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Abstract: SDG indicators are instrumental for the monitoring of countries’ progress towards sustain-
ability goals as set out by the UN Agenda 2030. Earth observation data can facilitate such monitoring
and reporting processes, thanks to their intrinsic characteristics of spatial extensive coverage, high
spatial, spectral, and temporal resolution, and low costs. EO data can hence be used to regularly
assess specific SDG indicators over very large areas, and to extract statistics at any given subnational
level. The Food and Agriculture Organization of the United Nations (FAO) is the custodian agency
for 21 out of the 231 SDG indicators. To fulfill this responsibility, it has invested in EO data from
the outset, among others, by developing a new SDG indicator directly monitored with EO data:
SDG indicator 15.4.2, the Mountain Green Cover Index (MGCI), for which the FAO produced initial
baseline estimates in 2017. The MGCI is a very important indicator, allowing the monitoring of
the health of mountain ecosystems. The initial FAO methodology involved visual interpretation
of land cover types at sample locations defined by a global regular grid that was superimposed
on satellite images. While this solution allowed the FAO to establish a first global MGCI baseline
and produce MGCI estimates for the large majority of countries, several reporting countries raised
concerns regarding: (i) the objectivity of the method; (ii) the difficulty in validating FAO estimates;
(iii) the limited involvement of countries in estimating the MGCI; and (iv) the indicator’s limited
capacity to account for forest encroachment due to agricultural expansion as well as the undesired
expansion of green vegetation in mountain areas, resulting from the effect of global warming. To
address such concerns, in 2020, the FAO introduced a new data collection approach that directly
measures the indicator through a quantitative analysis of standardized land cover maps (European
Space Agency Climate Change Initiative Land Cover maps—ESA CCI-LC). In so doing, this new
approach addresses the first three of the four issues, while it also provides stronger grounds to
develop a solution for the fourth issue—a solution that the FAO plans to present to the Interagency
and Expert Group on SDG Indicators (IAEG-SDG) at its autumn 2021 session. This study (i) describes
the new approach to estimate the MGCI indicator using ESA’s CCI-LC and products, (ii) assesses the
accuracy of the new approach; (iii) reviews the limitations of the current SDG indicator definition to
monitor progress towards SDG 15.4; and (iv) reflects on possible further adjustments of the indicator
methodology in order to address them.

Keywords: SDG 15.4.1; MGCI; land cover; ESA CCI; GLC-LC100

1. Introduction

The Food and Agriculture Organization of the United Nations (FAO) is the custodian
agency for 21 SDG indicators and, as such, is responsible for collecting data from countries,
checking quality and consistency, and reporting national, regional, and global figures to
the global SDG database. In addition, the FAO provides technical assistance supporting
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countries’ efforts in computing and reporting the SDG indicators. In this regard, the FAO
has consistently supported the adoption of earth observation (EO) data and geospatial
information as an important instrument to effectively measure a range of SDG indicators.
Though not a panacea for solving all the challenges related to the immense SDG data needs,
as often heralded, EO data can significantly contribute both directly and indirectly to
improving the availability, quality, and consistency of SDG indicators. This has been clearly
recognized by the UN General Assembly [1] and is also reflected in the establishment
of several EO coordination bodies such as the Group on Earth Observations (GEO), the
United Nations Committee of Experts on Global Geospatial Information Management
(UN-GGIM), the IAEG-SDG Working Group on Geospatial Information, and the Expert
Group on the Integration of Statistical and Geospatial Information.

Among the list of SDG indicators for which geospatial information can be used
to provide direct measurement is SDG indicator 15.4.2, also known as the Mountain
Green Cover Index (MGCI). The MGCI monitors land cover changes in mountain areas to
determine which proportion of this area is covered by green vegetation (forest, shrubs and
pastureland, and cropland), based on the notion that vegetation is positively correlated
with the state of the health of mountains, and, therefore, with their capacity to fulfill critical
ecosystem roles [2]. An exception to this rule is green vegetation emerging from areas
previously occupied by perennial ice and snow, as a result of climate change-related global
warming effects.

In 2016, the FAO developed the first version of the methodology to calculate the MGCI,
which involved the juxtaposition of land cover data interpreted with 120,000 plots from
satellite data collected through a systematic sampling approach using the FAO Open Foris
Collect Earth tool, and the global map of mountain elevation ranges as defined by Kapos
et al. in 2000 [3]. The area of green vegetation over total mountain area was calculated
based on the proportion of each land cover class in the Collect Earth plot survey over the
total mountain area.

Based on this methodology, in 2017, the FAO carried out a global baseline MGCI
assessment, producing estimates at the global, regional, and national level. Since these
estimates were generated by the FAO itself rather than by countries, the FAO submitted
them for validation to National Statistical Offices (NSOs) in compliance with the IAEG-
SDG Guidelines on Data Flows and Global Reporting [4]. During this validation process,
some countries expressed concerns about: (i) the objectivity of the method; (ii) the data
source for land cover types, particularly what was perceived by certain countries as
the FAO “imposing a data source”; (iii) the interpretation of the indicator, particularly
the assumption that increasing green mountain cover is always a positive change; (iv)
the validation process itself, which was cumbersome for both countries and the FAO,
particularly due to the very large number of data points to be interpreted and validated
by countries.

To address such concerns, in 2020, the FAO reviewed the default calculation approach
with the final aim of providing countries with a new EO-based solution for reporting
on this SDG indicator, which would be objective and accurate, standardized, simple to
implement and validate, sustainable in the long term, and one that allows countries to use
both publicly available EO data as well as their own national datasets.

