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Abstract: Mapping and understanding the differences in land cover and land use over time is an
essential component of decision-making in sectors such as resource management, urban planning,
and forest fire management, as well as in tracking of the impacts of climate change. Existing methods
sometimes pose a barrier to the effective monitoring of changes in land cover and land use, since a
threshold parameter is often needed and determined based on trial and error. This study aimed to
develop an automatic and operational method for change detection on a large scale from Moderate
Resolution Imaging Spectroradiometer (MODIS) data. Super pixels were the basic unit of analysis
instead of traditional individual pixels. T2 tests based on the feature vectors of temporal Normalized
Difference Vegetation Index (NDVI) and land surface temperature were used for change detection.
The developed method was applied to data over a predominantly vegetated area in northern Ontario,
Canada spanning 120,000 sq. km from 2001–2016. The accuracies ranged between 78% and 88% for
the NDVI-based test, from 74% to 86% for the LST-based test, and from 70% to 86% for the joint
method compared with manual interpretation. Our proposed method for detecting land cover change
provides a functional and viable alternative to existing methods of land cover change detection as it
is reliable, repeatable, and free from uncertainty in establishing a threshold for change.

Keywords: MODIS; T-squared test; automatic; land cover change detection; operational; super pixels

1. Introduction

The complexity of the Earth’s dynamics requires continuous monitoring of its data
to be able to predict future events and respond accordingly. It is vital to identify changes
in land use and land cover (LULC) and atmospheric conditions as they impact the global
climate. Monitoring forest and agricultural land is sometimes carried out to assist in
land use planning or for tracking the exploitation of natural resources. Our objective for
LULC change analysis is to examine the impacts of climate change from land management
schemes. The area under study is in Northern Ontario, Canada. The region is expected to
see an increase in land use change due to the opportunities the warmer weather brings.
With the different activities that will occur, greenhouse gas emissions (GHG) and stored
organic carbon will be displaced. This study is part of a larger work which will assess the
amounts of soil organic carbon and GHG’s from the land cover changes which occur in
the region.

In addition, the information on the land cover and land use change can be factored
into critical decisions made by governments. There are two common approaches to change
detection. In the first category, the objective is to detect whether a change has occurred
or not. The outcomes are always dualistic: “Change” or “no change.” In the second
category, the nature of the change is also determined, and thus the solution provides “from-
to” information. For studies focusing on large-scale monitoring, “change/no-change”
detection is often carried out. In addition, results from “change/no-change” detection
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could be used as the first step to identify areas for further detailed “from-to” change
detection. The “change/no-change” detection was the focus of this study. A detailed
change detection based on high spatial resolution imagery will be carried out for the areas
and for the periods where/when changes occurred.

Advances in remote sensing have permitted the development of automated or semi-
automated change detection methods [1,2]. The thresholding method of change analysis
establishes a threshold beyond which a change is assumed to have occurred. For instance,
image differencing uses a threshold for grey levels of the image to note pixels which have
undergone land cover changes [3,4]. The image differencing can be performed through
algebraic image differencing, vegetative index differencing, image ratioing, regression, or
change vector analysis [5–8].

Specifically, Kleynhans et al. [4] applied a threshold method to detect where change
had occurred, and obtained a change detection accuracy of 89%. Lu et al. [9] applied the
Breaks for Additive and Seasonal Trend (BFAST) model to the spatiotemporal region to
observe change for a period of 12 years. The feature used was the temporal enhanced
vegetation index. The highest producer’s accuracy obtained on the changed pixels was just
over 50% at a 5% significance level. Another study used a threshold method and statistical
analysis [10]. For change detection, the authors considered the pixel neighborhood, where
the size of the neighborhood again was chosen by a trial-and-error method.

This current work aims to improve on a change detection method which examines
pixel-by-pixel differences. In those methodologies, the analyst must choose the threshold
to identify where change has occurred or not. For that method, the analyst assigns the
minimum or maximum threshold value to decide if change in land cover has occurred or
not. Even though these pixel-based methods have successful accuracies, a drawback to
the method is having to choose an appropriate threshold, finding a threshold is typically a
trial-and-error process. The shortcoming of this process is not knowing which threshold is
appropriate for the analysis. Furthermore, some pixel-based image differencing methods
produce false detection due to registration errors [10]. As a result, further research is
required for addressing the abovementioned issues.

A change detection technique is chosen according to the application. For the appli-
cation of large-scale monitoring of binary change, our proposed method is appropriate
and operational. In literature, there are various features which have been exploited for
land cover/land use change detection, including spectral or spatial features of remotely
sensed images, the texture, or vegetation indices. This work used land temperature and a
vegetation index as features to detect change.

