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Abstract: The novel coronavirus disease (COVID-19) pandemic has impacted every facet of society.
One of the non-pharmacological measures to contain the COVID-19 infection is social distancing.
Federal, state, and local governments have placed multiple executive orders for human mobility
reduction to slow down the spread of COVID-19. This paper uses geotagged tweets data to reveal the
spatiotemporal human mobility patterns during this COVID-19 pandemic in New York City. With
New York City open data, human mobility pattern changes were detected by different categories of
land use, including residential, parks, transportation facilities, and workplaces. This study further
compares human mobility patterns by land use types based on an open social media platform
(Twitter) and the human mobility patterns revealed by Google Community Mobility Report cell
phone location, indicating that in some applications, open-access social media data can generate
similar results to private data. The results of this study can be further used for human mobility
analysis and the battle against COVID-19.

Keywords: COVID-19; human mobility; big data

1. Introduction

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), was originally detected in Wuhan, China, and rapidly
spread worldwide. By 11 June, 2020, more than 7 million cases were confirmed from
216 countries, areas, or territories [1]. By the end of May 2020, 1,782,571 cases and
104,220 deaths were reported in the contiguous United States [2]. Due to its rapid spread
and sudden onset of severe symptoms, the World Health Organization (WHO) has de-
clared the COVID-19 outbreak as a Public Health Emergency of International Concern on
30 January 2020, and a pandemic on 11 March 2020. On 12 March 2020, President Trump
declared a National Emergency Concerning the COVID-19 outbreak [3].

To combat the spread of COVID-19, unprecedented measures are taken all over the
world. One of the most well-known non-pharmacological measures is to keep “social
distancing”, including staying at least six feet from other people and no mass gathering [4].
Similar policies of constraining human mobility have been found effective in reducing
COVID-19 transmission in China [5,6], South Korea [7], and Italy [8]. In the United States
(U.S.), federal, state, and local governments have imposed social distancing measures in
March to slow down the spread of COVID-19. Since early March, Governors of multiple
states have declared the State of Emergency as more cases were reported and announced
public school closures, non-essential business closures, and cancellations of big events. All
those social distancing measures have been found to reduce the COVID-19 growth rate [9].

Within the U.S., New York City (NYC) is one of the hardest-hit places at the beginning
of the pandemic. Since the first confirmed case on March 3rd, the number of cases has
grown rapidly. By 12 June 2020, NYC has 210,538 confirmed cases, which is about one-tenth
of the total reported cases in the U.S. [2]. Field hospitals were set up in multiple places, and
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the USNS Comfort hospital ship arrived in New York Harbor to increase hospital capacity.
Governor Cuomo placed the “New York State on PAUSE” executive order that started to
be effective on 22 March (hereafter 3/22), which includes strict social distancing measures.
However, before the executive order, public schools were closed, and the majority of
activities in NYC were suspended.

In responding to the battle of COVID-19, multiple companies have released data about
human mobility to the public. For example, Google and Apple, two main companies
owning millions of users’ location information, have published their reports on human
mobility during the pandemic. However, the mobility reports published by Google and
Apple are highly aggregated data, that the raw data are not accessible to the public. On
the other hand, social media platforms with open data policies and location-enabled posts
have been found effective data sources for human mobility research [10]. This study aims
to explore human mobility patterns during the COVID-19 pandemic in NYC with open
social media data (Twitter). In addition, this study identifies changes in human mobility
patterns spatially and temporally for different land use types based on NYC open data.
Specifically, this study addresses the following three questions:

1. What are the spatiotemporal human mobility patterns revealed by Twitter data at the
tax lot level?

2. How do human mobility patterns change by different land use types?
3. How are the change patterns detected by Twitter different or similar to the change

patterns detected by Google Community Mobility Report?

This paper contributes to the efforts of battling COVID-19 by using big data to reveal
human mobility patterns during this pandemic. In addition, this paper bridges the gaps
of using open data to detect human mobility changes by different land use types and
comparing human mobility patterns revealed by different data sources.

2. Background
2.1. Social Media for Human Mobility in Epidemiological Studies

With the increasing prevalence of geo-enabled social media platforms, an increasing
number of people have used social media, such as Facebook and Twitter, as communication
tools and information sources [11]. Due to its prevalence, social media data have been
used for epidemiological studies. Existing studies have found that social media data are
useful in identifying infectious disease outbreaks [12,13], analyzing sentimental reactions
and responses [14,15], assessing risks [16], and understanding disease dynamics [17,18].
Before the COVID-19 pandemic, social media data have been used for multiple infectious
diseases including Ebola [19,20], Zika [21,22], H1N1 [23,24], dengue [25–27], and seasonal
influenza [28,29].

