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Abstract: Urban functional regions are essential information in parsing urban spatial structure. The
rapid and accurate identification of urban functional regions is important for improving urban
planning and management. Thanks to its low cost and fast data update characteristics, the Point
of Interest (POI) is one of the most common types of open access data. It mainly identifies urban
functional regions by analyzing the potential correlation between POI data and the regions. Even
though this is an important manifestation of the functional region, the spatial correlation between
regions is rarely considered in previous studies. In order to extract the spatial semantic information
among regions, a new model, called the Block2vec, is proposed by using the idea of the Skip-gram
framework. The Block2vec model maps the spatial correlation between the POIs, as well as the
regions, to a high-dimensional vector, in which classification of urban functional regions can be better
performed. The results from cluster analysis showed that the high-dimensional vector extracted can
well distinguish the regions with different functions. The random forests classification result (Overall
accuracy = 0.7186, Kappa = 0.6429) illustrated the effectiveness of the proposed method. This study
also verified the potential of the sentence embedding model in the semantic information extraction
of POIs.

Keywords: urban functional regions; point of interest; sentence embedding; spatial semantics;
random forest

1. Introduction

Cities are composed of various functions that describe human social activities and
their employment of land [1,2], and can be divided into various functional regions, such as
commercial, residential, industrial and open space. Urban functional regions are closely
related to many urban structure studies, such as neighborhood vibrancy [3,4], travel
distribution [5], urban mass transit [6] and urban energy consumption [7]. With the
rapid urbanization in recent years, the urban function structure has become increasingly
diverse and sophisticated. In addition, the evolution of the actual function of the region
may be inconsistent with the planning intention of the land [8–10]. Thus, the fast and
accurate identification of urban functional regions has become essential for improving
urban planning and management [11–13].

Cadastral maps and censuses data are valuable sources of land use data as they
explicitly reflect land use and contribute to land use management. However, there are
extremely strict requirements for its update speed and update frequency, which is obviously
not conducive to our real-time understanding of the urban land use structure. Remote
sensing images [14–17] and radar/Lidar [18–20] have been used effectively for land use
and land cover classification due to these can capture both spectral and textural properties
of the land. However, it may be difficult for them to distinguish the categories closely
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related to human social activities, because these data cannot capture functional interaction
pattern, nor can they understand socioeconomic environments [21–25]. Therefore, the
land cover categories for impervious surfaces usually include commercial, residential and
industrial land.

To monitor and understand the potential information about human social activities,
multi-source geographic data has been investigated to perceive human social activities
and further infer the functions of the regions, such as mobile phone data [23,26–30], GPS
trajectory data [31–33], smart card data [1,34], social media data [25,35,36] and Point of
Interests (POI) data [2,9,10,33,34,36–38]. Wherein, POI data, as its inexpensive and fast
to acquire from the internet, has significance advantage in representing reliable informa-
tion about the location and type of urban activities (e.g., Shopping, Entertainment and
Restaurant) [9,39]. Moreover, POI data can explicitly express semantic information about
the urban built environment.

There is a growing body of literatures using POI data to identify urban functional
regions. Considering strong relationships between functional regions with socioeconomic
activities, Liu and Long [38] attempted to map functional patterns at the parcel level by
generating various indicators based on frequencies of POI data. Yuan et al. [40] identified
urban functional zones by using the POI data and taxi trajectory data in Beijing. However,
due to the complexity of urban spatial structure, it is not enough to analyze functional
patterns only using POI frequencies. Several neural language process (NLP) methods have
been deployed to infer urban functional regions. In Gao et al. [2], the Latent Dirichlet
Allocation (LDA) topic model was used to infer urban functional regions using POI and
user check-in activities data. Chen et al. [41] compared the spatial organization of 25 cities
based on the co-location patterns mining method. Word2vec algorithm was used to infer the
spatial relationship of POIs in terms of urban functional region classification [10]. Place2vec
algorithm, which considers spatial context based on the first law of geography [42], was
used to identify the urban functional regions in Wuxi, China [8]. Conversely, spatial
relationship exists not only between facility points (such as POI) but also between parcels.
In other words, as the POI is related more to the other POIs that are geographically close to
it according to the first law of geography [8,43], a parcel is also more related to the parcels
that are geographically closer to it. However, the above methods are word embedding
methods that only consider the spatial relationship between each POI, and few studies
have explicitly addressed the spatially interacting relationships between parcels.