The Normalized Difference Vegetation Index (NDVI) is a well-used vegetation index
because of its success in detecting vegetation, the ease with which it is calculated and
interpreted, and its accessibility from various satellite data. The NDVI is known to be
the primary vegetation index for global operational applications [11]. The NDVI was
used in our work to monitor change in the study areas. The monitoring was done on an
intra-annual basis and an interannual basis. The other feature considered in this work
is the Land Surface Temperature (LST). Studies have shown the impact that land cover
and land use changes have on LST [12–15]. Depending on the type of land cover present,
the surface temperature in an area could vary [16]. Similarly, when the land undergoes
a change in land cover or land use type, it could experience a simultaneous change in
LST. Majumder et al. [17] noted that LST could decrease in an area which increases in
agriculture. Zhang and Liang [18] used China’s land use/cover datasets (CLUDs) to study
the impact of land cover change on surface temperature. The database contains images
of 1km raster size having 25 land cover classes. These classes are further grouped into
cropland, grassland, woodland, unused land, water, and urban areas. The study conducted
by Zhang and Liang [18] showed that land cover change from cropland to built-up areas
increased the LST, while a change from forest to cropland reduced the surface temperature.

Although a multitude of studies have examined the relationship between NDVI, LST,
and land cover/land use change, few have aimed to use LST change to predict or express a
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difference in land cover. This paper, therefore, proposes a model to predict an area of land
cover change from both LST and NDVI values.

Other statistical change detection methods have been proposed in the literature.
In the study by Waylen et al. [19], interannual changes were detected over a 25-year
period from an AVHRR NDVI dataset. The development of the timeseries persistence
analysis was based on a null hypothesis which stated that the values of NDVI are normally
distributed and serially independent [19]. The metrics used were measures of directional
persistence, relative directional persistence, and massive persistence of NDVI change. The
first two metrics only consider the direction of change, while the latter also accounts for
the magnitude of change. The use of the massive persistence test requires a separate
classification to obtain the statistical control pixels which did not experience change in land
cover or land use. Each persistence method compares a monthly NDVI to a user-selected
benchmark NDVI value (directional persistence) or to the monthly NDVI observation of
the previous year (relative directional persistence and massive persistence method) to
determine if there has been a positive or negative change. Monte Carlo simulations were
used to compute the variables’ distributions. Teng et al. [3] used two hypothesis-test-based
land cover change detection methods: The bivariate joint distribution method and the
conditional distribution method. The former method takes a group of no-change pixels
(identified from a post-classification method) to estimate the mean and covariance matrix
of each land use class. This distribution could vary with land use classes. The conditional
distribution similarly uses parameters which are class-dependent and need to be estimated
from the no-change pairs of pixels of individual land use classes. Testing the methods
using SPOT-4 images, the methods had accuracies ranging from 92% to 94%. For bivariate
joint distribution, the highest overall accuracy was achieved at the 5% level of significance,
while the highest overall accuracy was achieved at the 10% level of significance for the
conditional distribution method. Although these statistical methods did not require a
threshold for change detection, they are reliant on a prior land use classification.

In this study, we propose an automatic change detection process. Our method uses
a hypothesis test as the basis for determining where land cover change has occurred. To
the best of our knowledge, many methods of change analysis use threshold methods, but
a hypothesis-based test is scarcely used for such analyses. The developed method was
validated based on data collected over a large area in Northern Ontario, Canada.

2. Materials and Methods
2.1. Study Area and Data

The study was conducted over Ontario’s Great Claybelt region located in northeast
Ontario, Canada. The region spans 120,000 sq. km, centered at (49.476 ◦N, 82.283 ◦W).
Two areas within the Claybelt region were selected for validation: The town of Hearst at
the westernmost part of the region, and the town of Cochrane in the southeast portion of
the Claybelt, as illustrated in Figure 1. Hearst covers an area of 15,000 sq. km, while the
town of Cochrane covers 539 sq. km [20]. Although large spatially, these areas are sparsely
populated. For instance, Hearst has a population density of 51.1 persons per sq. km, and
Cochrane’s population density is 9.9 persons per sq. km [20].

This study examined change within 3 periods: From 2001 to 2005, from 2005 to
2009, and from 2010 to 2016. Initially, to study the land use in the study area, the maps
from Agriculture and Agri-Foods Canada (AAFC) were reviewed. Figure 2, obtained
from AAFC datasets, demonstrates one of the challenges in characterizing land usage in
Northern Ontario: Datasets are decadal, and they often do not extend over the entire region.
The lack of reliable, accessible, and continuous geospatial information in Northern Ontario
has resulted in expensive and protracted solutions, or broad portrayals of the region. This
example—with no data coverage at the topmost portion of the Claybelt—highlights the
urgent need to develop suitable methodologies for detecting and mapping land cover
dynamics in Northern Ontario for forest and agricultural lands. These, in turn, can be used
to study the changes in soil carbon stock and greenhouse gas emissions.
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Figure 1. Study areas of Cochrane and Hearst in the Great Clay Belt of Ontario.

Figure 2. Example of land use map for the Great Claybelt area.

Based on existing land cover maps such as the Ontario Far North Land Cover Compi-
lations [21,22], the Cochrane map indicates that, in 2016, the town was comprised of mostly
mixed forest in the central and northern parts, while evergreen needleleaf coniferous forests
were in the northwestern part of the town. The land cover types categorized as ‘savannah
trees’ or ‘woody savannahs’ were found mostly in the west-central to south part of the
town. (The savannahs correspond to fen, bog, and trees land covers in the Ontario Far
North Land Cover map. They will henceforth be referred to as fen/bog in this writeup.)
That year, Cochrane comprised mostly of fen/bog, grassland, and deciduous broadleaf
trees in the central part of the town (see Figure 3). The mixed forest covered most of the
northern part of the town, and fen/bog and mixed forest had the highest population in
the south. The land cover map of Cochrane also distinctly shows an area of cropland in
the central part of the town. Given the moderate resolution of the map, this is significant,
indicating that there is a vast amount of farmland in that portion of Cochrane.
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Figure 3. Example of smoothing performed on NDVI data.