Geotagged social media data showed their potential in helping analyze and predict
the spread of infectious diseases by deriving human mobility patterns from the data. For
example, Albinati et al. generated a prediction model for dengue using Twitter data [25].
Kraemer et al. derived human mobility patterns from Twitter and analyzed spatiotemporal
transmission variation of dengue in Lahore, Pakistan [27]. Taking a different approach,
Ramadona et al. developed a dynamic mobility-weighted incidence index to analyze the
spread of dengue in Yogyakarta, Indonesia [26]. Lai et al. found that mobility patterns
retrieved from cellphones are valuable to assess health-related risks for travelers [30].
Barlacchi et al. studied relationships between characteristics of human mobility patterns
and whether or not influenza-like symptoms exist [31]. Souza proposed spatial scan statistic
methods to identify infection risks from Twitter [32].

2.2. Big Data for Human Mobility in Response to COVID-19

During the COVID-19 pandemic, big data have contributed to fighting against COVID-
19 from multiple perspectives [33–38]. In the early stage, studies have contributed to
understanding the spatiotemporal distribution patterns and spread patterns of COVID-19
confirmed cases in different countries, including China [39,40], Iran [41,42], Italy [43], and
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South Korea [7]. Due to the high infectious rate and long incubation period, movement
tracking and contact tracing were among the key methods applied to constraint the spread
of COVID-19 [40,44].

This is usually achieved with mobile phone-based location information [45,46]. Studies
have utilized mobile phone location data to detect human mobility changes in China [47],
Spain [48], South Korea [49], the U.S. [50–57], and Brazil [58], to name a few. With more
countries imposing “stay-at-home” and “keep-social-distancing” policies, big mobility
data have been used to analyze the effectiveness of social and political efforts that focus on
reducing human movement. For example, how different places responded to reducing-
mobility-related orders in the U.S. were analyzed at the state level [59] and county level [51]
with mobile phone data. The effectiveness of interventions in different countries was
examined with mobility data [30,50,60]. At the individual level, changes in travel behavior
have been detected, including transportation mode choice, trip destinations, trip distances,
and durations [40,61,62].

Although social media data have been widely used for human mobility studies, limited
studies regarding social media and human mobility under this COVID-19 pandemic are
found [59,63–65]. Existing COVID-19 and social media studies focus more on information
propagation [66–70] and text-based analysis of specific topics [71–74].

3. Study Area and Data
3.1. New York City

NYC includes five boroughs, with each borough being a county in New York State:
Bronx (Bronx County), Brooklyn (Kings County), Manhattan (New York County), Queens
(Queens County), and Staten Island (Richmond County).

The NYC Department of City Planning published extensive land use and related
geographic feature data at the parcel level called PLUTO (Primary Land Use Tax Lot
Output) [75]. PLUTO data include 857,205 parcels in total.

In PLUTO, all the parcels of NYC are categorized into one of these 11 land use types:
one- and two-family buildings, multi-family walk-up buildings, multi-family elevator
buildings, mixed residential and commercial buildings, commercial and office buildings,
industrial and manufacturing, transportation and utility, public facilities and institutions,
open space and outdoor recreation, parking facilities, and vacant land.

3.2. Google Community Mobility Report

Google published a mobility report for COVID-19 by comparing changes in the daily
number of visitors to the baseline. The baseline is composited of seven values, one for
each day of the week, and the value is the median value from a 5-week period (3 January
to 6 February 2020, hereafter 1/3 and 2/6). The Google Community Mobility Report
includes changes for the following six categories of places: retail and recreation, grocery
and pharmacy, parks, transit stations, workplaces, and residential. Changes reported in the
Google Community Mobility Report are calculated as change percentages compared to the
baseline. For the United States, the Google Community Mobility Report is available at the
state- and county-level, if enough data are available [76].