An essentially land cover-based indicator, the MGCI can be assessed using remote
sensing imagery and land cover maps via automated algorithms that classify land cover
types, rather than by using visual interpretation. The availability of free and open EO
data and online cloud computing platforms further facilitates the automation of the re-
porting process. Similar approaches have recently been adopted by both researchers and
National Statistical Offices. Bian et al. [5] used Landsat observations to estimate the green
vegetation cover in mountain areas by analyzing the Normalized Difference Vegetation
Index (NDVI) using a frequency- and phenology-based algorithm (the algorithm and the
data are expected to be made publicly available soon). The National Statistics Offices of
Germany and Mexico [6,7], among others, make operational use of high-resolution national
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land cover maps at a 10 m spatial resolution to measure and report the official MGCI
statistics. However, not all countries have their own national land cover map time series,
and different land cover classification systems may exist at the national level, which may
require further adjustment of the data to comply with the standard classification used by
the MGCI, i.e., the land use/land cover classes of the Intergovernmental Panel on Climate
Change (IPCC).

The availability of global yearly land cover maps has significantly increased in recent
years. In 2017, the European Space Agency (ESA) made available an archive of consistent
global land cover maps at a 300 m spatial resolution on an annual basis from 1992 to 2018
under the framework of the Climate Change Initiative Land Cover (CCI-LC) project [8], In
2019, the Copernicus Climate Change Service (C3S) produced three new global land cover
maps, consistent with the ESA maps, on an annual basis from 2016 to 2018. More recently,
the Copernicus Global Land Monitoring Service (CGLS) released the Moderate Dynamic
Land Cover (GLC-LC100) product [9], a new set of annual global land cover time series
from 2015 to 2019 of higher spatial resolution and accuracy than the ESA CCI-CL product.
This product is expected to be updated on a yearly basis. Such abundancy of consistent
global land cover maps provides an unprecedented opportunity to improve the consistency
and expand the temporal coverage of the MGCI, based on a standardized approach that
relies on freely available products, which can therefore guarantee a sustainable monitoring
effort by countries.

The purpose of this paper is to assess the applicability that these new cutting-edge
EO products offer to compute SDG indicator 15.4.2—the MGCI—as well as assessing
their limitations. This study therefore (i) describes the new default calculation approach to
estimate the MGCI indicator using the ESA’s CCI-LC and GLC-LC100 products, (ii) assesses
the accuracy of the new approach; (iii) describes the MGCI results at a global, regional, and
national level obtained with the new calculation approach; and (iv) reviews the remaining
limitations of the current SDG indicator definition to monitor progress towards SDG 15.4,
and reflects on possible further adjustments of the indicator methodology in order to
address them.

2. Materials and Methods
2.1. Definition of the MGCI

The official definition of the Mountain Green Cover Index is provided in the metadata
of SDG indicator 15.4.2 maintained by the FAO and available either in the global metadata
repository or the FAO SDG indicator portal [2]. The MGCI is defined as the ratio of the
mountain green cover area to the total mountain area:

MGCI =
Mountain Green Cover Area

Total Mountain Area
(1)

where: Mountain Green Cover Area = sum of mountain area (Km2) covered by cropland,
grassland, forestland, shrubland, and wetland, as defined based on the IPCC classifica-
tion; Total Mountain Area = total area (Km2) of mountains. In both the numerator and
denominator, Mountain is defined according to Kapos et al. in 2000 [3].

In the next sub-section, we present the principal data sources for the numerator and
denominator of the MGCI formula, starting with the denominator.

2.2. The MGCI Denominator: Mountain Classification Data—Elevation Layer

The global mountain classification data were obtained from the FAO Mountain Part-
nership website [10]. The data are based on the UNEP-WCMC mountain classification
system [3]; it is a raster dataset, with a 500 m spatial resolution and is derived from the
Global 30 Arc-Second Elevation (GTOPO 30). The altitude, slope, and local elevation range
(LER) are the criteria used for the mountain classification (Table 1).
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Table 1. UNEP-WCMC criteria for mountain classes.

Class Elevation Slope LER 7 km Radius

1 >4500 m Not used Not used
2 3500–4500 m Not used Not used
3 2500–3499 m Not used Not used
4 1500–2499 m >2◦ Not used
5 1000–1499 m >5◦ OR > 300 m
6 300–999 m Not used >300 m

2.3. The MGCI Numerator: Mountain Green Cover Area

The baselines for mountain green cover data at national, regional, and global levels
were initially estimated by the FAO for the year 2017 using the FAO Open Foris Collect Earth
tool powered by Google Earth [11,12]. This approach relied on the visual interpretation of
a predefined global sample of 120,000 plots from satellite data.

Instead, the newly proposed spatially explicit approach focuses on the extraction of
mountain green cover area directly from standardized land cover maps with a view to
automating the process as new land cover maps are made available on a yearly basis by
official sources. The FAO identified two key sources for this purpose: the European Space
Agency’s Climate Change Initiative Land Cover maps (ESA CCI-LC) and the Copernicus
Global Land Monitoring Service’s (CGLS) Moderate Dynamic Land Cover (GLC-LC100)
map. Such new methodology introduces two key benefits: (1) possibility for automation
and (2) use of readily available national products for deriving the indicator values.

The European Space Agency’s CCI-LC dataset consists of global land cover maps
available on an annual basis from 1992 to 2018. The CCI-LC legend contains 37 land cover
classes as shown in columns a and b in Table 2. Such classes have been defined using
the Land Cover Classification System (LCCS) developed by the FAO [13]. The spatial
resolution of the ESA CCI-LC product is 0.002778◦ which corresponds to approximately
300 m at the equator. The fact that these maps have a good temporal coverage is the main
reason that the FAO selected them as the default data source for mountain green cover
area, despite their lower spatial resolution.

Table 2. ESA CCI-LC land cover codes (a) and (b) description; corresponding IPPC class (c); corresponding green or
non-green label (d).