That swath of cropland in central Cochrane was a change from the town’s landscape a
decade and a half prior. In 2001, Cochrane was mostly fen/bog from the central part of
the town to the south, with some grassland and deciduous trees. The contrast is evident
from the land cover maps, which show that a large portion of the fen/bog areas from
2001 had been converted to grassland and cropland in the central part of the town by
2016. Furthermore, the deciduous trees’ population has increased whereas the fen/bogs
have decreased.

There have also been changes in land cover in the Hearst forest area over the 16
years examined. For instance, in 2001, the southernmost part of the town was covered by
fen/bogs, grassland, and mixed forest. In 2005, that portion of the town was almost entirely
fen/bog and mixed forest only. By 2010, the mixed forest had taken up most of the area
where the fen/bog had been, and some of the fen/bogs were replaced by deciduous trees.
In 2016, very little of the fen/bog remained, and the area was predominantly mixed forest
with a little of deciduous trees. A similar significant change is also noticed in the northeast
part of Hearst. In 2001 the northeast part of Hearst began as a mix of coniferous trees,
mixed forest, and some fen/bogs. By 2005, some of the coniferous trees had been replaced
by fen/bogs and grassland. In 2010, there was even more dominance of the fen/bogs in the
areas where there was previously mixed forest and coniferous trees, and by 2016, most of
the mixed forest was replaced by larger portions of grassland and fen/bogs. The number
of coniferous trees did not appear to change much in that part of the town between 2010
and 2016. These land cover changes were observed from the land cover maps produced for
these years.

The remotely sensed data employed in this study were obtained by MODIS. The
NDVI and LST images were taken from Google Earth Engine. This web platform hosts
publicly available satellite imagery from around the globe which can be manipulated
for a variety of purposes. The MODIS Terra data products used for the change analysis
were the 16-day 250 m resolution product for NDVI (MCD13Q1) [23], the 500 m resolu-
tion surface reflectance (MOD09A1.006), and the 8-day 1 km resolution product for LST
(MOD11A2) [24]. Linear interpolation was performed for missing data, interpolating both
temporally and spatially. An Image Collection with a total of 23 images was used for the
months’ NDVI maps, and for the LST, an Image Collection of 4 images was used for each
month. The data in Google Earth Engine have typically undergone preprocessing. The
analysis was performed with the Google Earth Engine code editor [25], ArcMap 10.7 [26],
and MATLAB [27]. It is worth mentioning that though NDVI was used because of its
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historical success as a vegetation monitoring measure, the developed method should work
for other products, such as the Enhanced Vegetation Index (EVI), Leaf Area Index (LAI),
and Fraction of Photosynthetically Active Radiation (FPAR), which will be explored in
future work.

Image preprocessing was carried out to remove the unwanted artefacts such as those
created by atmospheric interferences. The MODIS Surface Reflectance product at 500 m res-
olution was estimated to be the surface reflectance at ground level. It was corrected for atmo-
spheric conditions such as gasses, aerosols, and Rayleigh scattering. Similarly, the MODIS
NDVI data from Google Earth Engine consists of atmospherically corrected bi-directional
surface reflectance which have been masked for water, clouds, heavy aerosols, and cloud
shadows. The LST Level 3 products used in the simulations had cloud-contaminated LSTs
removed already. Another element of image preprocessing was the smoothing of input data
to remove noise. In this work, we used a Savitzky-Golay filter as the smoothing technique.
Other smoothing methods considered were the Best Index Slope Extraction, logistic and
double logistic smoothing, asymmetric Gaussian, and mean- and median-moving average.
The premiere method did not change or smooth any of the NDVI data that it was applied
to and thus was not used further. Of the latter 2 methods, the moving median gave a better
representation of our data compared to the moving mean. The rest of the filtering methods
tested also produced a good degree of smoothing to the input data. Of all methods, the
Savitzky-Golay achieved the best result, using the greatest number of datapoints while still
maintaining the general trend of the plots. A window size of 5 was chosen as our proposed
approach obtains its optimal performance with that window size. Figure 3 is an example
of the effect of smoothing on the NDVI data in 2010. The rest of this section describes the
approach taken to create our land cover change detection method and the procedure used
for assessing the accuracy of the method.

2.2. Methods

As mentioned earlier, the change detection in this study was performed over 16 years,
beginning in 2001, using NDVI and LST data to assess the change in land cover roughly
every 5 years. Super pixels were used as the basis of analysis for detecting change instead
of the traditional pixels-based method. They were relatively small in size to ensure the
areas covered by them were homogeneous. Alternatively, an arbitrary neighborhood
around each pixel could be used as samples, for which each observation (pixel value)
may not follow the same random distribution. Moreover, the arbitrary neighborhood
may also be computationally expensive. To determine the size of the super pixels, the
spatial variations of the areas of interest exhibited in the MODIS data were analyzed using
a semivariogram. The input to the semivariogram was the first principal component of
the MODIS reflectance. The super pixels were obtained based on the first 3 principal
components of MODIS imagery covering the optical bands. The statistical test to determine
if significant change had occurred was performed on the individual super pixels of the
NDVI and LST maps. Below is the step-by-step process followed in our methodology.

