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Abstract: In a post-earthquake scenario, the semantic enrichment of 3D building models with
seismic damage is crucial from the perspective of disaster management. This paper aims to present
the methodology and the results for the Level of Detail 3 (LOD3) building modelling (after an
earthquake) with the enrichment of the semantics of the seismic damage based on the European
Macroseismic Scale (EMS-98). The study area is the Vrisa traditional settlement on the island of
Lesvos, Greece, which was affected by a devastating earthquake of Mw = 6.3 on 12 June 2017.
The applied methodology consists of the following steps: (a) unmanned aircraft systems (UAS)
nadir and oblique images are acquired and photogrammetrically processed for 3D point cloud
generation, (b) 3D building models are created based on 3D point clouds and (c) 3D building models
are transformed into a LOD3 City Geography Markup Language (CityGML) standard with enriched
semantics of the related seismic damage of every part of the building (walls, roof, etc.). The results
show that in following this methodology, CityGML LOD3 models can be generated and enriched
with buildings’ seismic damage. These models can assist in the decision-making process during the
recovery phase of a settlement as well as be the basis for its monitoring over time. Finally, these
models can contribute to the estimation of the reconstruction cost of the buildings.

Keywords: post-earthquake; LOD3; CityGML; semantics; 3D building models; 3D point cloud; UAS;
seismic damage

1. Introduction

Over the past few years, 3D representation of spatial objects from buildings to whole
cities has become increasingly important for a better understanding of the modern world.
Three-dimensional models are digital objects that represent urban spatial data of the
Earth’s surface [1]. There has been a wide development in the usage of 3D models and 3D
geovisualization in a variety of applications such as navigation, urban planning, energy
planning, landscape planning, 3D cadastre, real estate, public participation, construction,
tourism, facilities management, environmental simulations, Smart Cities applications and
disaster management [2–4]. Three-dimensional models had the disadvantage that they
only serve as graphical or geometrical models ignoring semantics and topology. These
models could only be used for visualization purposes, but not for thematic queries, analysis
tasks, and spatial data mining [5]. In semantic 3D modelling, besides the topology and
geometry, the semantics of 3D objects are established, and thus, the objects of the urban
landscape are classified and their spatial and thematic properties are described. The
semantics are important for the structural complexity of urban objects. City objects can be
semantically enriched and divided into their structural components with their attributes
and their correlations [6]. Based on these, CityGML has been developed. CityGML is
an international standard created by the Open Geospatial Consortium (OGC) and it is
based on XML format for the storage, representation and exchange of 3D models [5,7–9].
In CityGML, standard, semantic, spatial and geometrical properties of building models
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are organized in five levels of detail (LOD), from LOD0 to LOD4, where models become
increasingly accurate and detailed [7]. Analytically, a building in LOD0 is represented by
2.5D footprints. LOD1 is a generalized block model with walls, without any roof structures.
LOD2 is a model with walls and various types of roof structure. LOD3 is a detailed model
with openings (windows and doors) and different roof structures. Finally, LOD4 is a LOD3
model that includes detailed indoor geometries [9–11].

Natural disasters such as earthquakes can cause casualties, devastating impacts in
urban areas and financial loss. As defined by the Disaster Management Cycle, activities,
programmes and measures can be conducted before (pre-disaster), during (disaster occur-
rence) and after a disaster (post-disaster). The post-disaster phases are response, recovery
and reconstruction [12]. Earthquakes are unavoidable; however, disaster management has
evolved through the years. When an earthquake strikes, damage assessment is the primary
source for obtaining information, regarding the extent of damage and its spatial spread [13].
Ground-based and remote sensing-based assessments are the two major methods for eval-
uating damaged buildings. The post-earthquake damage assessment of the structures is
executed through field surveys. However, these methods are time-consuming, occasionally
dangerous and often it is impossible to access the affected area [14].

Remote sensing techniques (spaceborne and airborne) are used in a variety of ap-
plications and have been proven to be very efficient for rapid data collection after an
earthquake. For many years, synthetic aperture radar (SAR) and light detection and
ranging (LIDAR) technologies have been used for damage detection [15–20]. In recent
years, some studies have proposed deep learning approaches for post-disaster building
damage detection [21,22]. A low cost, accurate and safe method for gathering the damage
information of the whole affected area is UAS [23,24]. UAS technology is used immediately
after a disaster or for monitoring during the recovery phase, as it provides high-resolution
images or videos and several studies suggest that they are ideal for these situations [24–29].
UAS, alongside the utilization of structure-from-motion (SfM) and multi-view stereo (MVS)
algorithms, produce high-resolution 3D point clouds [30]. According to Tu et al. [25],
the use of UAS images in the detection of damaged buildings is an efficient tool in the
decision-making process. Furthermore, the combination of nadir and oblique images
provide damage information of the entire affected building, both for the roof and the
walls [31]. Vetrivel et al. [32], with the use of UAS, generated 3D point clouds to obtain
damage information on buildings.

Building damage is measured by grades according to the European Macroseismic
Scale 1998 (EMS-98) [33] and is categorized into five main groups. The classification of
damage to masonry and reinforced concrete buildings is as follows: i. grade 1—negligible
to slight damage; ii. grade 2—moderate damage; iii. grade 3—substantial to heavy damage;
iv. grade 4—very heavy damage; v. grade 5—destruction.