To address the gaps, a parcel-based approach, called Block2vec, was proposed to ex-
tract spatial information between parcels inspired by sentence embedding methods [44,45].
Based on the nearest neighbor method, the POI sequence and further sequence group were
constructed for each parcel in Block2vec. The latent semantic feature extraction model
was then built by using the skip-gram framework. Here, the Long Short Term Memory
(LSTM) network [46] was deployed to build the Block2vec model, which was a one-to-many
(central parcel to background parcels) and hierarchical model. Finally, the Block2vec model
was tested and verified by a case study in Wuhan, China.

The remainder of the paper is structured as follows: Section 2 presents the study area,
dataset. Then Section 3 introduces the method for the Block2vec model. Section 4 describes
comparisons with experimental results. Section 5 discusses the advantages and limitations
of the proposed method. Finally, Section 6 presents the conclusion and future work.

2. Study Area and Dataset
2.1. Study Area

The study area of this research is the main urban area of Wuhan, which is the capital of
Hubei Province, China. The region consists of an area within the third ring road, Zhuankou,
Wugang and Miaoshan, covering an area of 678 km2. Divided by the Yangtze, the city is
known as the ‘Three Towns of Wuhan’ with Hankou and Hanyang on the west bank, and
Wuchang on the east. For this study, the region was divided into 2385 parcels according
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to the road network data. Figure 1 shows the main urban area and POIs distribution
in Wuhan.
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Wuhan Natural Resources and Planning Bureau website (http://zrzyhgh.wuhan.gov.cn/zwgk_18/fdzdgk/ghjh/zzqgh/20
2001/t20200107_602858.shtml, accessed on 12 May 2017).

2.2. Dataset

The POI data used in this study were obtained through the AutoNavi Development
Platform (ADP) (https://lbs.amap.com/api/webservice/guide/api/search, accessed on
29 December 2016). For the study area, 537,375 POI records were collected in December
2016. Each POI record contains the geographic latitude and longitude of the POI and a
classification category of multiple levels, of which there are 20 major categories of top-level
and over 500 subcategories third-level. For example, as a primary school, its primary
category is science and education cultural service, the secondary category is school and the
tertiary category is a primary school. The detailed POI categories could be obtained through
the website (https://lbs.amap.com/api/webservice/download, accessed on 14 February
2017). Among all the categories, the Address / Location was excluded in the later study
because it could not explicitly express some human social activities. In Table 1, excluding
address and location, the categories with the largest number of POIs are Shopping Mall,
Catering Service and Living Service.
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Table 1. The Proportions of primary categories in the study area.

Code POI Category Proportions Code POI Category Proportions

1 Car service 1.18% 11 Tourism Attraction 0.37%
2 Car repair 0.24% 12 Residence 4.59%
3 Car sales 0.62% 13 Governmental and Public Organizations 1.77%
4 Motorcycle Service 0.04% 14 Science and Education 3.93%
5 Catering Service 16.60% 15 Transportation facilities 3.39%
6 Shopping Mall 23.79% 16 Bank/Financial 1.54%
7 Living Service 11.75% 17 Factory 6.50%
8 Sports and Recreation 2.37% 18 Road Facility 0.02%
9 Hospital 2.56% 19 Address and Location 15.78%

10 Accommodation Services 1.99% 20 Public Facility 0.96%

3. Methodology

The overall workflow of the proposed approach is shown in Figure 2. The main goal
of the approach proposed is to extract the semantic information from POIs in a parcel, to
better identify the function of the regions. Firstly, the POI data and Parcels were used to
produce the POI semantic sequence for each parcel. Secondly, POI semantic sequence was
grouped according to parcels by using the nearest neighbor method. Thirdly, the latent
semantic feature extraction model was establish using LSTM network. The model was
trained using the POI semantic sequence groups and then mapped the semantic sequence
into a high-dimensional latent semantics vector. Then, the K-Means algorithm was used
to verify the discriminability and validity of the latent semantic features, and Random
Forest Algorithm (RFA) were adopted to classify urban functional regions. Finally, the
performance of the urban functional region classification was estimated based on its overall
accuracy (OA) and Kappa score.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 4 of 19 
 

 

Table 1. The Proportions of primary categories in the study area. 