Principal Component Analysis (PCA) [28] was performed on a 2001 image of the
surface reflectance with the first 7 MODIS bands. The PCA showed that more than 98% of
the data could be explained by the first 3 components.

To characterize the spatial variation of the study area, a semivariogram was first
calculated based on the first principal component. This allowed us to determine the
dominant object at each site so that a homogenous area could be found. The semivariogram
provided information on the appropriate size for the super pixels. Figure 4 illustrates a
semivariogram and how the sill and range are determined. For example, in Figure 4, the
plateau of semivariance values is reached at a range of about 104 pixels. Whereas the sill
explains the variance structure of the data, the range shows the farthest lag distance at
which observations are correlated. Hence, there is no spatial correlation for the observations
separated by more than 104 pixel units.
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Figure 4. Example of a semivariogram.

An image can be segmented such that each segment represents a collection of about
104 pixels having a similar characteristic such as pixel value or pixel intensity. The pixels in
this segment are termed super pixels. The super pixels can be compared to determine if a
change has occurred in the environment.

The super pixel package used in this study to perform the image segmentation was
the Simple Linear Iterative Clustering (SLIC) package. A characteristic of the SLIC is
that it makes smooth, regular-sized super pixels in smooth regions and highly irregular
super pixels in textured regions [29]. Image segmentation was carried out using the first 3
principal components.

The result from the image segmentation performed on the Hearst site is shown in
Figure 5 as an example. The unit for the super pixel was obtained from a 2005 LST image.

Figure 5. Result of image segmentation on Hearst area in 2005.
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Following the principle of ergodicity [30], pixel values within each super pixel were
considered as samples in the hypothesis test. Ergodicity is important because we do
not have a large number of samples from which to compute sample averages. For a
random process which is ergodic, only 1 sample function is required. In our remote sensing
application, we applied the spatial property of the observation to exhibit randomness.
Hence, using super pixels which are homogenous over a spatial area to represent our
data, we drew on the ergodic feature, which allowed us to use the population for the
statistical test.

Hotelling’s T2 test [31] was selected in this method as the T2 test can compare mul-
tivariate data. Thus, where univariate data can be compared using a t-test, multivariate
data can be compared using the T2 test. The T2 test, like the t-test, compares samples using
means. In Hotelling’s case, the multivariate mean is used because it compares the means of
2 or more samples. Thus, the T2 statistic can be considered as comparing a point in space
defined by the means of all the individual variables.

When X1, . . . ., XN are k-component vectors, and the normal distribution has a vector
mean µ and a covariance matrix Σ with the sample mean defined as

x =

(
1
N

) N

∑
i=1

Xi (1)

and the sample covariance matrix as

S =
1

n− 1

n

∑
i=1

(Xi − x)(Xi − x)′ (2)

then the generalized T2 statistic is given as

T2 = (x− µ0)
′
(

S
n

)−1

(x− µ0) (3)

where µ0 is a known vector, and there are n − 1 degrees of freedom.
The paired Hotelling’s T2 test statistic is given by the expression:

T2 = nx′S−1x (4)

The T2 test is more advantageous than a t-test because the Type I error rate is better
controlled in the former than in the latter. Another benefit of the T2 test is that it considers
the relationship between the different variables, thereby the differences between groups
can be obtained. The assumptions for this statistic are that the samples have normal
distributions, they are independent, and if there are only 2 samples, then they have equal
variance-covariance matrices.

The test was performed to confirm if change had occurred in an area. Thus, the null
hypothesis statement is: No land cover change has occurred in these areas in a 5-year period. The
hypothesis was tested using the difference in mean values of the parameters under study
for the 5 years. The null hypothesis would be rejected for the alternative hypothesis if the
sample data used for the study showed the null hypothesis to be false. That is, if change
had occurred, the null hypothesis would be rejected. The null hypothesis implies that the
mean LST and the mean NDVI remained the same. That is, their population mean vectors
are equal.

For both the NDVI and LST maps, the monthly mean of the parameter was obtained
for each super pixel. Then, a vector of these values was created in each year under study.
For instance, when comparing 2005 records to 2009, a 12 × 1 vector of the differences of
means was created. Also, for each segment, the covariance of both years’ data was found,
creating a 12 × 12 matrix.
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The range from the semivariogram was used to determine the maximum number of
pixels which should form a super pixel. Using Equation (4), the T2 statistic was found for
each super pixel. Thereafter, the Hotelling test was performed at a significance level of 5%.
The algorithm returns the value of 0 if the test indicates that an insignificant change has
occurred (that is, the null hypothesis should be accepted). Similarly, it returns a value of 1
if the mean vector difference indicates that a significant difference has occurred—that is,
the null hypothesis is rejected.

