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Abstract: Rapid urbanization in cities and urban centers has recently contributed to notable land
use/land cover (LULC) changes, affecting both the climate and environment. Therefore, this study
seeks to analyze changes in LULC and its spatiotemporal influence on the surface urban heat islands
(UHI) in Abuja metropolis, Nigeria. To achieve this, we employed Multi-temporal Landsat data to
monitor the study area’s LULC pattern and land surface temperature (LST) over the last 29 years. The
study then analyzed the relationship between LULC, LST, and other vital spectral indices comprising
NDVI and NDBI using correlation analysis. The results revealed a significant urban expansion
with the transformation of 358.3 sq. km of natural surface into built-up areas. It further showed
a considerable increase in the mean LST of Abuja metropolis from 30.65 ◦C in 1990 to 32.69 ◦C
in 2019, with a notable increase of 2.53 ◦C between 2009 and 2019. The results also indicated an
inverse relationship between LST and NDVI and a positive connection between LST and NDBI. This
implies that urban expansion and vegetation decrease influences the development of surface UHI
through increased LST. Therefore, the study’s findings will significantly help urban-planners and
decision-makers implement sustainable land-use strategies and management for the city.

Keywords: land use/land cover (LULC); urbanization; urban heat island (UHI); land surface tem-
perature (LST); normalized difference vegetation index (NDVI); normalized difference built-up index
(NDBI); Abuja Metropolis

1. Introduction

The world has recently witnessed an increased urban population due to perceived
socio-economic opportunities in cities, contributing to rapid urbanization [1]. The global
population in urban centers and cities has grown from 1.731 billion inhabitants (39.35%) in
1980 to 3.968 billion (53.91%) in 2015, and is further predicted to over 9.725 billion (68%) by
2050 [2]. The projection indicates that 35% of this growth is expected to occur in Africa and
Asia in the next three decades. The consequence of this growth is the tremendous changes
in land use/land cover (LULC) pattern and the alteration of various biophysical climatic
conditions, particularly the Surface Urban Heat Island (UHI) that is measured using
land surface temperature (LST) [3–5]. The transformation of land-use such as wetlands,
vegetation, and agricultural areas into built-up and impervious surfaces can considerably
influence LST [6]. Therefore, land use/land cover change dynamics are crucial factors
influencing surface UHI due to the unique qualities (i.e., surface reflectance and roughness)
attributed to each LULC category regarding its radiation and absorption energy [7]. Studies
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of rapidly growing cities globally indicate an increased LST, which usually forms an urban
heat island due to the dramatic changes in land-use associated with urbanization [8–10].
This growth has also contributed to high-energy demand that affects human health and
wellbeing due to air pollution and greenhouse gas (GHG) emissions. Therefore, the study
of LULC changes and their influence on surface UHI using land surface temperature as
a key indicator is crucial in implementing policies and strategies aimed at mitigating the
negative impacts of urban growth due to rapid urbanization.

The use of remotely sensed data and Geographical Information Systems has been
widely considered as a responsive tool in urban climatic studies for achieving sustainable
cities [11–14]. It provides an accurate, timely, and reliable method of measuring several
spatio-temporal variations and indices in a cost-effective approach [15]. The use of satellite
datasets provides a medium to high-resolution satellite imager capable of continually
monitoring the earth’s surface and atmosphere. Satellite-derived images are often utilized
for the inventory and mapping of LULC changes [16–18]. The continuous availability
of various satellite sensors such as Landsat 4 and 5 Thematic Mapper (TM), Landsat
7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager
(OLI) has frequently been utilized to provide the necessary data for monitoring the recent
changes in LULC and its influence on surface UHI [19–21]. The process involves using
GIS techniques to quantitatively analyze previous LULC conditions in detecting changes
related to the various satellite-derived indices [22–25].