Code POI Category Proportions Code POI Category Proportions 
1 Car service 1.18% 11 Tourism Attraction 0.37% 
2 Car repair 0.24% 12 Residence 4.59% 

3 Car sales 0.62% 13 Governmental and Public Organiza-
tions 

1.77% 

4 Motorcycle Service 0.04% 14 Science and Education 3.93% 
5 Catering Service 16.60% 15 Transportation facilities 3.39% 
6 Shopping Mall 23.79% 16 Bank/Financial 1.54% 
7 Living Service 11.75% 17 Factory 6.50% 
8 Sports and Recreation 2.37% 18 Road Facility 0.02% 
9 Hospital 2.56% 19 Address and Location 15.78% 

10 Accommodation Services 1.99% 20 Public Facility 0.96% 

3. Methodology 
The overall workflow of the proposed approach is shown in Figure 2. The main goal 

of the approach proposed is to extract the semantic information from POIs in a parcel, to 
better identify the function of the regions. Firstly, the POI data and Parcels were used to 
produce the POI semantic sequence for each parcel. Secondly, POI semantic sequence was 
grouped according to parcels by using the nearest neighbor method. Thirdly, the latent 
semantic feature extraction model was establish using LSTM network. The model was 
trained using the POI semantic sequence groups and then mapped the semantic sequence 
into a high-dimensional latent semantics vector. Then, the K-Means algorithm was used 
to verify the discriminability and validity of the latent semantic features, and Random 
Forest Algorithm (RFA) were adopted to classify urban functional regions. Finally, the 
performance of the urban functional region classification was estimated based on its over-
all accuracy (OA) and Kappa score. 

 
Figure 2. The workflow of the urban functional region classification. 

3.1. Constructing Semantic Sequence for Each Parcel 
The function of a region is related to the integration of all types of activities there [2]. 

Generally speaking, there are multiple service facilities in one parcel, and different loca-
tions in the parcel have different spatial contact opportunities. According to the different 
locations, the POIs could be divided into two parts, including the part located closer to 
the road and the other part located in the parcel. The former serves the population in the 
adjacent parcels, while the latter will mainly service the population in this parcel. 

Figure 2. The workflow of the urban functional region classification.

3.1. Constructing Semantic Sequence for Each Parcel

The function of a region is related to the integration of all types of activities there [2].
Generally speaking, there are multiple service facilities in one parcel, and different locations
in the parcel have different spatial contact opportunities. According to the different
locations, the POIs could be divided into two parts, including the part located closer to
the road and the other part located in the parcel. The former serves the population in the
adjacent parcels, while the latter will mainly service the population in this parcel.

In this study, the semantic sequence of POIs with specific order was constructed to
express the different spatial contact opportunities in one parcel. Considering the spatial
difference of the POIs above, POIs in a parcel could be sorted by order of the spatial
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distance from each POI to the center of the parcel. For example, in Figure 3a, there are
currently six POIs in the i-th parcel, where p1 is the closest to the center point and p6 is the
closest to the road. Based on the distance to the center point, the semantic sequence Si was
constructed as {p1, p2, p3, p5, p4, p6}. In practice, parcels could have different numbers of
POIs, which means that their POI sequences could have different lengths. In the next study,
the LSTM layer requires a fixed number of input neurons. Therefore, the POI sequences
with various lengths need to be proceeded to have a fix-length sequence. In this paper, the
fixed length is set to the length that accumulates the percentage to 90%. Namely, if the POI
length exceeds the fixed length in a parcel, the excess POIs would be removed. While if the
length is less than the fixed length, the specific characters would be filled.
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To fully mine spatial semantic relationships in POI data, it is necessary to not only
consider the spatial relationship between POIs but also that between adjacent parcels.
In natural language processing, a word or a sentence has two contextual relationships,
forward and backward. However, in geospatial, there will be several different directional
contexts. To simplify this problem, the contextual relationship of four adjacent parcels was
considered as a block, which could be regarded as a contextual relationship. The typical
spatial distribution of a block was shown in Figure 3b, where four nearest parcels (C1,
C2, C3, C4) around the central parcel i were regarded as context parcels. Therefore, the
Semantic sequence group for parcel i was defined as [Si, (Si,c1 , Si,c2 , Si,c3 , Si,c4 )].