(a) Class Code (b) Description (c) Reclassification to IPPC (d) Reclassification to
Green/Non-Green

50 Tree cover shrub herbaceous cover (>50%)/cropland (<50%)
60 Tree cover broadleaved evergreen closed to open (>15%)
61 Tree cover broadleaved deciduous closed to open (>15%)
62 Tree cover broadleaved deciduous closed (>40%)
70 Tree cover broadleaved deciduous open (15–40%)
71 Tree cover needle leaved evergreen closed to open (>15%) Forest Green
72 Tree cover needle leaved evergreen closed (>40%)
80 Tree cover needle leaved evergreen open (15–40%)
81 Tree cover needle leaved deciduous closed to open (>15%)
82 Tree cover needle leaved deciduous closed (>40%)
90 Tree cover needle leaved deciduous open (15–40%)

100 Mosaic tree and shrub (>50%)/herbaceous cover (<50%) mixed
leaf type (broadleaved and needle leaved)

10 Cropland
11 Herbaceous cover rainfed
12 Tree or shrub cover
20 Cropland

30 Mosaic cropland (>50%)/natural vegetation (tree irrigated or
post-flooding) Cropland Green

110
Mosaic herbaceous cover (>50%)/tree and shrub (<50%)
Mosaic natural vegetation, tree, shrub, herbaceous cover

(>50%)/cropland
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Table 2. Cont.

(a) Class Code (b) Description (c) Reclassification to IPPC (d) Reclassification to
Green/Non-Green

40 Mosaic natural vegetation (tree shrub herbaceous cover) (<50%)
120 Shrubland
121 Shrubland evergreen
122 Shrubland deciduous Grassland Green
130 Grassland
140 Lichens and mosses

160 Tree cover flooded fresh/saline/brackish water
170 Tree cover flooded fresh or brackish water Wetland Green
180 Shrub or herbaceous cover flooded saline water

150 Sparse vegetation (tree
151 Sparse tree (<15%) shrub herbaceous cover) (<15%)
152 Sparse shrub (<15%)
153 Sparse herbaceous cover (<15%)
200 Bare areas Other land Non-
201 Consolidated bare areas green
202 Unconsolidated bare areas
210 Water bodies
220 Permanent snow and ice

190 Urban areas Settlement Non-green

In contrast to the ESA CCI-LC, the Copernicus Global Land Service (CGLS) delivers
annual dynamic global land cover maps at a 100 m spatial resolution (CGLS-LC100) starting
from reference year 2015. The CGLS land cover product is characterized by a three-level
land cover classification scheme. A detailed legend is shown in Table A1 in Appendix A.
In addition to the discrete land cover classes, CGLS-LC100 also delivers continuous field
layers named “fraction maps” for each basic land cover class. Such fractional maps
provide proportional estimates for vegetation/ground cover for specific land cover types.
Discrete CGLS-LC100 maps have been used in this study for the sole purpose of comparing
mountain green cover area estimates to date with those derived from ESA CCI-LC, due to
the unavailability of CGLS-LC100 within the desired historical timespan for SDG reporting
purposes (2000 to present).

2.4. The New MGCI Approach

The newly proposed calculation approach focuses on the extraction of mountain green
cover data directly from standardized land cover maps with a view to automating the
process and avoid the use of visual interpretation.

Specifically, the first step in calculating the overall MGCI value involved the resam-
pling of the elevation range layer at a 500 m resolution to the 300 m resolution of the
CCI-LC layer. Secondly, the land cover maps for the years 2000, 2010, 2015, and 2018
were reclassified by mapping the 37 land cover classes featured in the CCI-LC to the six
corresponding IPCC land use/land cover classes, four of which are categorized as green
(forestland, cropland, grassland, wetland) and two of which are considered non-green
(other land, settlement). Results are shown in columns c and d in Table 2.

The resulting green/non-green binary maps were subjected to a zonal statistics func-
tion, and the count of pixels for each class within each UNEP-WCMC mountain class
was calculated for each country and territory, defined by the Global Administrative Unit
Layers (GAUL). The MGCI Formula (1) was applied at the elevation range level, at na-
tional, regional, and global level for the years 2000, 2010, 2015, and 2018. Additionally,
disaggregated land cover and elevation range data were calculated following the same
approach. The full workflow is shown in Figure 1.
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2.5. Innovation in the New FAO Method

The new FAO method has been compared to an existing one based on Collect Earth.
The first difference lies in methodology behind the process of land cover classification.

Collect Earth relies on the visual interpretation of very high-resolution images provided by
Google Earth Engine.

By contrast, the new methodology is based on the use of readily available land cover
products which are the result of quantitative analysis of spectral and phenological features
of medium-resolution satellite images, via a supervised approach based on global in situ
reference data. While the former approach leaves space for subjective interpretation, the
second is quantitative.

The second difference lies in the type of outputs. Collect Earth provided MGCI
statistics in tabular format at national and at elevation zone levels. While this is sufficient
to monitor the indicator over time at the two levels, it does not provide information about
the local variability within the strata and the possibility to extract and identify hot spots.
The new method delivers spatially explicit MGCI data (maps) from which tabular statistics
are extracted at national and elevation zone levels. The spatially explicit output allows
one to pinpoint where the mountain green cover areas are within a country and where
the transitions are taking place. This can be extremely valuable for decision makers and
the public.

Thirdly, from an operational point of view, the Collect Earth method is resource
intensive, requiring a large team to set up the Collect Earth environment, to design the
survey, to interpret and validate user inputs, and to finally harmonization the results.

The new method is resource conservative: it avoids altogether the intense process
of land cover classification as it relies on existing LC standardized products. The new
method simply adds a layer of reclassification and synthesis. The availability of the
ESA and Copernicus LC products through the Google Earth Engine platform allows
for easy deployment via open source software with minimum effort and virtually zero
maintenance costs.
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2.6. Accuracy Assessment

We measured the accuracy of the new MGCI data, by comparing the green/non-green
maps obtained, respectively, from the ESA CCI-LC maps and from the CGLC-LC100 maps
for 2015 against a global validation dataset and a national one. The global validation
dataset was obtained from the work carried out by Li et al. in 2017 [14].

The global dataset [15] contains 36,000 samples with land cover ground-truth labels.
The data were collected globally through the visual interpretation of images from the
Landsat 8 data archive for 2015, conducted by a team of expert interpreters. The ground-
truth dataset uses a land cover classification system built with 11 level-1 classes and
28 level-2 classes; the full legend is available in Table A2.