An extension of the proposed change detection method was explored whereby the NDVI
and LST data of each year were combined into 1 matrix, and their land cover change was
predicted using the algorithm described here. This extension entailed normalizing the NDVI
and LST data before making the comparison between the years (hereafter referred to as the
joint method). More details on this approach will be presented in the Sections 4 and 5.

The proposed method is well suited to forest areas. Croplands may produce results
of more occurrences of land cover change depending on the crop senescence. Thus, the
next part of this study will be important in agricultural areas, identifying the “from-to”
changes. Our method does not emphasize the magnitude nor type of change. Instead, it
identifies areas of change so we may concentrate on those areas to later identify the type of
land cover change to calculate carbon amounts.

To quantitatively estimate the performance of our change detection method, an as-
sessment of the accuracy was performed using higher resolution imagery. In total, 50
random samples (super pixels) were taken over the study area for the years 2001, 2005,
2009, 2010, and 2016. For these years, the sample locations were overlaid on maps of the
area at Landsat-level (30 m) resolution. Thereafter, the 50 locations of the Landsat-level
maps were compared via visual interpretation. The “change/no-change” verification was
performed by visual interpretation of 2 independent researchers. In a few instances, there
was disagreement in the manual interpretation of whether change had occurred or not in
the sample sites. The discrepancy in those cases was resolved by accepting the option which
represented the predominant status, e.g., if the sample location was mostly unchanged,
then it was classified as unchanged. Finally, the verification results were compared to the
output from the statistical test.

3. Results

Following the statistical tests, the program output an image of the study area, with
0 representing a no change area and 1 representing a changed super pixel. The areas where
there was a zero value were made transparent, and changed areas were given a grey color.
The results in the form of binary maps are shown in Figures 6–8 below.

Figure 6. Changed areas (colored) detected from 2001 to 2005 in (a) NDVI; (b) LST overlaid on the map of the study area.



ISPRS Int. J. Geo-Inf. 2021, 10, 325 10 of 21

Figure 7. Changed areas (colored) detected from 2005 to 2009 in (a) NDVI; (b) LST overlaid on the map of the study area.

Figure 8. Changed areas (colored) detected from 2010 to 2016 in (a) NDVI; (b) LST overlaid on the map of the study area.

Figure 6 illustrates the differences in areas where the LST test detected change and
where the NDVI test detected change between 2001 and 2005. Overall, the LST detected
more areas of significant change than the NDVI test. The most noticeable differences were
observed in the north central part of Hearst and in the mid-eastern part as the NDVI test
returned less significant change in land cover than the LST in those areas. The parts which
were more similar were in the western and central part of the town.

As shown in Figure 7, the land cover change detected between the LST and NDVI tests
was more similar in the west and central portions of the town. The change detection results
were dissimilar mainly in the north central part of the town, where the NDVI test predicted
mostly no significant change in that area, whereas the LST predicted that significant change
had occurred in that area between 2005 and 2009.

There was good agreement in the change detection results between the NDVI and LST
for the period 2010 to 2016 (Figure 8). Apart from the north central part of the town, and an
area in the central west part of the town, the change detection maps produced from NDVI
and the LST indicate similar land cover change occurring. In the areas of dissimilarity
noted, the NDVI indicated no significant change while the LST had predicted a significant
change in land cover had occurred.
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An accuracy assessment was conducted on each of the NDVI and LST change maps
produced, comparing areas of “change/no-change” with the high-resolution maps—maps
of the area at 30 m resolution, which is the Landsat-level resolution—for the years under
study. Tables 1–3 provide examples of the results achieved. The accuracies obtained varied
from 74% to 88%. For instance, the overall accuracy of the change predicted by NDVI
between 2001 and 2005 was 78%, while the LST had a 74% accuracy. Similarly, the accuracy
of the LST change detected was 84% for the period 2005–2009 (see Table 2). The average
overall accuracy of the change detection process was 81%.

Table 1. Confusion matrix representing change detection accuracy of NDVI-based test: 2005–2009.

Reference Data

Classified Data Changed Unchanged Totals User’s Accuracy (%)

Changed 21 4 25 84

Unchanged 8 17 25 68

Total 29 21

Producer’s
Accuracy (%) 72 81 Overall Accuracy: 76%

Kappa Coefficient: 0.52

Table 2. Confusion matrix representing change detection accuracy of LST-based test: 2005–2009.

Reference Data

Classified Data Changed Unchanged Totals User’s Accuracy (%)

Changed 24 3 27 89

Unchanged 5 18 23 78

Total 29 21

Producer’s
Accuracy (%) 83 86 Overall Accuracy: 84%

Kappa Coefficient: 0.68

Table 3. Confusion matrix representing change detection accuracy of NDVI-based test: 2010–2016.

Reference Data

Classified Data Changed Unchanged Totals User’s Accuracy (%)

Changed 21 5 26 85

Unchanged 1 23 24 96

Total 22 28

Producer’s
Accuracy (%) 96 85 Overall Accuracy: 88%

Kappa Coefficient: 0.76

The overall accuracy of the NDVI change map was 76% with a kappa coefficient of
0.52 in the period 2005 to 2009. The user’s accuracy for changed areas was 84%, while the
user’s accuracy for the unchanged areas was 68%. Similarly, the producer’s accuracy was
72% for the changed areas because eight areas which had undergone land cover change
were incorrectly classified as being unchanged. The producer’s accuracy was better for the
unchanged areas as only four of the unchanged areas were predicted by the statistical test
as being changed (see Table 1).