Although the post-earthquake UAS survey provides high-resolution and geometri-
cally accurate 3D data, their use still focuses on 2D mapping for damage detection. On the
other hand, the 3D visualization of buildings affected by an earthquake can assist in the
decision-making process. Three-dimensional models and 3D visualization are communica-
tion tools more effective than 2D maps in disaster management [34]. Three-dimensional
modelling has been applied in a variety of studies but is restricted to visualization pur-
poses only [35–39]. Regarding the generation of CityGML building models in disaster
management, there are few approaches. CityGML models were used for seismic vulner-
ability assessment and analysis in the research of Redweik et al. [40]. Colucci et al. [41]
converted an HBIM model of an earthquake-damaged cultural heritage building into a
LOD3 CityGML format model.

In general, most studies concern the generation of LOD2 and LOD3 building models,
where CityGML models of lower levels of detail (LOD1 and LOD2) can be generated
semi or fully automatically and are more widely available, unlike LOD3 models, which
are restricted [42]. UAS technology has evolved and the data acquisition is efficient and
accurate for the generation of LOD2 building models at a city block scale. However, on a
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building scale for LOD3 building models, there are still challenges in the data acquisition
process [43]. Detailed LOD3 building models are not easily generated since modelling the
geometrical features on the exterior surfaces (windows, doors, balconies, etc.) is difficult.
Furthermore, the acquisition of these outer elements usually is carried out by employing
multi-source techniques, which is time-consuming and more expensive. Nevertheless,
more detailed 3D models are usually not necessary, and they can be summarized inside
a set of attributes to a simple geometric element. The main approach for generating
LOD3 building models from scratch is the use of 3D point clouds [42,44]. Prieto et al. [45]
presented a methodology according to which a point cloud was used to generate a 3D
model that was transformed into CityGML. Gruen et al. [46] generated a LOD3 model from
UAS and LiDAR point clouds. Malihi et al. [47] reconstructed a LOD3 model using dense
UAS point clouds.

Regarding semantic modelling, Saran et al. [48] presented a data acquisition technique
of a building, which was modelled with Google SketchUp and transformed into CityGML
where the semantic characteristics for energy were enriched.

This study aims to present the methodology for the generation of LOD3 building
models from 3D point clouds generated by SfM from acquired UAS images and the
semantic enrichment of the seismic damage based on the European Macroseismic Scale
(EMS-98). The contribution of this article is based on the fact, that 3D modelling and
semantic enrichment of the seismic damage in buildings becomes possible, by utilizing
UAS systems as well as geoinformatics methods, e.g., the CityGML standard. Analytically,
affected buildings can be 3D modelled and transformed into CityGML and the seismic
damage recorded in the individual sections of the buildings can be integrated into the
CityGML through its extension and the corresponding ontological structure created which
is based on the EMS-98. Primarily, CityGML LOD3 building models are created from the 3D
point clouds, derived from the processing of high-resolution UAS data and then acquiring
their semantic structure as parts of the building, such as walls, roofs and openings (doors
and windows). Subsequently, each part of the building including the walls and roof is
enriched with seismic damage. In this way, it is possible to record the seismic damage not
only in the whole building, as it has been applied so far, but also to be distributed in each
part of the building separately. The study was applied in the Vrisa traditional settlement, on
the island of Lesvos, Greece, which was affected by a devastating earthquake of Mw = 6.3
on 12 June 2017.

2. Materials and Methods
2.1. Study Area

The traditional settlement of Vrisa, Lesvos, Greece, was severely damaged by the
catastrophic earthquake of 12 June 2017. Up until today, more than 350 traditional build-
ings have been demolished due to their significant degree of damage and more than
200 buildings with moderate seismic damage have been repaired. The buildings of the
settlement are mostly masonry buildings, single-story and two-story with tiled roofs (only
nine buildings are three-story). Several buildings also have a basement and as a result,
their heights range from 4.5 m (single-story with tiled roof) to 7.5 m (two-story with roof).
Their three-dimensional modelling in Level of Detail 2 (LOD2) was performed using the
digital surface model (DSM) and the orthophoto map that were created by processing
high-resolution images captured by UAS. The LOD2 buildings were generated in a part of
the Vrisa settlement consisting of 80 buildings using the footprints of the buildings, digital
surface models (DSMs), a digital elevation model (DEM) and orthophoto maps of the area
(Figure 1) [49,50]. On 7 October 2020, high-resolution images of the entire settlement of
Vrisa were collected for the creation of 3D points clouds and then were utilized in the
3D modelling of the settlement at LOD2. The integration of seismic damage in LOD2
models was based on the categorization of Earthquake Planning and Protection Organi-
zation (EPPO) [51] in three classes, “green—safe for use”, “yellow—unsafe for use” and
“red—dangerous for use”, as shown in Figure 1.
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Figure 1. The study area of the Vrisa settlement with LOD2 buildings based on the categorization of EPPO in 3 classes:
i. red—dangerous for use; ii. yellow—unsafe for use; iii. green—safe for use. Up until today, the majority (>90%) of “red
buildings” have been demolished while more than 80% of the “yellow buildings” have been repaired.