The national dataset contains 1580 ground-truth land cover samples, collected in
the field by the FAO in Lesotho in May 2021, under the national land cover mapping
framework. The ground-truth dataset uses a land cover classification system built using
the FAO Land Cover Classification System, and the full legend is available in Table A3.

For the validation of the MGCI, each data point in the global and the national valida-
tion datasets was reclassified into either green or non-green, and only points falling within
mountain zones were retained, resulting in a final dataset of 8109 validation samples for
the global dataset and 1386 for Lesotho.

We thus calculated a confusion matrix by comparing the green/non-green cover map
derived from the ESA CCI-LC and CGLS-LC100 maps, respectively, against the global
and national ground-truth land cover data points relabeled either as green or non-green.
The classification accuracy was assessed using the producer’s accuracy (PA), the user’s
accuracy (UA), the overall accuracy (OA), and the kappa coefficient based on the confusion
matrix. PA is the probability that a pixel is correctly classified as a land cover type and is the
reciprocal of the error of omission. User’s accuracy (UA), instead, indicates the proportion
of pixels that are correctly classified within the image and represents the reciprocal of the
errors of commission. The overall accuracy, then, is the ratio between the total number of
correctly classified pixels versus the total number of pixels used for accuracy assessment.

The kappa coefficient estimates the coincidence of two variables, considering the
degree of overlap that would be expected by chance alone. A kappa value of 1 represents
perfect agreement, while a value of 0 represents no agreement. In this study, the kappa
coefficient has been used to measure the agreement between classification and validation
samples for green/non-green areas.

The kappa coefficient is calculated using the formula developed by Congalton in
1991 [16]:

K =
∑r

i=1 Xii − ∑r
i=1(Xi + ∗X + 1)

N2 − ∑r
i=1(Xi + ∗X + 1)

(2)

where r is the number of rows in the matrix, Xii is the number of observations in rows i
and column i, Xi+ and Xi+1 are the marginal totals of row i and column i, respectively, and
N is the total number of observations.

2.7. Global Accuracy Assessment of Green/Non-Green Cover Derived from ESA CCI-LC Map

The results of the accuracy assessment of green/non-green cover derived from ESA
CCI against the global validation datasets are presented in Table 3. They yielded an OA of
86%, PA of 93.64%, and 59% for green and non-green classes, respectively. UA was 89%
and 72.35%, respectively. Kappa was 0.56, which defines a good degree of agreement [17].

The green class was predicted with higher accuracy than the non-green class, the latter
being mainly affected by omission errors, as indicated by the low PA. To understand the
underlying reasons, 100 sites, associated with omission errors, were randomly selected.
For each site, we compared very high-resolution images provided by Google and ESRI, the
ESA CCI-LC map, and the GLC-LC100 map.
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Table 3. Confusion matrix and accuracy assessment of green/non-green classification based on CCI-LC, 2015.

Truth
Total User Accuracy Kappa

Green Non-Green

Predicted
Green 5924 731 6655 0.890 0

Non-Green 402 1052 1454 0.723 0

Total 6326 1783 8109 0 0

Producer’s Accuracy 0.936 0.590 0 0.860 0

Kappa 0 0 0 0 0.563

From the very high-resolution images, it could be seen that the sites were characterized,
in most cases, by bare land patches surrounded by sparse vegetation, as shown in column
a in Figure A2. These areas were classified as shrubland, grassland, or sparse vegetation
according to the CCI-LC dataset, as shown in column b in Figure A2.

The disagreement between ground-truth and the ESA CCI, stemming mainly from
omission errors, can be explained by the compound effect of (i) errors in the CCI-LC
product affecting the accuracy of sparse vegetation, shrubland, and grassland classes [8],
and (ii) the low spatial resolution of the CCI-LC which does not allow it to discriminate
landscape features that are small in size, such as bare land patches surrounded by larger
green areas.

2.8. Global Accuracy Assessment of Green/Non-Green Cover Derived from GLC-LC100

The green/non-green cover derived from the CGLS-LC100 map scored an overall
accuracy of 93.9%, with producer’s accuracy of 99% and 74% and user’s accuracy of 93.2%
and 97.6%, respectively, for green and non-green classes. The kappa coefficient was 0.8,
indicating excellent agreement between the two datasets (Table 4).

Table 4. Confusion matrix and accuracy assessment of green/non-green classification based on CGLS-LC100, 2015.

Truth
Total User’s Accuracy Kappa

Green Non-Green

Predicted
Green 6294 459 6753 0.932 0

Non-Green 32 1324 1356 0.976 0

Total 6326 1783 8109 0 0

Producer’s Accuracy 0.994 0.742 0 0.939 0

Kappa 0 0 0 0 0.806

The use of GLC-LC100 resulted in considerable improvements in the accuracy of the
green/non-green classification when compared to ESA CCI-LC. These improvements are
likely due to: (i) the inherently higher accuracy of the GLC-LC100 product, at 80.6% [9],
compared to the ESA CCI-LC (estimated at 75%); (ii) the GC-LC100 map’s higher spatial
resolution at 100 m, allowing discrimination of smaller patches of specific land cover types.

The superior ability of GLC-LC100 to discriminate small bare land patches was further
confirmed by the comparison with the ESA CCI-LC at randomly selected test sites shown
in column c in Figure A2. Sites in Argentina, the United States, Syria, and China, where
satellite background images showed bare land patches surrounded by sparse vegetation,
were classified as shrubland, cropland, or mosaic tree and shrubs according to the ESA
CCI-LC. The GLC-LC100 was instead able to discriminate the patches of bare land or sparse
vegetation from the surrounding green areas such as shrubs or herbaceous vegetation.
Only in the case of the Syria test site did the ESA CCI-LC identify bare land in proximity to
the ground-truth point.
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In the test site in Chile, the background image showed snow covering mountains, and
the ESA CCI-LC classified the area as “trees deciduous open”, while the GLC-LC100 was
able to discriminate a patch of bare land surrounded by herbaceous vegetation and by
closed deciduous forest further away. In this case, it appears that the CCI-LC overestimated
open forest, underestimated closed forest, and failed to discriminate bare land.