3.2. Latent Semantic Feature Extraction Model

Previous studies have shown that the seq2seq model can effectively extract the latent
features of a sentence by using its context information [44,45,47,48]. Different from the
word embedding method, the sentence embedding method represented by seq2seq models
could perform the sentence embedding task better, because it can comprehensively capture
the relevant characteristics of different words at the level of the sentence, rather than
understand them at the level of words. Inspired by the above model, the POI sequence in
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a parcel could be regarded as a sentence, with the k nearest parcels in its geospatial as its
context parcels. As illustrated in Figure 3b, the most adjacent k value was set to 4.

In this study, the Skip-Gram model, which has been used in the skip thought vectors
model [44], was applied to establish the latent semantic feature extraction model, which
can be described by three parts: the encoder, decoder and objective function. As shown
in Figure 4, an encoder was used to map the POI sequence of the central parcel to a
latent semantic feature, and multiple decoders were used to generate POI sequences of
context parcels.
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The LSTM layers were used to build the encoder of the model. For i-th parcel, let
{ x1, x2, . . . , xn} be the POI sequence in the Si sequence, where n is the number of POIs in
the sequence Si. For each calculation step, the encoder calculates a hidden layer feature ht,
which can be regarded as a hidden expression for the sequence {x1, x2, . . . , xt}. The hidden
state hn thus represents the entire sequence, namely, the latent semantic feature vector of Si.
To encode the sequence Si, iterate over the following equations from the first POI in the
POI sequence:

it = σ
(

Wiixt + bii + Whih(t−1) + bhi

)
, (1)

ft = σ
(

Wi f xt + bi f + Wh f h(t−1) + bh f

)
, (2)

gt = tan h
(

Wigxt + big + Whgh(t−1) + bhg

)
, (3)

ot = σ
(

Wioxt + bio + Whoh(t−1) + bho

)
, (4)

ct = ft ∗ c(t−1) + it ∗ gt, (5)

ht = ot ∗ tan h(ct), (6)

where, it is the input gate, ft is the forget gate, gt is the update gate and ot is the output
gate, ct is the cell state and ht is the hidden state of the encoder at step t.

Four LSTM Layers were adopted to establish the decoder of the model, respectively.
The network structure of each decoder is similar to that of the encoder. With the state hn as
a condition, four decoders then generate the POI sequences of context parcels.

Given a POI sequence group [Si, (Si,c1 , Si,c2 , Si,c3 , Si,c4)], the optimization objective
function is the sum of log-probabilities for the context semantic sequences conditioned on
the encoder representation:

OS = ∑c=c1,c2,c3,c4 ∑t logP
(

xt
c
∣∣x<t

c , hi
)
, (7)
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where hi denotes the hidden state of the sequence Si, xt
c denotes the predicted value for

parcel c at step t.
In the model training process, the total objective was to minimize the sum of the above

optimization objective functions over all sequence groups.