Spectral indices from remotely sensed data usually give a comprehensive under-
standing of the relationship between LST, which is crucial in measuring surface UHI,
and LULC conditions [26–28]. The most common satellite-derived indexes for estimating
spatio-temporal variations of land surface temperature (LST) are the Normalized Difference
Vegetation Index (NDVI) and the Normalized Difference Built-up Index (NDBI) [29,30].
These indices are indicators of LULC changes in the relationship with LST [31,32]. The
correlation can be achieved using scatter plots and regression analysis. Previous stud-
ies have analyzed the different relationships between LULC, LST, NDVI, and NDBI. In
Shenzhen city, located in China’s Pearl River Delta, a negative correlation was established
between NDVI and LST, while the connection between LST and NDBI was positive [30]. A
study in Tehran’s Metropolitan city indicated a negative correlation between vegetation
index and land surface temperature [27]. Similar studies in Sivas city, Turkey [15], Egypt’s
greater Cairo region [19], and some megacities of southern Asia such as Bangkok (Thai-
land), Manila (Philippines), and Jakarta (Indonesia) [28] revealed significant interactions,
more precisely negative correlation, between land surface temperature and NDVI and
a positive correlation between LST and built-up surfaces. These results were predomi-
nantly attributed to the cities’ continuous growth and expansion due to urbanization and
socio-economic developments, which influenced land-use and regional climate changes.
Studies on changes in LULC and surface UHIs help mitigate the adverse effects of climate
change by analyzing the implications of various human activities and providing adaptive
strategies aimed at sustainable management of land-use. [33], hence, helping significantly
improvements in the liveability of cities.

Although several studies exist on LULC scenarios of selected cities in developing
countries such as Nigeria [34–39], comprehensive studies on the spatiotemporal analysis of
LULC changes and their influence on the surface UHI of Nigeria’s rapidly growing cities
are still relatively limited to non-existent. Abuja, Nigeria’s capital and one of Nigeria’s
largest cities, has been under tremendous pressure over the last few decades due to
rapid urbanization and population growth. Like many other developing megacities,
the city has rapidly experienced various LULC changes, mainly an increasing built-up
area and decreasing vegetation. The continuous alteration of land-uses for residential,
commercial, and industrial activities often contributes to climate change, particularly
global warming, through increased UHI. Therefore, to effectively reduce the surface UHI
in Abuja Metropolis, it is of utmost importance to study the LULC change scenario and its
relationship with LST. The present study aims to monitor and analyze the spatio-temporal
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trends of LULC changes and establish their relationship with the LST changes of Abuja
Metropolis, Nigeria, using high-resolution satellite datasets and GIS techniques. More
specifically, the study seeks to (i) map and analyze the various changes in the LULC pattern
of Abuja metropolis over the last 29 years (i.e., 1990–2019); (ii) study the city’s distribution
of LST, NDVI, and NDBI; (iii) correlate and analyze LST with satellite-derived indices
comprising NDVI and NDBI.

The study will help in advocating urban planning policies and adaptive strategies
aimed at developing and improving the city’s liveability. The study area overview along-
side the materials and methods utilized for this study are discussed in Sections 2 and 3.
Sections 4 and 5 present the results and discuss the study’s findings. Finally, Section 6
highlights the concluding remarks and suggests pathways for future research.

2. The Study Area

Abuja, popularly called Federal Capital Territory (FCT), is Nigeria’s capital city, situ-
ated in Nigeria’s North-central region at about 840 m above mean sea level. It lies between
Latitude 8◦24′ N and 9◦28′ N and Longitude 6◦40′ E and 7◦45′ E covering an area of approx-
imately 7760 square kilometers (Figure 1). It has a tropical wet and dry climatic condition,
i.e., non-arid, according to the Koppen-Geiger’s classification, with an annual temperature
ranging between 30–37 ◦C and a mean annual total precipitation of approximately 1650 mm
per annum [40]. The metropolis experiences a warm, humid rainy season between April
and October and a blistering dry season between November and March. The dry season’s
main features include dust-laden wind, harmattan haze, and intensified cold and dryness.
The study area has a high altitude and undulating terrain that moderates the city’s climatic
conditions [41]. The Guinea-Savannah vegetation characterizes the city due to its abundant
rainfall and strategic position between Nigeria’s northern and southern ecological transi-
tional zone type and has fertile agricultural land with maize, millet, guinea corn, and tubers
as the dominant crops [42–44]. Abuja’s metropolis has recently witnessed a continuous
influx of populace due to its centrality and the deliberate establishment of government
and private institutions, contributing to the development of satellite towns, and thereby
expanding the urban area. The population has grown from within the city’s metropolis to
the fringes of the four (4) other area councils that comprise Kuje, Gwagwalada, Bwari, and
Kwali. Studies have shown that Nigeria’s high rural–urban migration and the relocation
of the country’s capital from Lagos to Abuja have contributed to the city’s population
increasing from 364,086 in 1991 to 759,547 in 1999 to 1,429,801 in 2006 [45]. The population
is presently estimated to be over 3.2 million [46]. The United Nations Population Prospects
estimates, that with the city’s steady growth rate, Abuja is expected to have approximately
5.1 million inhabitants by 2030 [47]. This growth’s consequences are land-use changes and
microclimate modification due to urban heat island (UHI).
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Figure 1. Location Map of Abuja Metropolis, Nigeria.