For the present study, two traditional buildings of the settlement were selected based
on their morphological and structural characteristics to be modelled at LOD3, using 3D
point clouds produced by the processing of nadir/oblique imagery of manual UAS flights.
Specifically, building A is a stone-built one-story cafe with a complex tiled roof. It is a
corner building that is in contact with two other buildings. It consists of two doors—one
serving as the main entrance with the dimensions 2.26 × 1.12 m and the other, on the other
facade, with the dimensions 1 × 2.20 m—and two windows (dimensions 1 × 2.10 m) on
each facade. The height of the building is 4.72 m and the height of the roof is 2.07 m. The
seismic damage of the building is located on the walls and consists of hair-line cracks.
Building B is a stone-built two-story residence with a tiled roof that is in contact with one
other building. It consists of one main door (dimensions 3.26 × 1.50 m) and 10 windows
(dimensions 0.90 × 1.60 m) on the facades. The height of the building is 7.18 m and the
height of the roof is 1.08 m. The seismic damage of the building is located both on the walls
and on the roof. In particular, the damage consists of diagonal cracks in three walls, serious
failure of one wall and partial structural failure of the roof.

2.2. Methodology

The workflow of this study is presented in Figure 2 and consists of five steps: (i) UAS
data acquisition from manual flights around the buildings, (ii) photogrammetric processing
of the acquired data, (iii) LOD3 building models generation, (iv) CityGML model transfor-
mation with semantic enrichment of their seismic damage and (v) storage of the models
in 3DCityDB.
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2.2.1. UAS Data Acquisition

In this study, two UAS flights were performed aiming to collect the appropriate images
for 3D model building generation. The flights were conducted manually because the flight
height was low, and there were many obstacles around the buildings. During these flights,
nadir and oblique high-resolution images of the two selected buildings were acquired for
the generation of 3D point clouds. The flight parameters are presented in Table 1. Both
UAS flights were conducted on 7 October 2020 at 30 m flight height with a nadir and
oblique camera angle and a ground sample distance (GSD) of 0.9 cm/pix. A total area of
272 m2 was mapped and the flight duration was 10 min for building A while for building
B, a total area of 152 m2 was mapped and the flight duration was 12 min. As a result,
90 high-resolution images were acquired for building A and 95 for building B.
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Table 1. Flight planning parameters for UAS data acquisition.

Buildings Building-A Building-B

Flight
Date 7 October 2020 7 October 2020

Duration 10 min 12 min
Height 30 m 30 m

Camera angle Nadir/oblique Nadir/oblique

GSD 0.9 cm/pix 0.9 cm/pix

Number of nadir images 20 35

Number of oblique images 70 60

Total area 272 m2 152 m2

2.2.2. Photogrammetric Processing for 3D Point Cloud Generation

The first step is the quality control of the images, which involves the image quality
index (IQI). Through this check, all acquired images presented IQI > 0.7 and were further
processed. For the generation of high-resolution 3D point clouds, structure-from-motion
(SfM) and multi-view stereo (MVS) algorithms were used in Agisoft Metashape Version 1.6
software [52]. In particular, image alignment was performed by SfM, which uses Sift and
RANSAC algorithms, resulting in a sparse 3D point cloud. Subsequently, the dense point
cloud was generated by the MVS algorithm.

The results obtained from this process were 3D point clouds of the two buildings.
Specifically, the point cloud of building A consists of 296522 points and building B consists
of 142801 points. The density is estimated by counting for each point the number of
neighbors N (inside a sphere of radius R). In our case, the surface density of point clouds
for both buildings presents a normalized distribution. As shown in Figure 3b, the majority
of building A points have a range of neighbors 1300–1900 (R = 0.1 m, mean = 1595) and
the standard deviation is 249.89. For building B, most points have a range of neighbors
500–700 (R = 0.1 m, mean = 559) and the standard deviation is 145.47 (Figure 3d). Finally, in
some smaller parts of the buildings, there are gaps in the areas which could not be covered
by images (i.e., under the roofs, cornices and adjoining buildings).
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2.2.3. Three-Dimensional Model Generation

There is a wide range of techniques and methods that lead to 3D modelling of urban
structures. Three-dimensional modelling can be created automatically or manually, is a
time-consuming process and can be performed with a modelling software. In this study,
Trimble SketchUp Pro was selected because it is a user-friendly 3D modelling software
and it can export the models to a various common 3D data formats such as 3Dstudio
format (.3ds), SketchUp (.skp), Collada (.dae), KML (Keyhole Markup Language)/KMZ
and VRML (.wrl) [53]. It is used for a wide range of applications, such as architectural and
engineering design, and is more oriented to detailed 3D building design. It provides full
ability for the design of entire buildings, both the outer and inner parts.