In the test site in Saudi Arabia, the background image showed a dominant pattern
of bare land, and both the ESA CCI-LC and GLC-LC100 maps correctly classified the
site as bare land. In the test site in Kenya, lastly, the CCI-LC classified a patch of bare
land as grassland whereas the GLC-LC100 classified it as herbaceous vegetation, both
indicating erroneous results, with a higher tendency of the ESA CCI-LC to overestimate
green vegetation.

2.9. National Accuracy Assessment of Green/Non-Green Cover Derived from ESA CCI-LC

The green/non-green cover map derived from the ESA CCI baseline for 2019 was
used for this test, to minimize the time difference with the validation dataset (2021). We
clipped the green/non-green map to the mountain area of Lesotho. The national subset
map scored an overall accuracy of 99%, with producer’s accuracy of 99.3% and 95.0%
and user’s accuracy of 99.6% and 92.15%, respectively, for green and non-green classes.
The kappa coefficient was 0.84, indicating excellent agreement between the two datasets
(Table 5).

Table 5. Confusion matrix and accuracy assessment of green-non green classification based on ESA CCI 2019.

Truth
Total User’s Accuracy Kappa

Green Non-Green

Predicted
Green 1175 4 1179 99.660 0

Non-Green 8 94 102 92.156 0

Total 1183 98 1281 0 0

Producer’s Accuracy 99.323 95.918 0.990 0

Kappa 0 0 0 0 0.849

3. Results

The new MGCI calculation method introduced by the FAO in 2020 allowed us to
compute, for the first time, the Mountain Green Cover Index over time as well as monitor
land cover changes in mountain areas. Despite the higher accuracy of the GLC-LC100 map
highlighted in the previous section, in 2020, the FAO primarily relied on ESA CCI-LC maps
for two main reasons: firstly, as explained above, only the ESA CCI-LC maps provided
a historical time series ranging from the year 2000 to 2018, as is customary for similar
indicators (e.g., SDG indicators 15.1.1 and 15.2.1). Secondly, the full range of GLC-LC100
maps was not yet publicly available at the time in which the new MGCI figures needed to
be calculated according to the established annual SDG reporting cycle. By adopting the
ESA CCI-LC as the default data source, therefore, the MGCI figures updated in 2020 were
affected by the same main accuracy limitations as their source product, which should be
kept in mind when interpreting the results below.

3.1. Spatial/Temporal Distribution of MGCI

Time series data dating back to the year 2000 revealed a small overall percentage
change to the global MGCI, with an initial period of expansion between 2000 and 2010,
followed by a period of retraction between 2010 and 2018, as shown in Figure 2. While the
decline in the global MGCI between 2010 and 2018 may appear small in terms of percentage
change (approximately 0.04%), this represents a loss of mountain green cover equivalent to
7510.77 km2
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Figure 2. MGCI assessed from CCI-LC over time. Data points include 2000, 2010, 2015, and 2018.
Trend has been smoothed using a spline function.

Figure 3 shows that in 2018, East and South East Asia had the highest proportion of
green mountain cover, at 87%, while West Asia and North Africa had the lowest cover,
at 63%. Oceania and Latin America and the Caribbean had a green mountain cover of
86 percent and 82%, respectively, followed by Sub-Saharan Africa at 80% and Australia
and New Zealand at 78%. North America and Europe and Central and South Asia had
green mountain cover between 69% and 68%.
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Disaggregated data by land cover type and elevation, shown in Figure 4, revealed
important patterns for the world’s mountains.

• Forest: At the lowest elevation, forests are the predominant land cover type, covering
over 50 percent of the area. As expected, however, the share of forest cover steadily
drops with higher elevation, becoming almost negligible above 4500 m.

• Grassland and other land: The proportion of mountain area covered by grassland and
other land (which may include ice cover, glaciers, and barren land) generally increases
with elevation, with grassland appearing to be the predominant land cover type above
3500 m.

• Cropland: Across elevation ranges, cropland is most expanded between 1500 and
2500 m, probably reflecting the fact that mountains at lower elevations are also defined
by a higher slope and local elevation range (LER), which may not provide a suitable
landscape for growing crops, whereas elevation ranges between 1500 and 2.500 offer
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greater possibilities of harboring plateaus. Above 2500 m, crop coverage of mountains
also steadily decreases.

• Settlement and wetland: The share of mountain cover of settlements and wetland
is negligible at all elevation ranges, although also with a tendency to decrease with
higher altitudes.
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3.2. Comparison with FAO 2017 Baseline (Based on Collect Earth)

MGCI estimates were calculated at a national level from the ESA CCI-LC for the year
2017 and compared with MGCI estimates calculated by the FAO in 2017 using Collect
Earth. The two datasets were analyzed using a t-test assuming equal variance as shown in
Figure 5. Results showed that the difference between the means of the two distributions
was not statistically significant (P = 0.51). The high consistency between the dataset
was further confirmed by linear regression yielding an R2 = 0.91. This test confirms the
consistent quality of the CCI-LC estimates and indicates that both methodologies are valid
for assessing the status of the indicator. The benefit of using the wall-to-wall approach (ESA
CCI-LC) becomes evident when comparing the changes (which systematic sampling could
not detect well as they were rare), time required for the data collection, and validation,
which is simpler.

3.3. MGCI Trends and Land Cover Trends

To obtain better insights into the land use/land cover dynamics in mountainous
areas, a trend analysis using the reclassified ESA CCI layers was carried out for the period
2015–2018. Countries were categorized in three groups depending on the MGCI trend, as
shown in Figure 6.
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Figure 5. Scatterplot of MGCI estimates calculated for countries using CCI-LC and Collect Earth in
2017, showing that the two datasets are highly correlated.
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Figure 6. Number of countries experiencing negative, positive, or no change in MGCI from 2015
to 2018.