3.3. Identification of Urban Functional Regions Based on Latent Semantics

After training the above model, the encoder with the learned weights was used as a
feature extractor to map the POI sequence semantics of each parcel to a latent semantic
feature hn. Theoretically, the more similar the POI semantic function between the parcels
and their surrounding environment, the more they gather in the latent semantic space.
Therefore, several classifiers could be trained to distinguish different regions’ functions. As
shown in Figure 5, K-Means and Random Forest Algorithm (RFA) were adopted to classify
the parcels with different latent semantic features.
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3.3.1. K-Means-Based Parcel Aggregation

To verify the discriminability and validity of the latent semantic features, the K-Means
algorithm was used to aggregate the research parcels according to these features. The
distance of similarity in vector space can be measured by various spatial distance calculation
methods, such as Euclidean distance and Cosine distance. Since the feature dimension of
the latent semantic space obtained in this paper is high, the cosine distance was adopted
to measure the latent semantic feature vectors. Consequently, the cosine-distance-based
K-Means clustering algorithm was applied to aggregate those parcels.

The silhouette score [49] was then used to evaluate how appropriate objects lie within
their cluster. For the sample Pi, the average distance between Pi and other samples within
the same cluster is defined as a and the average distance between Pi and samples within
other clusters is defined as b, then the silhouette score is calculated as follows:

ScorePi =
b− a

max(a, b)
(8)

It can be seen from the above formula that the value of the silhouette score ranges between
[−1, 1], and the closer to 1 the better the clustering performance is. Therefore, we calculate
the average silhouette score of all samples as the evaluation of the K-Means clustering.

3.3.2. RFA-Based Parcel Classification

The unsupervised clustering analysis, however, only classifies the categories by the
differences between the POI latent semantic features of different parcels. Due to the
inexplicability of the extracted POI’s latent semantics, it is difficult to assign and define the
categories that are clustered by the cluster analysis. Therefore, the supervised classification
method based on existing training samples is an essential part of our consideration.

Among them, the RFA is widely used in supervised classification because of its good
adaptability to high-dimensional features and difficulty in over-fitting, and strong anti-
noise ability [50,51]. Let the Hij (i ∈ [1, M], j ∈ [1, N]) and Yk (k ∈ [1, K]) be the latent
features and land use types of parcel i, where M is the total number of parcels and N is
the dimensions of the features and K is the total number of the types of regions’ functions.
Using the bagging method, samples with n (n ≤ N) features were randomly selected from
the N features, and then were used to build a decision tree. By the random combination
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of k features, C decision trees were repeatedly built without pruning operations. Each
decision tree predicted the result separately and then all the results were integrated. Even
though a single decision tree may be over-fitting, this risk can be reduced by integrating
the results of all decision trees. In this paper, RFA model implementation combines all
results by averaging their probabilistic prediction, instead of letting each decision tree vote
for a single class.

As mentioned above, the actual function of the region may not be consistent with the
planers’ intention. In this study, the samples were selected by using a prior information
from multiple sources, including urban land use planning maps, remote sensing images
and online maps. The urban land use planning maps can be obtained through the web-
site (http://zrzyhgh.wuhan.gov.cn/zwgk_18/fdzdgk/ghjh/zzqgh/202001/t20200107_
602858.shtml, accessed on 12 May 2017). The samples including the five types of functions:
residential regions, commercial regions, business regions, open green spaces and industrial
regions. The training samples were randomly divided into two equal-sized subsets, one
used for the training and another one used for the testing. Then the model was trained
using the training samples and the testing samples were used for the accuracy evaluation
of the trained models. To ensure the robustness of the classification, the above-mentioned
random forest classification was repeated 100 times, and then the average accuracy was
used as the final evaluation result. Additionally, several state-of-the-art POIs semantic
mining methods, such as term frequency-inverse document frequency (TF-IDF) [9], Latent
Dirichlet Allocation (LDA) [52] and Word2vec [10] were used for comparison with our
proposed method.

4. Results

In this study, 2315 research parcels contained a total of 537,375 POI data, while Tianx-
ingzhou and a few parcels without POI were removed. Then, the three-level classification
of POI types (496 types in total) was used to construct the POI sequences for parcels, which
could have different lengths. Figure 6 shows the distribution of POI sequence length of
parcel. It can be seen that the POI sequence length of most parcels is smaller. When the
length is up to 500, the cumulative percentage reaches 91.69%. Therefore, this study sets
the fixed length of the sequence to 500. Finally, sequence groups for each parcel were
constructed as described in Section 3.1.
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adopted to construct and train the regional potential semantic extraction model described
in the Section 3.2. The LSTM structure was adopted to the latent semantic feature extraction
model. In this model, the number of layers of LSTMs was set to 1, the latent semantic
feature dimension was set to 200, the mini-batch was set to 64 and the number of iterations
was 100.