More specifically, SketchUp Pro 2020 was used for the design of the two 3D building
models from their corresponding 3D point clouds. The modelling approach was conducted
manually and requires some familiarity and time to produce a geometrically correct 3D
building. Initially, a plug-in called “Trimble Scan Essentials” was installed for the import
and manipulation of the point clouds and the models were digitized on the boundaries of
each building point cloud. The point clouds used were dense enough and provided the
ability for the accurate design of the dimensions (5–10 cm accuracy), size and shape of each
building. Every part of the building was designed according to the entity it represents,
such as walls, roof, etc. The modelling was carried out according to CityGML standards
and each geometry was organized into layers referring to the specific thematic class. The
thematic layer creation of each building’s semantic components was realized for LOD3
specifications and were WallSurface, RoofSurface, GroundSurface, Door and Window. The
layers created were labelled as WallSurface1, WallSurface2, etc. for every building. Thus,
two 3D building models were generated based on measurements of the 3D point clouds,
concerning their geometry, accurate heights and dimensions (doors, windows) (Figure 4).
Finally, the models were exported in “.3ds” and “.skp” formats for further processing.



ISPRS Int. J. Geo-Inf. 2021, 10, 345 8 of 20ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 4. Three-dimensional building model generation: (a) point cloud of building A, (b) LOD3 model of building A 
designed in SketchUp, (c) point cloud of building B and (d) LOD3 model of building B designed in SketchUp. 

2.2.4. CityGML Model 
Real-world objects such as buildings may be decomposed into parts (rooms, wall 

surfaces, doors, windows, etc.) according to their usage or building part type. This infor-
mation can be ontologically modelled in entities, attributes and relations and can be used 
by different users in several applications. For the transformation of the 3D models into the 
CityGML format, two different approaches were followed: 
• FME Workbench module; 
• CityEditor plug-in for immediate conversion at LOD3. 

For the first approach, the FME by Safe Software [54] was used for the transformation 
of SketchUp models into the CityGML format. Thematic models prepared in SketchUp 
were exported in “.3ds” format to be processed in FME Workbench (Figure 5). FME Desk-
top 2021 supports several formats for interoperability, data conversion, transformation, 
integration and validation. Firstly, a SketchUp Reader was implemented for the CityGML 
LOD3 transformation. Subsequently, a “transformer” was used to restore the SketchUp 
layers and extract them based on the different layers by trait “SketchUp _layer_name”. 
Several transformers were used to perform some processes, such as converting a list of 
values into an FME list attribute, performing quality testing on data, creating new features 
and assigning unique IDs to generated features. Furthermore, the different categories of 
buildings that were separated were WallSurface, RoofSurface, GroundSurface, Door and 
Window. Afterwards, “lodMultiSurface”, “CityGMLGeometryType” and “CityG-
MLRole” were set. Finally, the CityGML LOD3 models for the buildings were obtained. 

Figure 4. Three-dimensional building model generation: (a) point cloud of building A, (b) LOD3 model of building A
designed in SketchUp, (c) point cloud of building B and (d) LOD3 model of building B designed in SketchUp.

2.2.4. CityGML Model

Real-world objects such as buildings may be decomposed into parts (rooms, wall
surfaces, doors, windows, etc.) according to their usage or building part type. This
information can be ontologically modelled in entities, attributes and relations and can be
used by different users in several applications. For the transformation of the 3D models
into the CityGML format, two different approaches were followed:

• FME Workbench module;
• CityEditor plug-in for immediate conversion at LOD3.

For the first approach, the FME by Safe Software [54] was used for the transformation
of SketchUp models into the CityGML format. Thematic models prepared in SketchUp
were exported in “.3ds” format to be processed in FME Workbench (Figure 5). FME
Desktop 2021 supports several formats for interoperability, data conversion, transformation,
integration and validation. Firstly, a SketchUp Reader was implemented for the CityGML
LOD3 transformation. Subsequently, a “transformer” was used to restore the SketchUp
layers and extract them based on the different layers by trait “SketchUp _layer_name”.
Several transformers were used to perform some processes, such as converting a list of
values into an FME list attribute, performing quality testing on data, creating new features
and assigning unique IDs to generated features. Furthermore, the different categories of
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buildings that were separated were WallSurface, RoofSurface, GroundSurface, Door and
Window. Afterwards, “lodMultiSurface”, “CityGMLGeometryType” and “CityGMLRole”
were set. Finally, the CityGML LOD3 models for the buildings were obtained.
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For the second approach, the “CityEditor” plugin of SketchUp was utilized to trans-
form the 3D buildings of “.skp” format into the CityGML format. Every entity of a building
must be classified to specific feature classes and the attributes of the buildings must be
enriched. CityEditor allows the import of CityGML models, editing, and specifying the
type of each designed surface (CityGML SurfaceType)—ground (GroundSurface), roof
(RoofSurface) or wall (WallSurface)—for every level of detail. Finally, CityEditor exports
the CityGML models with their attributes.

More specifically, for the semantic, topological and geometric translation into the
CityGML format, each entity of the building was processed and each part of the building
was grouped based on its thematic CityGML SurfaceType. Thus, walls were grouped
in WallSurface, roofs in RoofSurface and grounds in GroundSurface, while doors and
windows (openings) were categorized as GroupType. Subsequently, for every group type,
the LOD value was declared as LOD3 and the geometry type such as lodMultiSurface.
Additionally, the WallSurface, RoofSurface and GroundSurface for every model were
defined as BoundarySurfaces, while each opening was defined as the Opening Boundary
SurfaceType of its wall. Once this process was completed, all surfaces of each building
were collected separately and defined as a building object accompanied by an ID code by
selecting “Make Component”. As a result, when the CityGML format was exported, and
each building was distinct and composed of its surfaces. The BoundarySurfaceType ID
was assigned to both the wall opening and the wall itself and the rest of the surfaces were
automatically settled. Then, the models were georeferenced via the GeoLocation tool by
choosing four points of each model and entering the known coordinates (acquired from the
corresponding point cloud) of the specific points, thereby georeferencing an entire model.