• Group one included countries (63) which experienced no significant absolute or
relative changes in the MGCI during the period 2015–2018. Of these, forest cover
increased mostly in Equatorial Guinea (+9 Km2), Côte D’Ivoire (+12.33 Km2), Togo
(+12.44 Km2), Nicaragua (+45 Km2), and Republic of the Congo (+61 Km2). Expansion
of forest cover was mainly counterbalanced by contraction of cropland in Congo and
Equatorial Guinea and mainly of grassland in Nicaragua, Togo, and Côte d’Ivoire, as
shown in Figure 7.

• Group two included countries (39) that experienced a positive change in the MGCI
during the period 2015–2018. On average, the MGCI increased by +0.11%, with the
largest gain in Niger (+0.75%). The total mountain green area across the entire group
increased by +3197 Km2. Group level analysis of land cover change in mountain areas
indicated a net loss of forest cover, and net gains of grassland, cropland, and wetland,
as shown in Figure 8. Green cover encroached into other land areas, triggering the
positive change in the MGCI.

• Between 2015 and 2018, the Russian Federation lost 10185 Km2 of forest cover in
mountain areas, accounting for a 96% net loss for group 2. It gained 5560 Km2 and
4494 Km2 of grassland and cropland, respectively. However, these figures should be
interpreted with caution as forest cover is often affected by factors that do not result
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in a permanent land cover/land use change. These factors include fires, other natural
or anthropogenic disturbances, and forest management. In fact, it has been recently
reported that forest fires explained 50–60% of tree cover loss in boreal forests from
2003–2018 [18]. The four largest forest cover gains occurred in Ethiopia (2772 Km2),
Mongolia (2347 Km2), Peru (433 Km2), and Kyrgyzstan (414 Km2), together accounting
for 80% of the total forest mountain cover net gain of the group. Figure 9 illustrates
the land cover changes in the five countries.

• Group three included countries (89) where the MGCI decreased in the period 2015–2018.
The MGCI decreased on average by 0.04%, with the largest loss in Tajikistan (−0.6%).
The moderate changes indicate that total mountain green cover did not significantly
decrease in these countries. Group-level land cover change analysis indicated a net
loss of green vegetation (−361 Km2). Significant changes in land cover classes in
mountain areas were recorded at the group level, as shown in Figure 10. Forest cover
was lost in 30 countries (−8513 Km2) and was gained in 54 countries (+20,732 Km2),
resulting in a net gain of +12,219 Km2. Grassland cover was lost in 57 countries
(−19,929 Km2) and gained in 28 countries (+5005 Km2), for a net loss of −14,924 Km2.
Cropland was lost in 57 countries (−9703 Km2) and gained in 31 countries (+2344 Km2)
for a net loss of 7370 Km2. Bare cover increased in 47 countries (13,516 Km2) and
decreased in three countries (−223 Km2). Settlements increased in almost all countries
(+3666 Km2). Figure 11 shows the three countries with highest forest cover gains and
the three countries with highest forest cover losses. China, Turkey, and India gained
8050 Km2, 1904 Km2, and 1709 Km2 of forest cover, respectively. In all three cases,
a combined loss of grassland and cropland overcompensated the forest cover gain,
producing an overall net loss of green cover. China experienced the highest increase
in both bare land cover (of 5045 Km2) and settlement cover (of 617 Km2).
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Figure 7. Land cover changes in mountain areas in selected countries where MGCI did not change
from 2015 to 2018.
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Figure 8. Total gains and losses of land cover in mountain area per class in countries where MGCI
increased from 2015 to 2018.
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Figure 9. Land cover changes in mountain areas in selected countries experiencing increase in MGCI
from 2015 to 2018.
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Figure 10. Gain and loss of land cover classes in mountain areas in countries where MGCI decreased from 2015 to 2018.
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Figure 11. Land cover changes in mountain areas in selected countries where MGCI decreased from 2015 to 2018.

The United States, Canada, and Indonesia suffered a loss of forest cover (−3720 Km2,
−1592 Km2, and −919 Km2, respectively). In Indonesia, the loss of forest cover was
compensated by an increase in cropland and grassland cover. In Canada, the forest cover
loss was compensated by increases in grassland cover (44%), cropland cover (21%), and by
expansion of other land (34%). In the United States, three quarters of the forest cover lost
was taken by the expansion of grassland, whereas 9% was taken by expanding cropland.
The residual area was taken by the expansion of settlements (9%), other land (5%), and
wetland (2%) cover. Again, the changes from forest cover to other green cover classes
should be interpreted with care as they do not necessarily reflect permanent cover changes.

3.4. Introducing Weights into the MGCI Formula

The combined land cover and MGCI analysis over the period 2015–2018 highlighted a
limited sensitivity of the indicator to land cover change dynamics. For instance, in Congo,
where forest cover increased, and in Cambodia, where forest cover decreased, the MGCI
was stable over the study period (Figure 7). In Russia, where there was a forest cover loss,
the MGCI increased (Figure 9). In Turkey and in India, there were forests gains, however,
the MGCI decreased (Figure 11).

The incoherence between the MGCI trend direction and the forest cover change
directions is rooted in the definition of the mountain green cover area in the numerator of
the MGCI formula:

MGCI =
Mountain Green Cover Area

Total Mountain Area
(3)

where Mountain Green Cover Area = Forestlandarea + Croplandarea + Grasslandarea + Wetlandarea.
The four vegetation classes have equal importance, therefore, a given area gain or a

loss in any of the four classes would produce the same impact on the final MGCI outcome.
Furthermore, an area gain or a loss in one class that is compensated by an equal loss or
gain, respectively, in another class, would result in no change in the total mountain green
cover area and hence would result in no impact on the final MGCI outcome.

Taking an extreme case, if in a country the entire forest cover in mountain areas
was converted to cropland, the MGCI indicator, measured before and after the land cover
change, would be the same. It is patent that the MGCI, in its current definition, is not able to
recognize the negative impact on mountain ecosystem health caused by the encroachment
of forests due to agricultural expansion. More specifically, the MGCI indicator falls short
in recognizing the individual contribution that different vegetation classes provide to
mountain ecosystem health.
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One way to address this issue could consist in weighting the land categories under
consideration based on relative value towards achieving SDG 15.4, as shown in Equation
(2) below:

WMGCI =
Forestlandarea ∗ W f + Croplandarea ∗ Wc + Grasslandarea ∗ Wg + Wetlandarea ∗ Ww

Total Mountain Area
(4)

where Wf, Wc, Wg, Ww, are weights assigned, respectively, to forest, cropland, grass-
land, and wetland.