3.3. Twitter Data

Geotagged tweets were collected from 1/3, to 30 May 2020 (hereafter 5/30), using the
Twitter Stream Application Programming Interface (API). Although Twitter API only allows
access to about 1% of all publicly available tweets [77], a total number of 9,459,952 geo-
tagged tweets from 209,775 users were collected from NYC during this 5-month period.
All the streamed tweets are stored on a high-performance computing cluster. Queries for
this study were conducted with Apache Impala and Apache Hive. Following the change
calculation method in the Google Community Mobility Report, tweets collected between
1/3 and 2/6 were used for baseline calculation. Later tweets were used for mobility
change calculation.
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4. Methodology
4.1. Twitter Data Processing

We collected a total of 1,750,385 tweets between 1/3 and 2/6, 2020, for baseline
calculation, and a total of 5,335,313 tweets were collected between 16 February (hereafter
2/16) and 5/30 for human mobility pattern examination. For all the tweets we collected,
we first separate them into daily datasets based on posted time so that one dataset only
contains tweets posted during one specific day. In the second step, we map each tweet
based on the associated geotag as a point. If the associated geotag is coordinates, this tweet
is directly located to the coordinates. If the geotag type is a place, for example, Central
Park, this tweet is located to the centroid of central park. Tweets that cannot be mapped
into tax-lot polygons were eliminated in this step. After this mapping step, 1,649,520 tweets
remain for baseline calculation, and 5,162,468 tweets remain for human mobility pattern
examination. In the next step, we count how many users have tweeted from each tax lot
for each day. In other words, only one user is counted into the given lot, regardless of the
number of tweets one user posted from the same location.

4.2. Spatial Patterns of Human Mobility Changes

PLUTO data for NYC has delineated each polygon for each tax unit with one of the 11
land use types listed in Section 3.1. Spatial mobility pattern changes are calculated for each
tax unit.

The baseline used for change calculation is a 5-week period, from 1/3 to 2/6, which is
the same as the Google Community Mobility Report. For each land unit, the total number
of Twitter users per week is summarized. The baseline value for each land unit is the
median of the five weeks’ weekly user amount.

For each polygon, the weekly Twitter user number was summarized for each week
between 2/16 and 5/30. The percentage of human mobility change of a given polygon is
calculated as Equation (1):

change percentage =



observed value−baseline
baseline × 100%, i f baseline 6= 0

100% , i f baseline = 0

. (1)

4.3. Daily Mobility Pattern Change by Land Use Type

The baseline for the daily Twitter-based human mobility change pattern is matrix B,
pairing land use type and day of the week. An element bij in the baseline matrix B is the
baseline value for land use type i on jth day of the week. For each week of the 5-week
baseline time, a matrix W is constructed, where each element wij represents the number of
Twitter users in land type i on jth day of this specific week. Therefore, we built 5 matrices
for the 5-week baseline time, denoting as W1, W2, . . . , W5. The baseline value bij is the
element-wise median of W1, W2, . . . , W5.

Twitter-based human mobility change patterns were calculated on a daily basis from
2/16 to 5/30. For each day between this time period, we first used nij as the observed
number of Twitter users in land type i on the jth day of that week. Then, the daily change
percentage is calculated as follows:

change percentage =
nij − bij

bij
× 100%. (2)

This change percentage calculation method can avoid fluctuations during the week,
such as human mobility pattern changes between weekdays and weekends.

Daily change patterns are presented as trend lines, where the y-axis is the change
percentage, and the x-axis is the date.
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5. Results
5.1. Spatial Human Mobility Patterns Based on Twitter Data

Figures 1 and 2 show the human mobility patterns change detected using Twitter data
at the parcel level. Figure 1 shows changes from week 1 to week 9, and Figure 2 shows
changes from week 10 to week 15. From a spatial perspective, the decrease in the number
of Twitter users can be observed as early as in the week of 15 March 2020 (hereafter 3/15,
Week 5), which is the week before the city-wide executive order. From the Monday of
week 5, most commercial and office buildings in Midtown Manhattan (dark blue polygons
within the red rectangle in week 5) have seen more than a 75% decrease in the number of
Twitter users compared to January. Such reduction indicates the spontaneous actions of
work-from-home from many companies. Downtown Manhattan (red circle in the figure
of week 5), including the Soho District, Wall Street, World Trade Center, and the ferry
to Statue of Liberty, has always been a popular destination of tourism. As the World
Trade Center and Statue of Liberty suspended their tourism-related activities on 3/14 and
3/16, the number of Twitter users decreased more than 50% at One World Trade Center
and the Battery Park, which is where the ferry to the Statue of Liberty departs. After the
stay-at-home executive order was placed on 3/22, the majority of non-residential buildings
in Downtown Manhattan show more than a 75% reduction in the number of Twitter users.
In addition, Central Park (red rectangle in the figure of week 6) had seen more than a 50%
decrease in the number of Twitter users after the issue of the executive order, suggesting
that the attraction of this largest park in New York City has been dampened during the
pandemic. The weekly number of Twitter users in Central Park remained at a similar level
until the end of May. Contrasting to the general decreasing trend, hospitals (red circle in
the figure of week 6) saw a significant increase in the number of Twitter users since week
6 (3/22), when the number of COVID-19 cases in NYC started to rise [2].