3. Materials and Methods
3.1. Data Acquisition and Pre-Processing

To identify the changes in LULC, LST, NDVI, and NDBI. We acquired an image for each
year under study, i.e., 1990, 1999, 2009, and 2019, using various remotely sensed satellite
images presented in Table 1. These images were downloaded without any cost from path
189, row 54 of the Earth Observing System of the United States Geological Survey (USGS)
(https://earthexplorer.usgs.gov, accessed on 22 April 2021). We deliberately obtained
datasets at an interval of 10 years to ensure uniformity between the time-nodes. However,
the unavailability of the 1989 satellite data led to the utilization of the subsequent year’s
image. The datasets were acquired during the dry season, more precisely in January and
February, to obtain cloud-free images, minimize seasonal effects, and ensure accurate
image comparison. Studies indicate that spectral images acquired by satellite sensors are
often affected by numerous factors such as sensor calibration, atmospheric absorption,
scattering, and illumination geometry [48]. As a result, all the acquired images were
subjected to radiometric calibration and geometric corrections to rectify the various surface
reflectance variations due to the acquiring systems. This pre-processing operation improves
atmospheric absorption/scattering, sensor sensitivity, topography and sun angle, scene
illumination, and visible near-infrared wavelengths [49,50]. The pre-processed images were
then employed to map LULC using visible light bands and LST using the thermal infrared
band. Auxiliary data in the form of reference maps (Abuja Master Plan and land-use maps)
were obtained from Abuja Geographic Information Systems (AGIS) and Federal Capital
Development Authority (FCDA), which are government agencies responsible for the city’s
planning and development. However, the city’s ground truth condition was analysed
using Google earth imagery of 12th February 1990, 28th January 1999, 15th January 2009,
and 4th February 2019 due to poor adherence to the master plan of the city [51].

https://earthexplorer.usgs.gov
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Table 1. Details of Satellite Datasets used in the study.

Satellite
Type/Sensor

WRS
Path/Row

Date
Acquired

Time
(GMT)

Cloud
Cover

Sun
Azimuth

Sun
Elevation

Thermal Conversion
Constants

K1 K2

Landsat 4 TM 189/054 12/02/1990 09:22:25 6.00 121.5891 47.6548 671.62 1284.30

Landsat 5 TM 189/054 28/01/1999 09:29:13 3.00 128.8161 46.8722 607.76 1260.56

Landsat 7 ETM+ 189/054 15/01/2009 09:39:52 3.00 135.0838 47.7213 666.09 1282.71

Landsat 8 OLI 189/054 04/02/2019 09:49:56 6.19 130.7612 51.8678 774.89 1321.08

3.2. Methods
3.2.1. LULC Classification

The classification of satellite images in urban centers and cities is considered a complex
process due to its spectral heterogeneity [52–54]. Several classification methods have
been employed in previous studies using remote sensing data and geospatial techniques
to map satellite image pixels into various land use/land cover [55]. In this study, we
employed Maximum Likelihood (ML) using the supervised classification method to classify
LULC for the different study periods. ML is one of the most widely used methods for
classifying LULC due to its high classification accuracy with appropriate selection of
training data [56–59]. The study deliberately developed the city’s LULC classification
scheme after a careful study of relevant literature, reference maps, and field observations.
The study area’s land-use was then categorized into four (4) classes encompassing the
built-up area, vegetation, barren land, and water bodies. The built-up areas represent
all residential, commercial, industrial, and related urban infrastructural facilities. The
vegetation class signifies agricultural lands and other grass-cover areas, while the barren
land represents the city’s non-inhabited areas, as described in Table 2.