The weights ranged from 0.5 to 1, with 1 for the vegetation class with maximum
relevance to ecosystem health and 0.5 for the vegetation class with the lowest relevance.
The weights were empirically inferred, as shown in Table 6, on the assumption that (i)
forest and wetland have the highest relevance, (ii) grassland has a lower relevance than
forest but higher relevance than cropland.

Table 6. Vegetation-specific weights used to calculate the WMCGI (forest = 1, cropland = 0.5,
grassland = 0.8, wetland = 1).

Weight Value

Wf 1
Wc 0.5
Ww 0.8
Ww 1

WMGCI was calculated for four countries (Cambodia, Russia, China, and USA) for
the years 2015 and 2018 and results were compared with MGCI estimates for the same
period, as shown in Table 7.

Table 7. MGCI and WMGCI calculated for 2015 and 2018 and trend analysis for Cambodia, Russia, USA, and China.

MGCI WMGCI

Country 2015 2018 Delta Trend 2015 2018 Delta Trend

Cambodia 99.99423 99.99423 0.00 Stable 99.99423 97.29706 −2.69717 Down
Russia 83.07241 83.10047 0.03 Up 0.783961 0.783299 −0.00066 Down
USA 84.07327 84.03938 −0.03 Down 84.07327 74.87713 −9.19614 Down

China 84.80503 84.5641 −0.24 Down 84.80503 69.44609 −15.3589 Down

Overall, WMGCI estimates were lower than MGCI ones for all countries. This is
explained by weights lower than 1 assigned to cropland and rangeland. The WMGCI
change between 2015 and 2018 in Cambodia and in Russia was negative as opposed to
the MGCI change that was, respectively, null and positive. The WMGCI change in the
USA and in China was very significantly negative (−9% and −15%, respectively) while the
MGCI change was just below 0.

In conclusion, the introduction of weights introduced sensitivity into the MGCI in-
dicator to changes in the internal composition of the vegetation cover, and enhanced its
capacity to account for the higher ecosystem value of natural vegetation in comparison
to agriculture.

4. Discussion

This paper presents a first evaluation of an earth observation-based methodology
to derive regular information on SDG indicator 15.4.2, the Mountain Green Cover Index
(MGCI), solely from open access land cover data using an automated algorithm that avoids
the need for visual interpretation. As such, this new approach provides countries with a
methodology that they can easily use to validate the national estimates generated by the
FAO, or alternatively, a template that countries can easily reuse to generate their own MGCI
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values, for instance, by replacing the global default land cover maps with national maps.
The study thoroughly assesses the accuracy of the EO methodology, and describes the main
results at global, regional and national levels that capture critical land cover dynamics that
could be beneficial or detrimental to the health of mountain ecosystems.

The new default calculation method introduced by the FAO in 2020 proved to be
robust when assessing the status of the mountain land cover, with an overall accuracy of
86% when using ESA CCI-LC data at a 300 m resolution, and 93% when using the newer
GLC-LC100 data at a 100 m resolution. The inherent accuracies of these land cover products
were reflected in the accuracy of the MGCI estimates generated therefrom. However, it has
to be noted that even in cases where two independent land cover classifications are highly
accurate, the accuracy of a change map (or estimate) produced using them can be low and
the result biased [19].

Relying on global datasets maintained by the ESA CCI and the Copernicus Land
service ensures long-term sustainability of the proposed solution, and the possibility
to automatize the workflow using open source EO platforms such as Google Earth En-
gine or open and free GIS software such as QGIS. Furthermore, the new approach easily
accommodates future improvements in global land cover products that would further
improve the accuracy of MGCI estimates. In this regard, it is noted that the World Cover
Project sponsored by the European Space Agency is currently prototyping a global 10 m
resolution global land cover map that is expected to be updated every three months
(https://esa-worldcover.org/en, accessed on 15 December 2020).

Compared to the previous default data collection method for the MGCI, which was
based on visual interpretation of a selected number of sample sites across the globe, the
new approach is less resource intensive and more straightforward, and therefore increases
the likelihood that National Statistical Offices or specialized national geospatial units will
use it. The main results from the MGCI validation process led by the FAO in 2020 confirm
the positive impact of the introduction of the methodology: 39% of countries contacted
responded to the validation request; 21% of countries approved the validation request, as
opposed to 12% in 2017; and 13% provided their own national data, as opposed to zero
such cases in 2017.

Lastly, the study extensively assessed the sensitivity of the MGCI to land cover change
dynamics that could be beneficial or detrimental to mountain ecosystem health, for the
period 2015–2018. Results showed that the aggregate MGCI was not sensitive to cases of
forest encroachment due to agriculture expansion in the Central African Republic, Sierra
Leone, or Cambodia. This highlighted the importance of disaggregating the indicator by
land cover type to monitor trends across the various green and non-green land cover classes.
In Russia, the aggregate MGCI improved over the reference period, yet disaggregated
data suggested land cover changes within the mountain green cover. However, such land
cover dynamics detected by the ESA CCI data may in fact be the result of forest fires and
forest management, hence further investigation should be carried out. In China, Turkey,
and India, the aggregate MGCI decreased despite the gains in forest cover which were
overshadowed by larger losses in cropland and grassland. To improve the sensitivity of
the MGCI indicator, its original formula was modified by introducing vegetation-specific
weights in the numerator, resulting in the Weighted MGCI (WMGCI). The WMGCI was
tested in five countries. Results showed that the WMGCI (i) was sensitive to changes in
the composition of the vegetation cover, and (ii) could better account for losses or gains of
natural vegetation. In conclusion, the WMGCI was more closely related to the status of
natural vegetation and hence to the ecosystem health of mountain ecosystems.