5.2. Temporal Changes by Land Use Type

Figure 3 shows the daily change for the six land use types. The black line shows the
original change pattern, and the red line is the smoothed trend with Gaussian smoothing.

Transportation-related lands show a significant decrease in the number of people—
about a 70% decrease in mid-March. This result is expected, as people are encouraged to
avoid unnecessary trips and stay at home. Commercial and office buildings are also found
to have a noticeable decrease: about 60% in mid-March. Similarly, public facilities and
institutions also observe about a 40–50% percent decrease in the number of Twitter users.
Park and outdoor recreation areas for the whole of NYC indicate a slight decrease from
mid-March. In April, about 40% fewer Twitter users are observed in park and outdoor
recreation areas, comparing to the baseline.

Twitter-based human mobility patterns show no obvious increase in the residential
area for NYC. This shows one limitation of using Twitter data for this type of human
mobility capturing study. We can only count the number of distinct Twitter users from a
location. The length of time spent at home remains unknown. Therefore, for those users
who regularly tweet from home before the pandemic, this number does not change.

The following sections describe human mobility changes for Bronx County, Kings
County (Brooklyn Borough), Queens County, and New York County (Manhattan Borough)
in detail. In addition, similarities and differences comparing human mobility change
patterns from Twitter and Google are discussed. Richmond County (Staten Island Borough)
is not further discussed, as it does not have enough data for a valid comparison.
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5.2.1. Bronx County

Bronx County only has enough Twitter users for two land use types: residential and
workplace. Figure 4 shows the comparison between Twitter-based human mobility pattern
change and change generated with Google-based human mobility data.
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Figure 4. Twitter- and Google-based human mobility changing patterns in Bronx County.

In Twitter-based human mobility pattern, the residential area shows no obvious
increase, while Google shows a 20% increase in residential areas. As mentioned before,
Google’s human mobility change for the residential area is based on time spent; therefore,
a larger increase from Google is found. Both Twitter- and Google-based human mobility
patterns find about a 60% decrease in the workplace in Bronx. However, the Twitter-based
mobility pattern shows more dramatic day-to-day changes. Another major difference
between these two trends is that Google shows notable weekday–weekend patterns.

5.2.2. Kings County (Brooklyn Borough)

Twitter-based human mobility patterns are generated and compared with Google-
based human mobility change for Kings County in the following three land use types:
residential, workplace, and park. Figure 5 shows the comparison for the three types.

We found a 20% increase in the number of Twitter users in Kings County for residential
areas, which is similar to Google Community Report. However, Twitter-based human
mobility presents a larger day-to-day change, and this change is unstable. Google found
that people spent about 20% more times in residential places, and weekly regularity is
also found. Both Twitter- and Google-based human mobility patterns found about a
60% decrease in the number of people for the workplace in Kings County, and a drop
starting around 3/15 was detected in both data. However, Google also identified weekday–
weekend regularity, which is not detected using Twitter data. The human mobility patterns
for parks and outdoor recreational areas in Kings County are quite different between
Google and Twitter. Google shows an obvious drop around 3/15, and the number of
visitors started to increase in late April and keeps increasing in May. The Twitter-based
human mobility pattern shows an unstable pattern evidenced by the large day-to-day
difference. In addition, the number of Twitter users identified in parks and outdoor
recreation areas is above baseline for 71 days, even when the stay-at-home order was in
place in late March and April.
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5.2.3. New York County (Manhattan Borough)

