include ‘person’ between neighbors. Thus, v3, v5, v6, v7, v12, v13, and v15 are
removed from the core vertex, resulting in a sub-graph that does not satisfy the number of
neighbors K. Our algorithm improves performance by excluding these sub-graphs from
the deep selection candidates.

ISPRS Int. J. Geo-Inf. 2021, 10, 548 16 of 24

(a) (b)

(c) (d)

Figure 5. An example of DeepDBSCAN. (a) after constructNNGGraph (k = 5); (b) after deepSelection,
while traversing core vertices with the largest number of neighbors; (c) adjusted number of neighbors
when neighbor vertexes or core vertexes dropped; (d) after density clustering.

The time cost of the DeepDBSCAN algorithm can be expressed as follows:

CostDeepDB = Θ(P, sp) + ΓNNG(P′, ε, k) + Π(NNG, dp, k) + Γexpand(NNG′) (8)

where Θ(P, sp) is a time cost of spatialSelection, ΓNNG(P′, ε, k) is a time cost of the con-
structNNGraph() function for P′, Π(NNG, dp, k) is a time cost of deepSelection and filtering
it on the given graph NNG, and Γexpand(NNG′) is a time cost of the expandCluster()
function for NNG′.

The DeepDBSCAN algorithm has two major differences in view of time cost. First, we
divide Γ(P′, ε, k) into ΓNNG(P′, ε, k) and Γexpand(NNG′) since the Γ(P′, ε, k) in Equation (6)
is total cost of constructNNGraph() and expandCluster() functions. Second, while
Π(NNG, dp) in Equation (3) is a naive loop implementation, Π(NNG, dp, k) is performed
under the conditions of minimum k on the given graph NNG. We expect that the complex-
ity O(N) will be improved to O(log N) for the time cost for deepSelection step.

ISPRS Int. J. Geo-Inf. 2021, 10, 548 17 of 24

Using new representation ΓNNG and Γexpand, the time cost of the clustering-first algo-
rithm can be expressed as follows:

CostCF = Θ(P, sp) + ΓNNG(P′, ε, k) + Γexpand(NNG)

+Π(C, dp) + ΓNNG′(P′′, ε, k) + Γexpand(NNG′)
(9)

When Equation (8) is compared with Equation (9), we can find that Θ(P, sp),
ΓNNG(P′, ε, k), and Γexpand(NNG′) are the same as those of Equation (9). Since the
NNG_DeepFiltering() algorithm is implemented by integrating Γexpand(NNG) and Π(C, dp),
it is clear that the time cost of Π(NNG, dp, k) is equal to or less than the sum of Γexpand(NNG)
and Π(C, dp). For this reason, it is clear that the following equation is true:

CostDeepDB ≤ CostCF − ΓNNG′(P′′, ε, k) (10)

Furthermore, Π(NNG, dp, k) means a time cost to filter photos that satisfy the deep
predicate dp on the graph NNG by using a deep detection model. We believe that the
Π(NNG, dp, k) can be improved to O(log N) over O(N). We will show the improvement
of Equation (8) in experiments using real data in Section 5.

5. Experiments and Evaluation

In this section, we evaluate the performance of the proposed DeepDBSCAN algo-
rithm. Three algorithms, SpatialFirst ClusterFirst and DeepDBSCAN, are compared. Each
algorithm is also tested to determine the settings of ε and k that affect the DBSCAN results.

5.1. Experimental Setup

We collected photos containing geographical information from Flickr.com to use ac-
tual geographical data. Approximately 180,000 photos were collected around the densely
populated city of New York. We prepared a data set of 10,000 photos in increments of
10,000 to 50,000 close to the central coordinates.The central coordinates (latitude: 40.783294,
longitude: −73.96453) were set near Times Square for experiments. The algorithm used
in the experiment was implemented in Python on Windows 10. All experiments were
performed on an Intel i7-4770 3.40 GHz 4-core CPU with 16 GB RAM and RTX 2080ti.
Figure 6 shows our experimental setup. we chose three different evaluation aspects in
the comparative analysis with three different algorithms (SpatialFirst, ClusterFirst, Deep-
DBSCAN). We experimented with (1) the effect of the data size on performance, (2) the
effect of the radius on performance, and (3) the effect of a minimum number of points on
performance and evaluated these configurations. We measured the execution speed of the
algorithm to evaluate the performance of the algorithm. For comparison, we used several
object detection models. We adopted Yolo [26], Mask RCNN [28], and RetinaNet [27] for
object detection models trained with the Microsoft COCO data set [15].