Table 2 below provides the accuracy results from the same timeframe when LST was
the feature on which the change assessment was made.
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The LST change map for the change between 2005 and 2009 yielded an overall accuracy
of 84%. Similar to the NDVI test for that period, more errors of omission were found in
the changed areas than errors of commission. However, for the unchanged areas, most of
those chosen for accuracy assessment were correctly classified as unchanged.

Table 3 displays another example of the results from the change detection test. When
NDVI was used to predict land cover change, the overall accuracy was 88% with a kappa
coefficient of 0.76.

In the detection period 2010–2016, there was less confusion in the NDVI change maps
pertaining to the changed areas. Only one area was incorrectly classified as unchanged (see
Table 3). This resulted in a high producer’s accuracy for the changed areas.

When the joint method of NDVI and LST together were used to predict land cover
change, the accuracies were in the same range as the standard (our proposed) method
using individual parameters. The average overall accuracy using this approach was 80%.
Table 4 below illustrates an example of the land cover change prediction results from the
joint method.

Table 4. Accuracy results from NDVI- and LST-based (joint) test: 2010–2016.

Reference Data

Classified Data Changed Unchanged Totals User’s Accuracy (%)

Changed 20 2 22 91

Unchanged 5 23 28 82

Total 25 25

Producer’s
Accuracy (%) 80 92 Overall Accuracy: 86%

Kappa Coefficient: 0.72

The resulting map from the joint method had a lower producer’s accuracy than the
user’s accuracy of the changed areas, signifying a higher omission error than commission
error (Table 4). The lower producer’s accuracy was evident in the changed category because
five changed super pixels were identified as unchanged, while only two super pixels which
were unchanged were incorrectly classified as changed. The overall accuracy from this
joint method was 86% for the period 2010–1016.

To examine the possible change in the study areas exclusive of land cover type, the
variations in NDVI and LST were observed from their monthly maps. Figures 3–6 illustrate
an example of how the maps of the two parameters were used to obtain a cursory perception
of the change in land cover in the study areas.

The NDVI maps created in Figure 9 show the difference in NDVI for the Hearst area
between 2001 and 2010. In January 2001, there was more healthy vegetation in the northern
parts than there was in January 2010. However, in March 2010, the vegetation cover was
much higher (on average 0.4) than in the same month in 2001 where the average NDVI
value was 0.17. Similar NDVI values were observed for May between 2001 and 2010. The
NDVI in November was similar in the 2 years, and the southern part of Hearst had a
slightly higher amount of healthy vegetative structure in 2001 than in 2010. Their average
NDVI values were 0.4 in 2001 and 0.45 in 2010.

Similarly, Figure 10 is a representation of the NDVI changes which occurred in
Cochrane between 2001 and 2010. Figures 11 and 12 display the differences in temperature
maps for the towns.
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Figure 9. NDVI maps of Hearst. From left to right: January, March, May, and November in 2001 (top) and 2010 (bottom).

Figure 10. NDVI maps of Cochrane. From left to right: January, March, May, and November in 2001 (top) and 2010
(bottom).

Figure 11. LST maps of Hearst. From left to right: January, March, May, and November 2001 (top) and 2010 (bottom).
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Figure 12. LST map of Cochrane. From left to right: January, March, May, and November 2001 (top) and 2010 (bottom).

Figure 11 shows that the land surface temperature was quite different in the 2 years
under comparison: January and March 2010 had a higher average temperature than in
2001, particularly in the east, south, and northwest. For example, the average temperature
in Hearst was 6 ◦C in March 2010, whereas it was −3 ◦C the same month in 2001. The
maps show that the temperatures were similar in May, with 2010 showing about 2–3 ◦C
higher temperature, particularly in the east and north of the town. November 2001 had
a higher average temperature than the same month in 2010. The average temperature in
2001 was 3.5 ◦C, while that in 2010 was −2.4 ◦C.

Figure 12 presents the differences in average surface temperature for Cochrane. As
shown in Figure 12, 2001 and 2010 had similar average surface temperatures in January
and November. Everywhere in Cochrane, March 2010 had higher average temperature
than in 2001. The differences in temperature were minor, with an average of 2.8 ◦C and
−2.9 ◦C, respectively. May 2010 also showed a 2 ◦C higher average temperature than May
2001, particularly in the central portion of the town.

Figures 10–12 represent a cross-section of the spatial distribution of NDVI and LST in
Hearst and Cochrane over the examined years.