Semantic Enrichment of Seismic Building Damage

To enable the semantic enrichment of the CityGML models with the seismic damage
suffered by the individual parts of the buildings, the ontology of seismic damage grades
was created based on EMS-98 for masonry buildings. More specifically, this ontology
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includes the following categories of damage in the main parts of the building, which are
the walls and the roof (Figure 6):

• Wall Damage Grade 1: Negligible to slight damage on walls with the following subclasses:

• 1.1 Hair-line cracks in very few walls.
• 1.2 Fall of small pieces of plaster only.
• 1.3 Fall of loose stones from upper parts of buildings in very few cases.

• Wall Damage Grade 2: Moderate damage on walls with the following subclasses:

• 2.1 Cracks in many walls.
• 2.2 Diagonal cracks in many walls.
• 2.3 Fall of fairly large pieces of plaster.

• Wall Damage Grade 3: Substantial to heavy damage on with the following subclasses:

• 3.1 Large and extensive cracks in most walls.
• 3.2 Diagonal large and extensive cracks in most walls.
• 3.3 Failure of individual non-structural elements (partitions, gable walls).

• Wall Damage Grade 4: Very heavy damage on walls with the following subclasses:

• 4.1 Serious failure of walls.
• 4.2 Loss of connection between external walls.

• Wall Damage Grade 5: Destruction of walls with the following subclasses:

• 5.1 Total collapse.
• 5.2 Near-total collapse.

• Roof Damage Grade 1: Negligible to slight damage on roofs with one subclass:

• 1.4 Fall of roof tiles.

• Roof Damage Grade 2: Moderate damage on roofs with one subclass:

• 2.4 Partial collapse of chimneys.

• Roof Damage Grade 3: Substantial to heavy damage on roofs with the following subclasses:

• 3.4 Roof tiles detach.
• 3.5 Chimneys fracture at the roofline.

• Roof Damage Grade 4: Very heavy damage on roofs with one subclass:

• 4.3 Partial structural failure of roofs.

• Roof Damage Grade 5: Destruction of roofs with the following subclasses:

• 5.1 Total collapse.
• 5.2 Near-total collapse.

In this study, a Unified Modelling Language (UML)-based approach was implemented.
Geo-information objects can be defined by a UML class diagram with their properties, rela-
tionships and semantics providing sufficient means to record the meaning of objects [55].

Figure 7 demonstrates a UML class diagram of the CityGML feature structure of basic
semantic LOD3 building model. The basic class of the model of a building is Abstract-
Building, which consists of the two classes: Building and BuildingPart. A Building or
BuildingPart is described by optional properties (function, use, class, year of construction
and demolition, roof type, measured height, etc.) inherited from AbstractBuilding. Build-
ing and BuildingPart surfaces can be represented as semantic objects. BoundarySurface is
the abstract superclass of these semantic objects and is further decomposed into thematic
features, e.g., WallSurface and RoofSurface. Openings in BoundarySurface objects are
represented by thematic objects such as doors and windows.
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Figure 6. Categorization of seismic damage at the level of buildings, walls and roofs according
to EMS-98 as shown in several 3D models created by processing UAS images. The subcategories
of these grades on the walls: 2.1 Cracks in many walls, 3.1 Large and extensive cracks in most
walls, 3.2 Diagonal large and extensive cracks in most walls, 3.3 Failure of individual non-structural
elements (partitions, gable walls), 4.1 Serious failure of walls and 5.1 Total collapse. The subcategories
of these on the roofs are: 1.4 Fall of roof tiles, 2.4 Partial collapse of chimneys, 3.4 Roof tiles detach,
4.3 Partial structural failure of roofs and 5.1 Total collapse.



ISPRS Int. J. Geo-Inf. 2021, 10, 345 12 of 20

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 12 of 21 
 

 

In this study, a Unified Modelling Language (UML)-based approach was imple-
mented. Geo-information objects can be defined by a UML class diagram with their prop-
erties, relationships and semantics providing sufficient means to record the meaning of 
objects [55]. 

Figure 7 demonstrates a UML class diagram of the CityGML feature structure of basic 
semantic LOD3 building model. The basic class of the model of a building is Abstract-
Building, which consists of the two classes: Building and BuildingPart. A Building or 
BuildingPart is described by optional properties (function, use, class, year of construction 
and demolition, roof type, measured height, etc.) inherited from AbstractBuilding. Build-
ing and BuildingPart surfaces can be represented as semantic objects. BoundarySurface is 
the abstract superclass of these semantic objects and is further decomposed into thematic 
features, e.g., WallSurface and RoofSurface. Openings in BoundarySurface objects are rep-
resented by thematic objects such as doors and windows. 