ISPRS Int. J. Geo-Inf. 2021, 10, 548 18 of 24

Figure 6. Experimental layout.

5.2. Effect of the Data Size

The first experiment evaluated the effect of the data size on the performance of the
algorithms. The performance measurement was the computational cost of the algorithms.
We experimented by fixing the radius at 100 m, varying the minpts among 9, 15, and 21
and varying the data size from 10,000 to 50,000. Figure 7a–c show the count of image
filtering by SpatialFirst (SF), ClusterFirst (CF), and DeepDBSCAN as the data size changes.
Figure 7d–f show the times spent for each detection model to perform image filtering. At
this time, SF was excluded from the comparison due to the large number of images to
filter. The table below the figure shows the time spent for each algorithm, depending on
the variation in data size. This is based on the Mask RCNN, which spent the most time
filtering images. The runtime of all algorithms increases as the data size increases. The
number of image detection is in the order of SpatialFirstClusterFirst and DeepDBSCAN.
The SpatialFirst performs image detection on all data, and ClusterFirst performs image
detection less than SpatialFirst because noise data were deleted during NNG creation
and clustering. DeepDBSCAN seems to have a similar number of image detections to
ClusterFirst, but, as the data size increases, we can see that it performs an amount of
image detection about 3% less as more vertices are excluded. Although ClusterFirst and
DeepDBSCAN have shorter running times compared to SpatialFirst and DeepDBSCAN
and ClusterFirst have similar running times, we can see that DeepDBSCAN is better.

ISPRS Int. J. Geo-Inf. 2021, 10, 548 19 of 24

(a) (b) (c)

(d) (e) (f)
data size 10k 20k 30k 40k 50k

SF 15,000.08 30,000.12 45,000.26 60,000.29 75,000.42
CF 10,663.72 20,578.87 32,375.26 42,126.83 52,025.69
DeepDB 10,424.16 20,129.42 32,121.64 41,533.28 51,124.97

data size 10k 20k 30k 40k 50k

SF 15,000.06 30,000.11 45,000.27 60,000.35 75,000.38
CF 9474.16 18,114.32 29,034.71 36,801.95 45,229.08
DeepDB 9191.78 17,600.53 28,852.46 36,410.56 44,689.37

data size 10k 20k 30k 40k 50k

SF 15,000.06 30,000.12 45,000.27 60,000.31 75,000.34
CF 8281.67 15,870.34 26,277.76 33,018.83 40,467.95
DeepDB 7974.77 15,463.15 26,180.73 32,738.45 40,099.03

Figure 7. Effect of the data size. (a–c) number of object detections when minpts 9 to 21; (d–f) The time cost of each object
detection model when minpts 9 to 21.

5.3. Effect of the Radius

The second experiment evaluated the effect of the radius on the performance of the
algorithms. The performance measurement is the computational cost of the algorithms.
We experimented by fixing the data size at 10,000 and varying minpts among 9, 15, and 21
and the radius from 100 m to 500 m. Figure 8a–c show how the algorithms’ performance
times change as the radius of the cluster changes. Figure 8d–f depict the times spent for
each detection model to perform image filtering. The SpatialFirst algorithm was excluded
for the same reason. The table below the figure presents the time spent for each algorithm,
depending on the variation in radius. It is written based on Mask RCNN, as shown in the
table in Figure 7. The SpatialFirst algorithm always has consistent run times, while the
ClusterFirst and DeepDBSCAN run times increase as the radius grows. This is because the
larger the radius of a cluster is, the more photos it contains and the more candidates it needs
in order to filter images. On the other hand, as the minimum number of vertices forming a
cluster increases, fewer candidates are required to form fewer clusters and perform image
filtering. We can see that DeepDBSCAN outperforms ClusterFirst and SpatialFirst.

ISPRS Int. J. Geo-Inf. 2021, 10, 548 20 of 24

(a) (b) (c)

(d) (e) (f)
epsilon 100m 200m 300m 400m 500m

SF 15,000.08 15,000.07 15,000.06 15,000.07 15,000.07
CF 10,663.72 12,144.19 13,029.18 13,675.74 14,017.71
DeepDB 10,424.16 11,953.55 12,753.51 13,496.51 13,877.84

epsilon 100m 200m 300m 400m 500m

SF 15,000.06 15,000.06 15,000.06 15,000.07 15,000.12
CF 9474.16 11,178.17 12,091.68 12,889.74 13,396.7
DeepDB 9191.78 11,000.44 11,928.89 12,713.14 13,188.52

epsilon 100m 200m 300m 400m 500m

SF 15,000.06 15,000.06 15,000.06 15,000.06 15,000.08
CF 8281.67 10,426.67 11,301.18 12,139.68 12,828.2
DeepDB 7974.77 10,290.19 11,196.49 11,982.24 12,646.8

Figure 8. Effect of the radius. (a–c) number of object detections when minpts 9 to 21; (d–f) The time cost of each object
detection model when minpts 9 to 21.