Table 2. Description of LULC Classes in Abuja.

S/No Land Use/Land Cover
Classes Description

1. Urban/Built-Up Area Covers residential, commercial, industrial
developments, and infrastructural facilities.

2. Vegetation
Comprises agricultural lands, natural vegetation,
grassland, forest, trees, shrubs, parks, gardens,

lawns, and other green areas

3. Barren Land
Includes all non-vegetated land, bare soils,

landfills and construction sites, quarries, gravel
pits, and exposed open spaces.

4. Water Bodies
Areas that comprise rivers, streams, ponds, lakes,

reservoirs, wetland areas, swamps, irrigation
and drainage canals

The main procedures for mapping the LULC classification include: (i) creating training
samples, i.e., using polygons that represent the four LULC classes to be classified, (ii) using
the satellite images to achieve supervised classification with the aid of maximum likelihood
classification (MLC) and, (iii) evaluating the accuracy of the classified images using the
Kappa coefficient [59–61].

3.2.2. Accuracy Assessment

A quantitative assessment was utilized to evaluate the study’s land cover classifica-
tion. For the Accuracy Assessment, the study employed a stratified random sampling
approach to generate sample points of the study area. These samples were used to compare
classified image pixels with reference data for each year. The validation/testing points
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used for the accuracy assessment were independent of the training points used for image
classification (i.e., different locations were selected for the training and validation). About
450 samples were created for each year to ensure the reliability of the results. Seventy
percent of samples were used as training samples while 30% were used for validation. For
each year, a minimum of 100 samples was created for each LULC class. The study then
used the validation samples of the different years to assess the classified image accuracy.
The results were statistically presented and analyzed using the confusion (error) matrix ap-
proach [61–64]. The confusion matrix is widely used for deriving analytical and descriptive
data in classification accuracy. It comprises numbers displayed in columns and rows that
present the various sample points (i.e., polygons, pixels, or pixel clusters) allocated to a
specific land cover class relative to the class’s actual ground condition [65]. The matrix has
an overall accuracy comprising Producer and User Accuracy and Kappa coefficient (KC) as
its assessment indices [64–67]. Producer Accuracy is the ratio of the total classified pixels in
the error matrix diagonals to the total classified pixels in that category of the error matrix
column. User Accuracy is the ratio of the total correctly classified pixels in the error matrix
diagonals to the total classified pixels in that category of the error matrix row. Overall
accuracy is the ratio of correctly classified pixels to the classified reference pixels. Finally,
the Kappa index ‘KC’ was calculated as adopted by [68] using Equation (1).

Kappa Coefficient (KC) =
NΣr

i=1xii − Σr
i=1(xi+ × x+i)

N2 −∑r
i=1(xi+ × x+i)

, (1)

where N is the sum of pixels in the error matrix; r is the sum of columns/rows; xii is the
value correctly classified pixels in the ith column and row; x+i is the sum of pixels in the
ith column; xi+ is the sum of pixels in the ith row, and N2 is the square of the total number
of pixels.

The Kappa Coefficient (KC) is a non-parametric index used in evaluating the level of
agreement between pre-defined values and user-assigned value [69]. It has values between
0 and 1 with the result below 0.40, i.e., 40% demonstrating a weak agreement. A result
ranging between 0.40 to 0.80 signifies a moderate agreement, while values above 0.80, i.e.,
80%, signifies a good agreement [65]. Previous studies recommended the adoption of 80%
as the minimum accuracy level for land use/land cover classification assessment [66,70].