4. Discussion

There is a multiplicity of ways carbon is introduced into an ecosystem. Our project,
of which this paper is one aspect, seeks to quantify the carbon and GHGs linked to land
use conversion in farmlands and forests. Studies have shown that land cover change and
land use change can promote global climate change [32]. When there are disturbances
to these environments, there is a corresponding effect on the carbon levels. For example,
there could be a decrease in ecosystem carbon when trees are logged and removed from
the forest floor. Similarly, when the farmland undergoes change to become a woodlot or is
abandoned, there could be a net carbon increase. Between 2007 and 2016, the total emissions
from forestry and other land use change (e.g., afforestation, deforestation, wood harvest,
peatland burning) amounted to 5.2 (±2.6) Gt CO2 per y, whereas the total worldwide
emissions from other sources such as emissions from industrial sources, aviation, and
waste amounted to 33.9 (±1.8) Gt CO2 per y in the same period [33]. This paper was the
first phase of the project: Identifying areas which had undergone some land cover change.
Thereafter, these changed areas will be examined more closely to determine the type of
change to quantify the net carbon emission from each land use change.

The NDVI has long been used as an indication of the presence or absence of healthy
vegetation. Through remote sensing observations, the vegetation canopies and characteris-
tics of the landscape are estimated. The LST is also an important indicator of the changes in
an environment or landscape. For example, if an area was barren land and then converted
to being built up, or if it was bare and then changed to being highly vegetated with copious
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tree coverage, the average LST of the area would be different between the two states. The
LST has been shown to be affected by land cover or land use changes, whether induced by
natural causes or human activity [34], with bare ground being most affected by changes in
LST [34]. These two parameters—the NDVI and LST—can be used in monitoring tools of
global climate change effects. Textural features are commonly used and are more effective
when higher spatial resolution imagery is used. In this study, the main objective was to
develop an operational method. With a low spatial resolution imagery involving broad
cover types, the seasonal changes in foliage and temperature are more effective measures
which could be reflected by temporal NDVI and surface temperature. In future research,
other indices will be investigated.

As mentioned in the Introduction, this study presents an operational method to
determine where land cover change has occurred. The proposed method for determining
the land cover change that took place in a given period uses an algorithm we developed. It
applies the Hotelling T2 statistical test to determine when a significant difference between
two sets of data has occurred. An analyst only needs to define the required significance level
of the T2 test. This is easier for the user and provides more consistent results than existing
methods of change detection which necessitate choosing a threshold for determining
change, where that choice is made by trial-and-error. Image processing techniques of
Principal Component Analysis and image segmentation were performed on the input data.
In our study, we subdivided the input images into super pixels. The same super pixels
obtained based on the first three principal components of MODIS imagery covering the
optical bands were used for both NDVI and LST. It is worth mentioning that the same
super pixels were used for both NDVI and LST. There is the possibility that using the same
super pixels might not be “ideal” for LST analysis. It is assumed that the super pixels
obtained from the high spatial resolution optical imagery would capture the variations
exhibits in the low spatial resolution thermal imagery. The image processing also entailed
Savitzky-Golay data smoothing. Although other methods of smoothing were explored,
similar results were obtained.

It should be noted that our proposed method is not a classification effort. Therefore,
performance comparisons were made to land cover change detection methods which only
considered a change or no change, as our method does. An assessment of the accuracy of
the method was performed to estimate the agreement with the reference data, the Landsat-7
imagery of the study areas. The tests resulted in overall accuracies ranging from 74% to
88% for the three time periods under study. This result is consistent with similar studies of
land cover change detection using MODIS data [1,3,10,35]. Although the LST has a spatial
resolution of 1km while the NDVI data has a resolution of 250 m from the MODIS satellite,
the accuracy results within the study period are comparable for both parameters.

The joint method compared well to the standard change detection method proposed.
Apart from the first change period, the overall accuracy of the joint method was roughly
equal to or better than the average accuracy obtained for the standard method which uses
individual features. For the 2001–2005 change period, the accuracy of the joint method was
70% compared to the standard’s average of 78%. The joint method had an 84% accuracy in
change detection between 2005 and 2009 compared to an average of 80% for the standard
methodology, and the joint method had an 86% accuracy for the change detected between
2010 and 2016. This is about equal to the average accuracy of 87% using the standard
method. In general, the predicted change results are consistent in each of the detection
periods. Upon examining the results further, it was observed that most of the discrepancy
in change predicted by the two features occurred in areas where the cover type at the end
of the detection period was mixed forest. For instance, several errors of omission occurred
where the cover type had changed from deciduous treed to mixed forest. In the study, the
joint method provided similar results to the proposed standard method. Before running
the statistical test, we checked if there was a significant correlation between the LST and
the NDVI—if the LST can be a predictor to characterize the vegetative state of the land
under study. We observed that the NDVI and LST parameters were well correlated. Testing
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the correlation at different areas of the Great Clay Belt during the 16-year study period, we
obtained correlation coefficients ranging from 0.85 to 0.94. In situations of high correlation
between parameters, the joint method could be a suitable substitute, though our standard
change detection method is being proposed here.

As part of the post-calculation results assessment, we compared our results to another
method in the literature. Thus, change vector analysis (CVA) was performed. A change
vector can be calculated between two vectors in n-dimensional space over the same geo-
graphical location within a time period [36]. Figures 13–15 provide examples of the change
amount and direction within a detection period.

Figure 13. Change magnitude (a) and direction (b) in Cochrane between April 2005 and April 2006
and between November 2005 and November 2006.