5.4. Effect of the Minimum Number of Points

The third experiment evaluated the effect of the minimum number of points on the
performance of the algorithms. The performance measurement is the computational cost of
the algorithms. We experimented by fixing the data size at 10,000 and varying minpts from
9 to 21. The radii varied from 100 m to 500 m. Figure 9a–c depict how the performance time
changes as the minimum number of points in the cluster changes. Figure 9d–f show the
times spent for each detection model to perform image filtering. The SpatialFirst algorithm
was excluded for the same reason. The table below the figure presents the time spent for
each algorithm, depending on the variation in radius. It is written based on Mask RCNN,
as shown in the table in Figure 7.

ISPRS Int. J. Geo-Inf. 2021, 10, 548 21 of 24

(a) (b) (c)

(d) (e) (f)
minpts 9 12 15 18 21

SF 15,000.08 15,000.06 15,000.06 15,000.06 15,000.06
CF 10,663.72 10,027.66 9474.16 9046.66 8281.67
DeepDB 10,424.16 9694.05 9191.78 8670.4 7974.77

minpts 9 12 15 18 21

SF 15,000.06 15,000.07 15,000.06 15,000.06 15,000.06
CF 13,029.18 12,561.2 12,091.68 11,727.19 11,301.18
DeepDB 12,753.51 12,410.73 11,928.89 11,471.38 11,196.49

minpts 9 12 15 18 21

SF 15,000.07 15,000.07 15,000.12 15,000.07 15,000.08
CF 14,017.71 13,719.2 13,396.7 13,164.19 12,828.2
DeepDB 13,877.84 13,575.83 13,188.52 13,062.61 12,646.8

Figure 9. Effect of the minimum number of points. (a–c) number of object detections when epsilon 100 m to 500 m; (d–f)
The time cost of each object detection model when epsilon 100 m to 500 m.

As the minimum number of points forming the cluster increases, fewer candidates are
required to form clusters and perform image detection. The number of photos needed in
filtering the image candidates decreases as minpts increases. The SpatialFirst algorithm
always has the same run time, while ClusterFirst and DeepDBSCAN show decreased run
times as minpts increases. Additionally, in Figure 9, the DeepDBSCAN algorithm shows
the best performance. We compared the impact of data size, cluster radius, and minimum
points on the DBSCAN clustering algorithm based on the running time of each algorithm.
We compared the running time required to perform image filtering using RCNN models
for the vertices of the cluster that Rare formed. The proposed DeepDBSCAN algorithm
performed well in all comparison groups. Additionally, if we add conditions for the number
of people in the image, we can reduce image detection and show better performance.

6. Case Study

Figure 10 shows example of experimental data and the difference between traditional
DBSCAN and image content-based DBSCAN. The image filtering condition was selected as
a photograph of a person in order to find out whether it is possible to cluster a region with
a lot of human traffic from a marketing point of view. The data used geo-tagged photos of
the space near Times Square. The circle points are clusters, and different colors separate

ISPRS Int. J. Geo-Inf. 2021, 10, 548 22 of 24

each cluster. The circle points and the diamonds in the circle points show the results of
normal DBSCAN and DBSCAN based on the image contents. If we add the number of
people in the image as a condition, we can exclude more sub-graphs. It can also reduce
the number of core vertices compared to before. As the number of core vertices decreases,
so does the number of image detection candidates decreases. This reduces computing
costs and resources used and more accurately identifies areas of high person density in
key regions. It can be seen that image content-based clusters can be useful in areas such as
marketing by clustering places with high traffic.

Figure 10. Experimental data samples and clustering results.

7. Conclusions

We present deep content and density-based clustering techniques for geo-tagged
photos. Content-based clustering of geo-tagged photos enables the discovery of POIs
based on the locations of the geo-tagged images and enables searching of specific classes
by leveraging deep learning models. This is used to detect hotspots and to search for
specific classes in a particular region. In that sense, since spatial image data sets are
stored in large quantities in systems such as databases, the time taken to discover a
particular class of regions of interest is added to the existing DBSCAN techniques, as is the
time spent on image detection tasks. The detection of images is highly time consuming.
In this paper, we introduce three approaches to image content and clustering analysis
techniques. In the case of the SpatialFirst algorithm, image detection is performed for
all photo data in the region. To improve this, we introduce a ClusterFirst algorithm that
eliminates outliers and performs object detection in the process of generating clusters based
on geo-tagged photos in the spatial domain. Nevertheless, there are cases where object
detection needs to be performed on the image even though there is no image containing
dp(deep predicate). To solve this problem, we propose a deep density-based clustering
(DeepDBSCAN) algorithm to reduce geo-tagged photo using nearest neighbor graph
techniques. The key idea of DeepDBSCAN is to reduce the amount of image data used for