4.1. Identification of the Urban Functional Regions
4.1.1. Urban Functional Regions Aggregation by K-Means Algorithm

As illustrated above, owing to the similar latent semantics of their POI spatial se-
quences, parcels with the same functional semantics will be more closed in the latent
semantic space than other functional parcels. The cosine-distance-based K-Means cluster-
ing algorithm was then performed to verify the discriminability and validity of the latent
semantic features. As shown in Figure 7, when the clustering is two types, the silhouette
score is the highest, then the silhouette score decreases gradually with the increase of the
number of clusters. As a result, when k = [2, 3, 4], the silhouette score could reach the top-3
values. Moreover, the local maximum is obtained when the number of clusters k is 6, 8
and 12.
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Figure 8 maps the K-Means clustering results with different values of k:
When k = 2, by comparing with the remote sensing map and the land use map of

comprehensive planning in Wuhan, we can find that the obvious circle structure can be
observed in Figure 8a. Moreover, the clustering results divide the urban spatial function
into a central area and an edge area, which may be related to the function and development
level of the urban area in the center and suburbs.

When k = 3, the further division is performed compared to k = 2, and the circle
structure still exists in Figure 8b; not only that, but the class 2 category at this time is
more concentrated in the city center area, while class 3 is more concentrated in the city
edge/peripheral area. Through the comparison of remote sensing maps and land use maps
of comprehensive planning in Wuhan, the distribution of class 3 is consistent with the
actual layout of various industrial areas in Wuhan.

When k = 4, the clustering map in Figure 8c is mainly to reclassify class 2 and class
3 when k = 3, which produces class 1, class 3 and class 4 at this time. Additionally,
the class 2 in Figure 8c is basically consistent with class 1 in Figure 8b. Among them,
class 1 is more concentrated, showing a partial patchy and point-like distribution. At the
same time, through the comparison of remote sensing maps and urban land use maps of
comprehensive planning, it is found that the distribution of class1 categories is consistent
with the distribution of commercial areas in Wuhan.
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4.1.2. Identification of Urban Functional Regions Based on Random Forest Algorithm

Using the unsupervised K-Means clustering method, it can be seen that the proposed
method can effectively extract the latent semantic features of POI sequences. However, the
unsupervised method cannot give an explicit definition of the classified categories, so the
supervised classification method based on existing training samples is the necessary means
that need to be adopted.

Based on the latent semantic feature vectors extracted from the above model, this paper
uses the random forest algorithm to classify urban functional regions. At the same time,
96 samples have been randomly sampled. Additionally, some state-of-the-art methods,
including TF-IDF [9], LDA [2] and Word2vec [43], are used to compare with our methods.

RFA model provided by the scikit-learn module library (https://scikit-learn.org/
stable/, accessed on 10 May 2019) was adopted to classify urban functional regions, where
the number C of decision trees is set to 200. The implementation of the Word2vec, LDA and
TF-IDF models for comparison experiments was performed using the module provided by
the genism module library (https://radimrehurek.com/gensim/index.html, accessed on
23 September 2019), where the model parameter settings for each method are maintained
consistent with previous literature.

To ensure the stability of results, each method was repeated 100 times. Table 2 provides
an accurate assessment of urban functional region classification using different methods,
and Figure 9 shows the results of urban functional region classification mapping using
different methods.

Table 2. Accurate assessment of urban functional region classification via different methods.