In CityGML, Generic is one of the thematic modules that enables a data model to be 
extended and consists of Generic City Object and Generic Attribute classes. A new object 
named DamageGrade was added as a Generic Attribute to integrate new attributes into 
the model. The data type of a new attribute inside Generic Attribute can be Integer, Dou-
ble, URI, String. The DamageGrade is decomposed into five classes of grades according 
to EMS-98 and each of these classes is further classified into four Wall Damage Grades 
and Roof Damage Grades. Thus, the feature class of WallSurface contains one or more 
Wall Damage Grades and RoofSurface class contains Roof Damage Grades. 

By utilizing this UML structure, we manually attributed every feature for each layer 
classified in SketchUp to enrich the seismic damage of the buildings. 

 
Figure 7. UML class diagram of the CityGML feature structure of basic semantic LOD3 building model, extended with 
DamageGrades. 

The next step is the enrichment of the attributes for each GroupType and this was 
executed with the CityEditor tools for displaying, editing, adding and deleting attributes. 
The attributes are subdivided into the categories Standard (CityGML-specific attributes) 
and Generic (generic attributes of various data types). Firstly, the standard attributes 
(model name, roof type, class, measure height and usage) were added. The usage of build-
ings A and B was ¨Café¨ and ¨Property¨, respectively. Both roof types consisted of ceramic 
roof tiles. Secondly, in the category of generic attributes, new fields were created for the 

Figure 7. UML class diagram of the CityGML feature structure of basic semantic LOD3 building model, extended
with DamageGrades.

In CityGML, Generic is one of the thematic modules that enables a data model to be
extended and consists of Generic City Object and Generic Attribute classes. A new object
named DamageGrade was added as a Generic Attribute to integrate new attributes into the
model. The data type of a new attribute inside Generic Attribute can be Integer, Double,
URI, String. The DamageGrade is decomposed into five classes of grades according to
EMS-98 and each of these classes is further classified into four Wall Damage Grades and
Roof Damage Grades. Thus, the feature class of WallSurface contains one or more Wall
Damage Grades and RoofSurface class contains Roof Damage Grades.

By utilizing this UML structure, we manually attributed every feature for each layer
classified in SketchUp to enrich the seismic damage of the buildings.

The next step is the enrichment of the attributes for each GroupType and this was
executed with the CityEditor tools for displaying, editing, adding and deleting attributes.
The attributes are subdivided into the categories Standard (CityGML-specific attributes)
and Generic (generic attributes of various data types). Firstly, the standard attributes
(model name, roof type, class, measure height and usage) were added. The usage of
buildings A and B was ¨Café¨ and ¨Property¨, respectively. Both roof types consisted of
ceramic roof tiles. Secondly, in the category of generic attributes, new fields were created
for the semantic enrichment of the building’s seismic damage. At this stage, attribute
fields named “Damage Grade” for the entire building, “Wall Damage Grade” for the walls
and “Roof Damage Grade” for the roofs were created and the values were imported. The
seismic damage was visually inspected from the point clouds of each building and the
damage grades related to each building’s walls and roof were added according to EMS-98.
In more detail, the damage of the buildings is reflected in 3D point clouds. The clouds
present gaps which, depending on their size, refer to small or large detachments/collapses
in parts of the masonry or the roof, while the existence of gaps with a linear arrangement,
e.g., cracks, is due to cracks in the walls. Subsequently, for building A, all walls have cracks;
thus, each wall was characterized with grade 1.1. (hair-line cracks in walls). Building B, as
inspected from the point cloud, has a serious failure in the west wall, so “WallSurface 4”
was characterized with grade 4.1. The rest of the walls have diagonal cracks; thus, each wall
was characterized with grade 2.2. Additionally, the roof of building B was characterized
with grade 4.3 (partial structural failure of roofs). Furthermore, building A was grouped in
its entirety and characterized with Grade 1 (negligible to slight damage), while building
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B was characterized with Grade 4 (very heavy damage). The final models were exported
in CityGML.

2.2.5. Three-Dimensional City Database Storage

For the storing, representation and management of the LOD3 CityGML building
models, 3D City Database (3DCityDB) [56] was utilized. It is an open-source geodatabase
on top of a spatial relational database management system such as PostgreSQL. The
3DCityDB schema implements the CityGML standard and supports five different LODs.
The database includes rich semantics of objects, hierarchical structure and urban objects of
different scales, which are not only used for visualization but also analysis tasks. A basic
tool is the “3DCityDB-Importer-Exporter” for the connection and communication between
the 3DCityDB and the PostgreSQL database, which provides full support for CityGML and
can export models to CityGML and KML/COLLADA file types to enable the visualization
of database elements in a wide range of applications. Furthermore, this tool is used to
determine that the data correspond to the OGC standard CityGML 2.0.

In this research, “3DCityDB-Importer-Exporter” was used with the implementation of
PostGIS. First, a new database was created in PostgreSQL with the help of its tool, pgAdmin
4, with the name “Vrisa_Buildings” using the “PostGIS” template, which is enhanced with
PostGIS functions suitable for spatial data processing. Subsequently, the “Vrisa_Buildings”
database structure was created based on the 3DCityDB template. More specifically, this
process created 45 additional standard tables of different spatial entities in the existing
database “Vrisa_Buildings” in the schema “public” according to the 3DCityDB standard.
Following this, the database was enriched with all the necessary spatial and descriptive
information regarding buildings A and B. Finally, the LOD3 CityGML building models
were imported in the database through “3DCityDB-Importer” and the geometrical and
topological information of the CityGML models were registered in the appropriate fields
of the respective database tables.