Figure 14. Change magnitude and direction in the Heart forest area from 2001 to 2005.
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Figure 15. Change magnitude and direction in the Hearst forest area from 2009 to 2016.

Figure 13 illustrates the change calculated in Cochrane between April 2005 and April
2006. The CVA was done in ArcMap. The figure illustrates a moderate change throughout
most of the area, except in the southernmost part of the town where there was less change.
Similarly, comparing the change between November 2005 and 2006, there was change
mostly between 0.04 and 4.6. The direction of change is also illustrated in Figure 13, which
shows there was mostly a positive shift in the feature between the 2 years.

Similarly, the CVA on NDVI maps from Hearst from 2001 to 2005 and from 2009 to
2016 is illustrated in Figures 14 and 15. These figures show that the landscape changed
or shifted in various parts of the Hearst forest area over the periods, with the change
ranging between 10 to 60 in the first period and averaging about 10 in the second period.
The direction of change was mostly negative in the eastern part of the Hearst forest area
between 2009 and 2016, while it was mostly positive in the Hearst region between 2001 and
2005. Overall, the CVA maps indicate most of the Cochrane and Hearst region experienced
change during the detection period, though of varying magnitude.

We observed that our proposed statistical method found several super pixels which
had experienced change in the years under study. This might have to do with the geography
of the study areas: Both towns examined are heavily vegetated. Furthermore, there are
forest areas in the Great Clay Belt which are continuously logged. Figure 16 illustrates some
of the disturbances which regularly occur in the Claybelt area, with the figure displaying
some events which occurred between 2001 and 2009. With the various activities in the
region which could impact the landscape, the changes we observed in our analysis is to be
expected. They are also borne by the visual differences observed in Figures 9–12. As the
figures show, there are differences between the surface temperature and vegetation index
between 2001 and 2010. Thus, Figure 16 gives a possible explanation as to why several
areas of change were detected. As a quick check to confirm the changes in vegetated areas
in Hearst, the Hansen et al. [37] method of detecting forest loss and forest gain was used
to estimate the yearly forest area changes over the study period. It was seen that there
was approximately 18,000,000 m2 loss between 2006 and 2007, and between 2008 and 2009,
there was 8,000,000 m2 loss. In addition, 26,000,000 m2 forest loss occurred between 2010
and 2011, and approximately 12,000,000 m2 forest gain was estimated in the town between
2014 and 2015. These figures again confirm the expectation of observing significant change
from the statistical test method.
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Figure 16. Illustrating the disturbances which occurred in the Claybelt from 2001 to 2009.

Assessing “change/no change” in agricultural lands may require a different approach.
These lands may experience changes more than once in the year following the pattern of the
growing season. Thus, one may want to demarcate those areas to be investigated separately.
For instance, the vegetation index would measure the variation in greenness to not only
determine if and where agricultural land changed during the year. It can also determine if,
for instance, an area of land was converted from a forested habitat to an agricultural area.
These types of land conversions will be of great interest when studying land use change
for the purpose of determining the carbon or GHGs emitted from the conversion.

5. Conclusions

In this study, we proposed an automatic method to detect binary land cover change
from a statistical test. Using the NDVI and LST parameters of MODIS data, we determined
where significant land cover change had occurred in the study areas. The study areas were
analyzed within super pixels as necessitated by the statistical test. A high average accuracy
was obtained from this study even though the data used for validation were of a much
higher spatial resolution than MODIS’s moderate resolution. Detailed change detection
based on high spatial resolution imagery [38,39] will be carried out for the areas and for
the periods where/when changes occurred.

The contribution of this study was to find an operational yet automatic method to
determine where change in land cover has occurred. The only parameter an analyst might
want to adjust is the statistical level of significance, based on their application. Additionally,
using NDVI and LST, which are readily available data from satellite imagery, we present
a method that can automatically detect land cover change without much other influence
or input from the user. The platform used for processing the data, Google Earth Engine,
is also easily accessible. Thus, our proposed method is highly operational and can find
wide applicability in the monitoring of land cover change. Since our proposed method of
change detection is suitable for large-scale monitoring, it can be used on the entire Great
Claybelt area, again using the super pixel classification.

This study is also significant in that NDVI and LST were used together to predict land
cover changes. To the best of our knowledge, such experiments are not widely seen in
literature, though the features have been used individually for that purpose. The result of
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this study indicates that it is a valuable area to continue developing, since its outcomes are
similar to the existing and established change detection methods.

An extension was made to the proposed standard change detection method. In that
scenario, the NDVI and LST were used together as input parameters. The comparison
of results indicated that the joint method could yield similar accuracies to the standard
method. Further investigations should be made to ascertain if the joint method could
be a reliable alternate to our standard model of change detection. In addition, future
studies will examine the land cover and land use change in greater detail, specifically
the progressive transformation of the land cover (as a “from-to” study). The “change/no
change” study is important for large-scale monitoring as was performed in this work.
However, opportunities exist to extend the study to explore how agricultural land has
changed over the recent decades, and to examine how the land cover has changed during
the agricultural seasons. In addition, as a continuation of this study, we will perform
multiscale studies of the region by employing other remotely sensed data at higher spatial
resolutions to observe land cover change.
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