Methods Overall Accuracy Kappa Score

Word2vec 0.6657 ± 0.0137 0.5769 ± 0.0173
TF-IDF 0.6486 ± 0.0254 0.5523 ± 0.0330

LDA 0.5972 ± 0.0196 0.5014 ± 0.0249
Block2vec 0.7186 ± 0.0186 0.6429 ± 0.0237

TF-IDF: term frequency-inverse document frequency. LDA: Latent Dirichlet Allocation.
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Inconsistent with the previous studies, although the TF-IDF method only considers
the quantitative features of POIs in the region, it still achieves relatively good classification
accuracy compared to the LDA model. The Word2vec model, which considers both the
quantitative features and spatial distribution features of POIs, has a higher classification
accuracy than the TF-IDF and LDA because it considers both the frequency characteristics
of the POI and the spatial relationship between the POIs. Compared with the above results,
the proposed Block2vec achieved the highest classification accuracy and Kappa score.

Figure 10 shows the confusion matrixes of urban functional region classification via
different methods. Compared with other methods, the proposed method (Figure 10d) has
the highest accuracy in the classification of Residential, Commercial and Industrial regions,
and the top-2 accuracy in the classification of Business. The Word2Vec method (Figure 10a)
has the highest accuracy in the classification of Business and Open Space, while it is lower
in the classification of Residential and Industrial. The results show that, considers the
spatial relationship of the parcels, the feature extraction model that can effectively improve
the classification accuracy of Residential, Commercial and Industrial, but cannot improve
the classification accuracy of the Open Space.

To further verify the classification results based on the proposed model, three local
regions were compared with Google map and land use map of comprehensive planning
in Wuhan. Figure 11a is the central area of the city, and its actual function type is mainly
based on the business and commercial regions. The results show that the distribution of
the proposed model classification is consistent with the distribution of planning maps.
Figure 11b is another central area of the city, and its commercial scale is smaller than that in
Figure 11a. The business in this area’s planning map is allocated from north to south, while
the classification results of the proposed model are allocated from east to west. Figure 11c
is a business and industrial area in the southeastern part of the city. It can be seen that the
classification results of the proposed model are completely inconsistent with the planning
map. Through the comparison with online maps, the distribution of the proposed model
classification is more realistic. Even though most of the regions in Figure 11c is planned
as industrial land, with the arrival of a large number of software technology companies,
the functions of this regions have gradually transformed into business and commercial
functions in this area. This confirms the previous research that the evolution of the actual
function of the region may not be consistent with the planers’ intention.
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4.2. The Influence of the Size of Latent Semantic Features

The latent semantic feature model used in this paper maps the POI sequence in a block
to a latent high-dimensional semantic feature space, so the dimension of the latent semantic
feature directly determines the semantic richness of the latent feature. If the dimension of
the latent semantic feature is too low, it is difficult to obtain rich POI sequence semantics
and lead to loss of information; however, too high a dimension may lead to information
redundancy. Therefore, in this section, we try to analyze the ability of different size latent
semantic features to identify and distinguish urban functional regions.
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Figure 12 shows the classification accuracy evaluation changes of urban functional
regions when the model is set to different dimensions. It can be seen that when the hidden
layer size is between 10–100, with the increase of hidden layer size, the latent semantics
acquired are more and more abundant and the classification accuracy is higher. When
the hidden layer size is between 100 and 250, the change of classification accuracy is not
obvious as the size is improved. When the hidden layer dimension continues to increase
to 300, the classification accuracy decreases due to the too high dimension of the latent
features. Therefore, it is appropriate to set the latent semantic feature size of the hidden
layer to 200 in this paper.
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5. Discussion

A timely and accurate urban functional regions map is conducive to urban manage-
ment and urban planning. This study proposed an effective approach for the identification
of urban functional regions by extracting latent semantic features of POIs in parcels. The
proposed approach considers the following spatial relationships of POIs: (1) The spatial
relationship of POIs in a parcel: There is an interdependent and competitive relationship
between adjacent POIs in geographic space [53]. (2) The spatial accessibility varies in
different areas of a parcel: Generally speaking, there are more public facilities in the areas
near the streets due to the high accessibility for external contact, while the areas near the
interior of the parcel have some unique facilities. (3) The relationship between parcels:
Parcels with different functions are often close to or distant from each other due to their
interdependent or competing relationships.