3. Results
3.1. Three-Dimensional Building Point Clouds by Using UAS Images

To generate the LOD3 models of the two buildings in the Vrisa settlement, UAS images
with a GSD of 0.9 cm/pix were collected from a flight height of 30 m. These images were
processed to produce 3D point clouds. The evaluation of the point clouds created by the
processing of vertical and oblique images was conducted in comparison with the terrestrial
laser scanner (TLS) point cloud. It was acquired by a survey performed with the use of
the phase-shift laser scanner FARO Focus 3D, which took place from 13 June 2017 to 6 July
2017 [57]. Point clouds generated by TLS are the most reliable data source for checking
the accuracy of UAS results [58]. The method cloud-to-cloud distance (CCD) is applied to
compare clouds of the same geographical area that have occurred either at different times
to monitor changes, or with different processing methods to evaluate the quality of their
results. The most common way to calculate the distances between points from two clouds
is the “nearest neighbor distance”. For each point in the comparative cloud, the method
looks for the point closest to the reference cloud and calculates the Euclidean distance
between them. If the reference point cloud is dense enough, then the approximation of
the distance from the comparative cloud is acceptable. If the reference cloud is not dense
enough, the distance to the nearest neighbor may sometimes not be accurate enough. Thus,
a comparison of the point clouds in the selected two buildings was performed by applying
the CCD method, using a reference cloud for the corresponding point cloud from TLS. The
results of the comparisons show that the largest number of points of the cloud resulting
from image processing are 5 cm for building A and 9 cm for building B, distances from
the corresponding clouds of the TLS (Figure 8), which makes the methodology followed
satisfactory and with reliable results.
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3.2. LOD3 CityGML Models with the Semantic Enrichment of Seismic Damage

The LOD3 models of the buildings were successfully constructed using SketchUp
based on 3D point cloud data. Three-dimensional geometries of the buildings digitized
from point clouds are very accurate and correct. SketchUp Pro provides powerful tools
and procedures, such as object snapping, grouping of features with similar attributes and
interactive viewing (Section Plane) for cost and time efficiency, flexibility of use, accuracy
in geometry and productivity. Features have been well organized into layers in SketchUp,
while the CityEditor tool semi-automatically transformed the procedure of CityGML,
saving time and avoiding geometrical incoherency at LOD3.

The building installation semantic component is stored in the BuildingInstallation ele-
ment as lod3Geometry with GML: MultiSurface, GML: surfaceMember, GML: Polygon and
GML: LinearRing as child elements. On similar lines, building surface bounding compo-
nents such as WallSurface, RoofSurface and GroundSurface are stored as lod3MultiSurface
geometries. The opening semantic components (Door and Window) of the building are
also stored as lod3MultiSurface geometries with a hierarchy of GML: MultiSurface, GML:
surfaceMember, GML: Polygon, GML: LinearRing and GML: posList as child elements
inside bldg: opening parent element. The seismic damage was added for every part of the
building affected by earthquake according to EMS-98. More specifically, for building A, all
walls were characterized with grade 1.1, and for building B, one wall was characterized
with grade 4.1 and the rest with grade 2.2. The roof of building B was characterized with
grade 4.3 (Figure 9). Figure 10 includes the LOD3 CityGML building models with semantic
layers rendered in FZK viewer, showing the summary of semantic features of buildings
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4. Discussion

The objective of this study was the generation of LOD3 building models from 3D point
clouds derived by the photogrammetric processing of UAS images, their transformation
to CityGML and their enrichment with the seismic damage semantics. For this purpose,
manual UAS flights were performed in low flight heights above and around two selected
buildings to acquire high-resolution nadir and oblique images. From the present work, it
appears that for the design of the 3D model of a traditional building, a minimum quantity
of nadir/oblique images is required (less than 100 images) that can be achieved with a low-
cost UAS, as well as in a short time (approximately 10 min.). In some rare cases encountered
in the settlement, more images and longer flight times were required. The 3D modelling of
the buildings depends on the geometrically accurate, complete and high-density 3D point
clouds. The generation of the 3D point cloud from the images is a widely used and efficient
computer vision method. Its processing time depends on the number of images and the
available computing power used. Indicatively, the time required for building A was 1 h,
and for building B 1 h and 20 min. As shown in the results, the point clouds produced
after the SFM-MVS processing were found to be of high density and accurately represented
(5–10 cm) all external components (e.g., roof, chimney, walls, doors, windows, etc.) and
therefore can be used to create LOD3 models. In some cases, parts of the building that
could not be captured in the photos created gaps in the point clouds. This problem was
solved by creating 3D mesh where these gaps were filled. It is worth noting that, most
of the time, manual flight is required due to the low flight height in a densely populated
urban environment.