ISPRS Int. J. Geo-Inf. 2021, 10, 548 23 of 24

image filtering by filtering clusters that do not satisfy certain conditions by considering
space-based clustering and image detection predicates. Comparative experiments with
several RCNN models, proposed algorithms, and previous algorithms show that it is
important to reduce the number of image data when evaluating the time performance of
image filtering. Our proposed DeepDBSCAN performs image detection approximately 5%
less time on average than traditional methods. Therefore, it shows better performance in
terms of time cost. As a result, our algorithm can find regions that satisfy image content
and spatial conditions faster than traditional methods.

Author Contributions: Conceptualization, Insung Jang; methodology, Minseok Jang; software,
Jang You Park and Dong June Ryu; validation, Minseok Jang; formal analysis, Kwang Woo Nam;
investigation, Yonsik Lee; resources, Minseok Jang; data curation,Insung Jang; writing—original draft
preparation, Jang You Park; writing—review and editing, Dong June Ryu and Kwang Woo Nam;
project administration, Kwang Woo Nam; funding acquisition, Kwang Woo Nam, Insung Jang and
Yonsik Lee. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by an Electronics and Telecommunications Research Insti-
tute (ETRI) grant funded by the Korean government (21ZR1200, DNA-based national intelligence
core technology development), and by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2018R1A2B6007982, No. 2021R1F1A1047768, and No.
2020R1F1A1048432).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kim, D.; Kang, Y.; Park, Y.; Kim, N.; Lee, J. Understanding tourists’ urban images with geotagged photos using convolutional

neural networks. Spat. Inf. Res. 2020, 28, 241–255. [CrossRef]
2. Kisilevich, S.; Keim, D.; Andrienko, N.; Andrienko, G. Towards acquisition of semantics of places and events by multi-perspective

analysis of geotagged photo collections. In Geospatial Visualisation; Springer: Berlin/Heidelberg, Germany, 2013; pp. 211–233.
3. Tian, J.; Ding, W.; Wu, C.; Nam, K.W. A Generalized Approach for Anomaly Detection From the Internet of Moving Things. IEEE

Access 2019, 7, 144972–144982. [CrossRef]
4. Ding, W.; Yang, K.; Nam, K.W. Measuring similarity between geo-tagged videos using largest common view. Electron. Lett. 2019,

55, 450–452. [CrossRef]
5. Zeng, Z.; Zhang, R.; Liu, X.; Guo, X.; Sun, H. Generating tourism path from trajectories and geo-photos. In Proceedings

of the International Conference on Web Information Systems Engineering, Doha, Qatar, 13–15 November 2012; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 199–212.

6. Kurashima, T.; Iwata, T.; Irie, G.; Fujimura, K. Travel route recommendation using geotags in photo sharing sites. In Proceedings of
the 19th ACM International Conference on Information and Knowledge Management, Toronto, ON, Canada, 26–30 October 2010;
pp. 579–588.

7. Chen, Y.Y.; Cheng, A.J.; Hsu, W.H. Travel recommendation by mining people attributes and travel group types from community-
contributed photos. IEEE Trans. Multimed. 2013, 15, 1283–1295. [CrossRef]

8. Zheng, Y.T.; Zha, Z.J.; Chua, T.S. Mining travel patterns from geotagged photos. ACM Trans. Intell. Syst. Technol. (TIST) 2012,
3, 1–18. [CrossRef]

9. Kim, Y.; Kim, J.; Yu, H. Geotree: Using spatial information for georeferenced video search. Knowl.-Based Syst. 2014, 61, 1–12.
[CrossRef]

10. Kim, S.H.; Lu, Y.; Constantinou, G.; Shahabi, C.; Wang, G.; Zimmermann, R. Mediaq: Mobile multimedia management system.
In Proceedings of the 5th ACM Multimedia Systems Conference, Singapore, 19–21 March 2014; pp. 224–235.

11. Lu, Y.; To, H.; Alfarrarjeh, A.; Kim, S.H.; Yin, Y.; Zimmermann, R.; Shahabi, C. GeoUGV: User-generated mobile video dataset
with fine granularity spatial metadata. In Proceedings of the 7th International Conference on Multimedia Systems, Klagenfurt,
Austria, 10–13 May 2016; pp. 1–6.

12. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise;
Kdd: Washington, DC, USA, 1996; Volume 96, pp. 226–231.

13. Chang, B.; Park, Y.; Kim, S.; Kang, J. DeepPIM: A deep neural point-of-interest imputation model. Inf. Sci. 2018, 465, 61–71.
[CrossRef]

14. Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep learning based recommender system: A survey and new perspectives. ACM Comput.
Surv. (CSUR) 2019, 52, 1–38. [CrossRef]

http://doi.org/10.1007/s41324-019-00285-x
http://dx.doi.org/10.1109/ACCESS.2019.2945205
http://dx.doi.org/10.1049/el.2018.7499
http://dx.doi.org/10.1109/TMM.2013.2265077
http://dx.doi.org/10.1145/2168752.2168770
http://dx.doi.org/10.1016/j.knosys.2014.01.026
http://dx.doi.org/10.1016/j.ins.2018.06.065
http://dx.doi.org/10.1145/3285029

ISPRS Int. J. Geo-Inf. 2021, 10, 548 24 of 24

15. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 740–755.

16. Birant, D.; Kut, A. ST-DBSCAN: An algorithm for clustering spatial–temporal data. Data Knowl. Eng. 2007, 60, 208–221. [CrossRef]
17. Li, Z.; Han, J.; Ji, M.; Tang, L.A.; Yu, Y.; Ding, B.; Lee, J.G.; Kays, R. Fast mining of spatial frequent wordset from social database.

ACM Trans. Intell. Syst. Technol. 2011, 2, 1–32.
18. Andrade, G.; Ramos, G.; Madeira, D.; Sachetto, R.; Ferreira, R.; Rocha, L. G-dbscan: A gpu accelerated algorithm for density-based

clustering. Procedia Comput. Sci. 2013, 18, 369–378. [CrossRef]
19. Yin, H.; Wang, C.; Yu, N.; Zhang, L. Trip mining and recommendation from geo-tagged photos. In Proceedings of the 2012 IEEE

International Conference on Multimedia and Expo Workshops, Melbourne, VIC, Australia, 9–13 July 2012; pp. 540–545.
20. Spyrou, E.; Sofianos, I.; Mylonas, P. Mining tourist routes from Flickr photos. In Proceedings of the 2015 10th International

Workshop on Semantic and Social Media Adaptation and Personalization (SMAP), Trento, Italy, 5–6 November 2015; pp. 1–5.
21. Lee, I.; Cai, G.; Lee, K. Mining points-of-interest association rules from geo-tagged photos. In Proceedings of the 2013 46th

Hawaii International Conference on System Sciences, Wailea, HI, USA, 7–10 January 2013; pp. 1580–1588.
22. Zou, Z.; He, X.; Xie, X.; Huang, Q. Enhancing the Impression on Cities: Mining Relations of Attractions with Geo-Tagged Photos.

In Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable
Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation, Guangzhou, China,
8–12 October 2018; pp. 1718–1724.

23. Kisilevich, S.; Mansmann, F.; Keim, D. P-DBSCAN: A density based clustering algorithm for exploration and analysis of attractive
areas using collections of geo-tagged photos. In Proceedings of the 1st International Conference and Exhibition on Computing
for Geospatial Research & Application, Washington, DC, USA, 21–23 June 2010; pp. 1–4.

24. Weng, J.; Lee, B.S. Event detection in twitter. In Proceedings of the International AAAI Conference on Web and Social Media,
Barcelona, Spain, 17–21 July 2011; Volume 5.

25. Lee, Y.; Nam, K.W.; Ryu, K.H. Fast mining of spatial frequent wordset from social database. Spat. Inf. Res. 2017, 25, 271–280.
[CrossRef]

26. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
27. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.
28. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,

Venice, Italy, 22–29 October 2017; pp. 2961–2969.

http://dx.doi.org/10.1016/j.datak.2006.01.013
http://dx.doi.org/10.1016/j.procs.2013.05.200
http://dx.doi.org/10.1007/s41324-017-0094-6

	Introduction
	Related Work
	Mining GPS and Trajectory Data
	Mining Geo-Tagged Photos

	Preliminaries
	Deep Content-Based Density Clustering
	Spatial-First Approach
	Clustering-First Approach
	DeepDBSCAN Approach

	Experiments and Evaluation
	Experimental Setup
	Effect of the Data Size
	Effect of the Radius
	Effect of the Minimum Number of Points

	Case Study
	Conclusions
	References