This study agrees with previous studies [2,9,10,42] that natural language processing
(NLP) has a good advantage in extracting the semantic features of POIs. However, few
studies have explicitly addressed the spatial correlations among parcels. In this study,
considering relationships existing between POIs, the POI semantic sequence was built with
specific order. Then, sequence group was constructed by considering the relationships
existing between parcels (center parcel and context parcel). The LSTM network was used
to extract the former, while the Encoder-Decoder structure was used to extract the latter.
Consequently, the results achieved the highest accuracy (OA = 0.7186, Kappa = 0. 6429),
which indicates that our model can effectively extract the latent features for more accurate
classification of the urban functional regions. Moreover, the result of the confusion matrix
indicates that the proposed method could effectively improve the classification accuracy
of the Residential, Commercial and Industrial regions. This reveals that those types of
parcels have close spatial correlations, while they are less spatially connected to Open
Space land. Furthermore, the comparison of local regions classification results verified
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that the evolution of the actual function of the region may not be consistent with the
planers’ intention.

Classification accuracy for the four methods using POI data ranged from 0.5972 to
0.7186, which were close to the accuracy of relevant studies [8,30,35]. However, these were
lower than that of remote sensing land use classification. The main reason is that the remote
sensing images mainly classify the land based on the physical features of the land, and it
has accumulated a large number of labeled datasets. Different from this, the classification
based on the POIs was trained using the samples chosen by ourselves, with a small sample
size and subject to subjective influence. At the same time, some regions’ functions are
affected by multiple human social activities.

It should be noted that this study has been examined only in the urban area, where
there are abundant service facilities. Thus, it may be difficult to transfer this approach to
areas with fewer POIs, such as suburbs and rural areas. Additionally, mixed-function type
has not been mentioned as it is hard to artificially define this type [41,43]. Nevertheless,
this paper innovatively proposed a parcel-based semantic extraction method, which out-
performed other state-of-the-art methods reported in the paper in terms of its ability to
extract POI semantics.

In addition, the research in this paper classified the parcels into five types of functional
regions, which may conflict with standard urban land use classification. Some standard
land use types are a mixture of various human social activities, which may not correspond
exactly according to the land use types. There is also no unified definition standard in
relevant studies [8,32,36]. However, this paper does not attempt to use the proposed
method to define types to replace standard urban land use types. This research aims to
provide a better data-driven method to quickly and accurately identify regional functions
from POI data. Planners and government management thus can use this method to
continuously and effectively observe and monitor changes in regional functions in the city.

Moreover, some functional regions can be subdivided. For instance, the residence
could be divided into low-density and high-density residential land, which could be
identified with remote sensing data [14]. However, it is difficult to distinguish them by the
POIs alone. Incorporating other data, such as high-resolution remote sensing images and
social media data, can effectively improve the ability to distinguish among more different
types of urban functional regions.

6. Conclusions and Future Work

With rapid urbanization, the urban spatial structure of urban functional regions has
become increasingly diverse and sophisticated. Therefore, it is necessary to produce
a timely and accurate urban functional region map for urban management and urban
planning. This study proposed an effective approach, called Block2vec, for the identification
of urban functional regions by extracting latent semantic features of POI in parcels. First,
a POI sequence and further sequence group were constructed for each parcel. Then, the
POI sequence was mapped to a high-dimensional space by building a Block2vec model.
Furthermore, the K-Means clustering and RFA classification were adopted to reveal the
urban structures and to identify the functional types. Compared with other state-of-
the-art methods (TF-IDF, LDA and Word2vec), the Block2vec method could obtain the
highest accuracy (OA = 0.7186, Kappa = 0.6429). Furthermore, the proposed method has
a significant improvement in the classification accuracy of residential, commercial and
industrial land. The proposed method can help urban management and urban planners to
understand the distribution of urban functional regions in a timely and accurate manner.
At the same time, this study also verified the potential of the neural language process
model in the semantic information extraction of POIs.

For future work, accumulating more study areas will help us to obtain more training
samples of functional regions. Last but not least, incorporating other data, such as high-
resolution remote sensing images and social media data, can effectively improve the ability
to distinguish among more types of urban functional regions.
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