Subsequently, 3D modelling of the buildings was executed through Trimble SketchUp
Pro by a drawing approach from 3D point clouds. More analytically, a drawing approach
of the boundaries of the point clouds was selected, starting from the ground surface to roof
surface. Three-dimensional modelling in LOD3 for buildings depends on various factors
such as user experience, cloud density and building complexity (number of windows,
doors, etc.). In particular, for building A, the roof was more complicated and needed
more time to be modelled compared to the other parts of the building. Furthermore, the
building consisted of five walls, four windows and two doors that required considerable
time for modelling. The geometry of building B was regular; however, it consisted of
4 walls, 10 windows and 1 door. Hence, the same time was required for each building
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to be modelled (approximately 1 h). The point clouds obtained through UAS present a
difficulty regarding the 3D design, as in some places there are gaps, bumps or they are
sparser compared to the available TLS. Another issue worth noting is that it is difficult to
design a building that has suffered severe damage (collapse of roof, walls, etc.) in 3D.

For the transformation of the 3D models into the CityGML format, two different
approaches were used. The first approach was carried out through the FME software,
which is a time-consuming process and requires familiarity with the manipulation of the
data to be transformed into CityGML. The second approach was carried out through the
CityEditor plug-in, which is easy to use and a less time-consuming process. Nevertheless,
the advantage of the first approach is that it can lead to an automated process for the
transformation of more than one building into the CityGML format compared to the
second approach, which is a manual process for every building separately. The models
were designed, layered and transformed into CityGML based on elements such as Wall,
Ground, Roof, Window and Door. LOD3 buildings are graphically, geometrically and
semantically represented. The geometric information is size, volume, shape and height,
while non-geometric information is name, usage and damage grade data that can be read
directly from the models.

Regarding the semantic enrichment of seismic building damage, the most difficult and
time-consuming part was the classification of damage grades in every part of the buildings.
The ontology structure of EMS-98 damage grades was based on the UML class diagram.
Every part of each building is represented as a semantic object, where a new object named
“DamageGrade” is added (subclassified in Wall Damage Grades and Roof Damage Grades)
according to EMS-98. This approach is an attempt to automate the classification process
of damage grades for masonry buildings for semantic modelling in CityGML LOD3. The
semantic enrichment of seismic damage in the parts of the buildings was attributed via
the CityEditor, based on 3D point clouds. The denser the point cloud, the more visible
the damage, which leads to a faster enrichment of the parts of the buildings. Furthermore,
major damage is more visible (damage grade 3 and above) in 3D point clouds, thus making
their rendering process easier. However, smaller damage (such as cracks) can be seen in the
acquired images, but their semantic enrichment is time-consuming. Specifically, building
A had hair-line cracks in walls (damage grade 1) which were difficult to identify in the
point cloud, in contrast with building B which had a serious failure of one wall (damage
grade 4), cracks in the other walls (damage grade 2) and partial structural failure of the roof
(damage grade 4). The overall assessment of the walls and roofs in terms of damage could
be considered as contribution towards damage assessment and reconstruction based on
spatio-semantic and damage characteristics of buildings. A disadvantage of the method is
the fact that it does not indicate the exact location of damage on the surfaces (walls, roofs).

For future work, several potentials can be mentioned. Firstly, according to data used
for the 3D modelling in LOD3, a fusion of 3D point clouds derived by TLS and UAS could
produce more accurate and dense point clouds. However, this would mean a significant
increase in cost and time for the data collection phase. On the contrary, the 3D modelling
phase would be significantly improved concerning the time required because a denser 3D
point cloud facilitates the process of 3D design for a detailed LOD3 building (more detailed
doors, windows, etc.). Secondly, in the future, a more detailed description of seismic
damage in a 3D environment could be realized (such as by using texture, etc.). The seismic
damage semantics could also be extended to all other building categories beyond masonry.
Finally, for the semantic seismic damages enrichment, the extension of the CityGML model
could be implemented via the Dynamizer ADE (Application Domain Extension).

5. Conclusions

This paper presents a methodology that utilizes UAS data from low flight height
(20m–30m) to accurately generate (5–10 cm accuracy) 3D point clouds suitable for 3D
modelling of CityGML LOD3 building models affected by an earthquake with the enrich-
ment of their seismic damage semantics. High-resolution nadir and oblique images were
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acquired and processed, and 3D point clouds of two seismically damaged buildings were
produced. These 3D point clouds were used to generate LOD3 models of two buildings
and subsequently, they were transformed into the CityGML standard. Finally, with the
proposed method, the individual parts of the buildings were enriched with the semantics
of seismic damage.

Depending on the external characteristics of the buildings, gaps in the point clouds
are likely to appear, complicating the modelling process. Three-dimensional modelling of
buildings with the use of 3D point clouds from low flight height UAS images is capable for
the 3D design of buildings in LOD3 with semantic modelling according to the CityGML
standard. The CityGML extension with the integration of seismic damage semantics in
the individual parts of the buildings according to EMS-98 can be a new means of more
efficient recording, visualization and analysis of the effects of an earthquake in a traditional
settlement. This approach can be used as an expeditious method in the post-emergency
phase of an earthquake and deliver CityGML LOD3 models enriched with seismic damage,
which can assist in the decision-making process for the recovery phase of a settlement
as well as be the basis for its monitoring over time. Finally, they can contribute to the
estimation of the reconstruction cost of the buildings. The semantic modelling can be further
extended to include seismic damage to the interior of buildings related to modelling at the
LOD4 level.
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