New York County shows a decrease in the number of Twitter users in all categories
(Figure 6). Noticeably, the total number of Twitter users in New York County has decreased
by 30–40%. This is likely to be caused by the significantly decreasing tourism in NYC
in general. The number of Twitter users for the residential area in New York County
shows a 30% decrease, which is consistent with the number of Twitter users decreasing
for the whole of New York County. Transportation-related lands show similar decreasing
patterns. Both Twitter-based and Google-based human mobility patterns show a 70–80%
decrease in visitors to transportation-related lands. The decrease of the number of Twitter
users in transportation-related lands started in early March, which is earlier than the
main drop that appeared in Google (mid-March). The workplace in New York County
presents an obvious decrease in both Twitter-based and Google-based human mobility
patterns. Twitter-based human mobility shows a 60% decrease, and Google shows a 70%
decrease. One major difference is that the Google-based pattern shows obvious weekday–
weekend regularity. Regarding parks and outdoor recreation lands, both Twitter-based
and Google-based human mobility patterns identify the drop in the number of visitors
around mid-March. However, the Google-based pattern shows a larger drop: about 70%
until late April. Visitor numbers starting to increase in May were also found by the Google-
based pattern. The Twitter-based human mobility pattern shows about a 40% decrease
since mid-March. Unlike the Google-based pattern, no increase in May was found in the
Twitter-based pattern.

5.2.4. Queens County

Although Twitter- and Google-based human mobility patterns use different methods
to calculate human mobility changes, both patterns show a 20% increase for residential
lands in Queens County (Figure 7). Similar to all residential lands, Google can identify
weekday–weekend differences, while Twitter-based human mobility patterns cannot. Re-
garding transportation-related lands, both Twitter- and Google-based human mobility
patterns show a significant drop in the number of visitors around 3/15. However, the
Twitter-based human mobility pattern shows a larger decrease: about 80%. On the other
hand, the Google-based pattern finds a 70% decrease, and the number of visitors started to
increase in May, which is not identified by the Twitter-based human mobility pattern.
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6. Discussion
6.1. Comparison of Mobility Patterns Derived from Google and Twitter

This study compares human mobility patterns during the COVID-19 pandemic using
two different data sources: cell phone (Google) and Twitter. Human mobility patterns
and changes of those patterns are different mainly because of the different data collection
methods with these two data sources. The Google Community Mobility Report is generated
using the Location History feature with Google Accounts. According to Google, if a user
turns on Location History in their Google Account, and this user is signed into his/her
Google Account on his/her mobile device, the location history is saved to Google. In other
words, even if a user does not actively report location by posting or checking in with any
Google products, Google is able to get this user’s location if this user has Location History
turned on. With a large number of users who turned on Location History at the Google
Account-level for the convenience provided by Google products, Google has access to
continuous individual-level location, which enables Google to analyze human mobility
patterns at a more detailed and continuous level.

On the other hand, Twitter-based human mobility data collection relies on Twit-
ter users’ activities completely. Individual-level location records are based on tweeting
frequency and decisions about location sharing of each tweet for each individual user.
Therefore, Twitter-based human mobility patterns can be viewed as discrete patterns. Com-
paring to human mobility data collected by Google, Twitter-based human mobility data
fail to tell how long a user spends at a given location.
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Mobility patterns in residential for Google Community Mobility Report and Twitter-
based human mobility are calculated differently, which provides quite different results.
The Google Community Mobility Report calculates changes in the length of time spent in
residential land, while Twitter-based human mobility calculates changes in the number of
Twitter users. Therefore, the Google Community Mobility Report found increases in users
on residential land for the four counties in NYC. Differently, Twitter-based human mobility
indicates decreases in users on residential land in New York County (Manhattan). One
reasonable guess is that residential Manhattan had a decrease in the number of visitors
from outside of Manhattan, and those visitors contributed to a large portion of the tweets
posted from the Manhattan residential area as they visit friends in Manhattan. Since the
Google Community Mobility Report calculates changes for time length, longer time spent
at residential land was found.

Workplace shows weekly cycles in the Google Community Mobility Report, but not
in Twitter-based human mobility patterns. Interestingly, the Google Community Mobility
Report shows more people visiting workplaces during the weekends. Such weekend peaks
are found in Bronx County, Kings County, and New York County. However, Twitter-based
workplace mobility patterns do not present such weekly cycles. Instead, the Twitter-
based workplace mobility pattern in New York County shows fewer fluctuations after
the lockdown.

In Queens County and New York County, human mobility patterns in transportation
show similar trends with Google- and Twitter-based human mobility patterns, although
Google presents a smoother change than the Twitter-based human mobility pattern change.
This is caused by the different number of sampled users. Since the Twitter-based human
mobility pattern calculates changes with a smaller sample than the changes calculated
in the Google Community Mobility Report, the resulting change percentage is larger in
Twitter-based human mobility. From this perspective, Google-based mobility patterns
present changes in routine travel patterns such as commuting, while Twitter-based human
mobility patterns are more sensitive to irregular patterns such as special events.