The approach proposed by the FAO allows the measurement and monitoring of the
MGCI through the analysis of land cover maps jointly with the mountain elevation layer.
The work is based on a straightforward GIS routine that can be easily implemented by
countries using existing free and open software such as QGIS and platforms such as Google
Earth Engine. The simplified methodology alleviates the burden on countries, while
ensuring consistency and accuracy.

https://esa-worldcover.org/en
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Limitations of the definition of the MGCI have been identified, substantiating the need
for a modified and enhanced version to properly account for (i) green vegetation appearing
in areas formerly occupied by glaciers and perennial snow as a result of global warming,
and (ii) agriculture over steep slopes which may lead to soil erosion. In this regard, the
FAO will work in 2021 on the enhancement of the indicator definition and validate the
methodology through pilot projects in countries.
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Table A1. Land cover classes included in CGLS-LC100.

Map Code Land Cover Class Definition According UN LCCS

111 Closed forest, evergreen needle leaf Tree canopy > 70%, almost all needle leaf trees remain green all year.
Canopy is never without green foliage.

113 Closed forest, evergreen deciduous
needle leaf

Tree canopy > 70%, consists ofseasonal needle leaf tree communities
with an annual cycle of leaf-on and leaf-off periods.

112 Closed forest, evergreen, broad leaf Tree canopy > 70%, almost all broadleaf trees remain green year round.
Canopy is never without green foliage.

114 Closed forest, deciduous broad leaf Tree canopy > 70%, consists of seasonal broadleaf tree communities
with an annual cycle of leaf-on and leaf-off periods.

115 Closed forest, mixed Closed forest, mix of types.

116 Closed forest, unknown Closed forest, not matching any of the other definitions.

121 Open forest, evergreen needle leaf
Top layer—trees 15–70% and second layer—mix of shrubs and
grassland, almost all needle leaf trees remain green all year. Canopy is
never without green foliage.

123 Open forest, deciduous needle leaf
Top layer—trees 15–70% and second layer—mix of shrubs and
grassland, consists of seasonal needle leaf tree communities with an
annual cycle of leaf-on and leaf-off periods.

122 Open forest, evergreen broad leaf
Top layer—trees 15–70% and second layer—mix of shrubs and
grassland, almost all broadleaf trees remain green year round. Canopy
is never without green foliage.

124 Open forest, deciduous broad leaf
Top layer—trees 15–70% and second layer—mix of shrubs and
grassland, consists of seasonal broadleaf tree communities with an
annual cycle of leaf-on and leaf-off periods.

125 Open forest, mixed Open forest, mix of types.

126 Open forest, unknown Open forest, not matching any of the other definitions.

20 Shrubs
These are woody perennial plants with persistent and woody stems
and without any defined main stem, being less than 5 m tall. The shrub
foliage can be either evergreen or deciduous.

30 Herbaceous vegetation Plants without persistent stem or shoots above ground and lacking
definite firm structure. Tree and shrub cover is less than 10%.

90 Herbaceous wetland
Lands with a permanent mixture of water and herbaceous or woody
vegetation. The vegetation can be present in either salt, brackish, or
fresh water.

100 Moss and lichen Moss and lichen.

60 Bare/sparse vegetation Lands with exposed soil, sand, or rocks and never have more than 10%
vegetation cover during any time of the year.

40 Cultivated and managed
vegetation/agriculture (cropland

Lands covered with temporary crops followed by harvest and a bare
soil period (e.g., single and multiple cropping systems). Note that
perennial woody crops will be classified as the appropriate forest or
shrub land cover type.

50 Urban/built up Land covered by buildings and other human-made structures.

70 Snow and ice Lands under snow or ice cover throughout the year.

80 Permanent water bodies Lakes, reservoirs, and rivers. Can be either fresh- or saltwater bodies.

200 Open sea Oceans, seas. Can be either fresh- or saltwater bodies.
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Table A2. Land cover classes included in training dataset developed by Li et al.

Level-1 Level-2 Description Reclassification to
Green/Non-Green

10 Farmland

11 Rice paddy Green
12 Greenhouse
13 Other farmland
14 Orchard
15 Bare farmland

20 Forest

21 Broadleaf, leaf-on
Tree cover ≥ 10%;
Height > 5 m;
For mixed leaf, neither coniferous
nor broadleaf types exceed 60%

22 Broadleaf, leaf-off Green
23 Needle-leaf, leaf-on
24 Needle-leaf, leaf-off
25 Mixed leaf type, leaf-on
26 Mixed leaf type, leaf-off

30 Grassland
31 Pasture, leaf-on

Canopy cover ≥ 20%
Green

32 Natural grassland, leaf-on
33 Grassland, leaf-off

40 Shrublands
41 Shrub cover, leaf-on Canopy cover ≥ 20%;

Height < 5 m
Green

42 Shrub cover, leaf-off

50 Wetland
51 Marshland, leaf-on Green
52 Mudflat
53 Marshland, leaf-off

60 Water

61 Lake Non-Green
62 Reservoir/ponds
63 River
64 Ocean

70 Tundra 71 Shrub and brush tundra
72 Herbaceous tundra Green

80 Impervious 80 Impervious Non-Green

90 Barren land 90 Barren land Vegetation cover < 10% Non-Green

100 Snow/Ice
101 Snow Non-Green
102 Ice

120 Cloud 120 Cloud N/A

Table A3. Land cover classes included in training dataset collected by FAO and Ministry of Agriculture and Food Security
in Lesotho, 2021.

Level-1 Level-2 Description Reclassification to
Green/Non-Green

Settlement Urban
Rural Non-Green

Agriculture Irrigated cropland
Rainfed cropland Green

Forest Broadleaf
Needle leaf

Tree cover ≥ 10%;
Height > 5 m Green

Shrubland Canopy cover ≥ 20%;
Canopy cover ≥ 20%;
Canopy cover ≥ 20%;
Canopy cover < 20%

Green
Herbaceous cover Grassland Green

Wetland
Degraded grassland

Green
Non-Green

Bare surface

Gullies Non-Green
Bare soil
Bare rock
Mining

Water River
Lakes Non-Green
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