As demonstrated in this case, Twitter-based and cell phone-based data show different
perspectives of human mobility patterns and changes of such patterns. Each data source
shows specific perspectives of activity and human interaction with the land use types.
Future research should consider more about data fusion to present multifaceted human
mobility patterns and to capture a wider spectrum of the population.

6.2. Limitations

Although Twitter-based human mobility data provide fast and robust results for
mobility pattern change detection, we realize that limitations exist in Twitter-based human
mobility data. First is the issue of representativeness. Twitter, the same as all other social
media platforms, only can attract a small portion of the total population. Furthermore, not
all Twitter users post tweets with geotags to a resolution that can be valid for this study.
Existing studies have recognized this problem and have examined for population biases
with Twitter users [78–80]. Unfortunately, no solutions have been found so far. Comparing
to Twitter users, Google has a larger number of users as sampled for mobility pattern
changes. However, Google Location History requires additional action to be turned on.
Similar to Twitter-based human mobility data collection, cell phone-based data are limited
to users of certain companies, which is also affected by issues of representativeness [81,82].

The second limitation of this study is the baseline calculation method. In this study,
the baseline is calculated with a 5-week period data (1/3–2/6), which follows the Google
Community Mobility Report. However, human mobility patterns during this time can be
affected by seasonal tourism, especially considering NYC as an internationally famous
tourism destination. For a better human mobility analysis, baseline calculation should
consider the annual cycle of human mobility. For instance, human mobility data from last
year March to May should also be included for baseline calculation.
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6.3. Future Research

Despite the limitations, compared to most cell phone-based mobility data, the value
of Twitter-based (or more generally social media-based) human mobility data lies in that
they provide multi-dimensional information rather than only the changes in the location of
individuals. Despite not being used in this study, tweets posted in NYC can be analyzed
with text-based methods to retrieve information such as increasing situational awareness,
allocation of medical needs, and reporting problems or change of services [65,83]. Such
analysis can help us better understand human mobility dynamics during the pandemic,
such as why people are still going to parks regardless of the stay-at-home executive order.
In addition, with self-description and other information provided by each individual
Twitter user, further analysis can be conducted, including how COVID-19 impacts different
demographic and socioeconomic groups

Secondly, Twitter data provide more flexibility in spatiotemporal resolution. Human
mobility data provided by Google Mobility Report are at the county and state level. No
finer resolution such as tract-level mobility patterns can be retrieved from those data.
Therefore, the spatial variance within a county cannot be captured. On the other hand,
Twitter data can be aggregated to different spatial resolutions, which is a better fit for
different research applications. Temporally, Twitter data allow individual-level mobility
analysis, such as trajectory analysis and trip prediction. With long-term Twitter-based
mobility data, more sophisticated change detection methods, such as time series, can be
applied to better capture abnormality in human mobility.

7. Conclusions

This study explores the change of human mobility patterns in New York City using
Twitter data. With the open access NYC detailed land use data, this study analyzes changes
of Twitter user number of different land use types of NYC during the COVID-19 pandemic.
This study also compares Twitter-based human mobility pattern changes with the Google
Community Mobility Report at the county (borough) level of NYC. Comparing Twitter-
based human mobility patterns and the Google Community Mobility Report, a major
difference exists in residential lands, since Google Location History is able to record the
length of time each individual spent at a location, which cannot be achieved with Twitter
data. On the other hand, Twitter-based human mobility and the Google Community
Mobility Report show similar results in changes at workplaces and transportation-related
land use, such as subway stations and airports.

Human mobility data have played key roles in understanding and combating the
COVID-19 pandemic. However, data accessibility placed limitations in scientific research,
as many human mobility data are provided and protected by commercial companies
whose raw data are not released to the general public. As an initial effort to bridge this
gap, this study provides a comparison between the effectiveness of identifying human
mobility changes using social media data (Twitter) and cell phone data (Google) during
the COVID-19 pandemic in NYC. The results of this study show that in some applications,
open-access social media data (Twitter) can generate similar results to private data (Google),
and thus, under some situations, social media data are capable of substituting private data
to facilitate real-time human mobility monitoring. In addition, the results of this study can
be used to develop platforms for infectious diseases monitoring and further analysis of
different characteristics of human mobility patterns during the COVID-19 pandemic.
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