3.2.3. Land Surface Temperature (LST) Retrieval

The study employed thermal infrared (TIR) bands to retrieve and map the study
area’s LST. This process uses a radiometric calibration technique that relies on an image
header file, gain offset, solar radiation angle, and various calibration parameters. The
procedure involves converting digital numbers (DNs) of thermal bands into spectral
radiance values [71,72]. These values are then used in deriving the at-satellite (sensor)
brightness temperature quantified in degrees Kelvin (◦K), which were computed using
thermal Conversion Constants [73–75]. The at-sensor brightness temperature values were
further converted into degrees Celsius (◦C) to derive the LST. The procedures used for the
retrieval of LST are discussed below.

1. Conversion of DN to spectral radiance conversion

The DN of thermal infrared (TIR) bands were converted into spectral radiance with
the aid of ArcGIS 10.7.1 image processing software using the Radiative Transfer Equation
(RTE) presented in Equations (2) and (3) [76,77].

• For Landsat TM and ETM+

Lλ=

(
LMAXλ

− LMINλ

QCALMAX
−QCALMIN

)
×
(
QCAL −QCALMIN

)
+ LMINλ

, (2)

where Lλ is the value of spectral radiance; QCAL represents the DN value of the quantized
calibrated pixel; LMAXλ

represents the value of spectral radiance in (Wm−2sr−1µm−1)
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scaled to QCALMAX
; LMINλ

represents the value of spectral radiance in (Wm−2sr−1µm−1)
scaled to QCALMIN

; QCALMIN
and QCALMAX

are the min. and max. DN values of the
quantized calibrated pixels that correspond to LMINλ

and LMAXλ
, respectively.

• For Landsat OLI/TIRS
Lλ =ML × QCAL + AL, (3)

where Lλ represents the top of the atmosphere spectral radiance in (Wm−2sr−1µm−1);
ML is the rescaling factor for radiance multiplicative band obtained from metadata
(i.e., Radiance_Mult_Band 10); QCAL is the DN value of the calibrated and quantized
product pixel; and AL is the rescaling factor for the radiance additive band obtained
from metadata (i.e., Radiance_Add_Band 10).

2. Conversion of spectral radiance to TOA brightness temperature (BT)

For this, spectral radiance values of the converted pixels digital numbers were used to
extract the top of atmosphere (TOA) brightness temperature (BT), also known as satellite-
derived temperature, and expressed in Kelvin. Using uniform emissivity assumption, the
brightness (sensor) temperature values were computed using Equation (4) [3,27,78].

BT =
K2

ln
(

K1
Lλ

+ 1
) , (4)

where BT is brightness temperature at the top of atmosphere (TOA) expressed in ◦K; Lλ is
the spectral radiance at TOA expressed in (Wm−2sr−1µm−1); K1 and K2 are the retrived
metadata’s thermal conversion constants (presented in Table 1).

3. Derivation of Land Surface Temperature from brightness temperature (BT)

The study then derived the emissivity values of the corrected LST (in Kelvin) with the
aid of at-satellite brightness temperature (TB) using Equation (5) [3,27,79,80].

LST (◦K) =
BT[

1 + λ
(

TB
E

)
ln(ε)

] , (5)

where BT is the brightness temperature at-satellite (sensor); λ is the wavelength of emitted
radiance (i.e., 11.5 µm in Band 6 for Landsat 4/5/7 and 10.8 µm in Band 10 for Landsat 8);
E is (h × v)/s (1.4388× 10−2 mK); h represents the Planck’s constant (6.626× 10−34 mK);
v represents the velocity of light (2.998× 108 m/s); s represents the Boltzmann constant
(1.38× 10−23 JK), and ε represents emissivity of the land surface.

We calculated the emissivity of the land surface (ε) in the study using Equation (6) [81]

(ε) =N(Pv ) + n, (6)

where N is 0.004; n is 0.986; and Pv is the vegetation proportion expressed in Equation (7) [82].

Pv =

(
NDVI−NDVImin

NDVImax − NDVImin

)2
, (7)

where NDVI are the values of DN obtained from the NDVI image; NDVImax and NDVImin
are the highest and lowest DN values obtained from the NDVI image.

Lastly, the study converted the Land Surface Temperature value (in Kelvin) into degree
Celsius (◦C) using Equation (8) [27,79,81].

LST (◦C) =LST (◦K)− 273.15, (8)

3.2.4. Normal Difference Vegetation Index (NDVI) Estimation

One of the most commonly used urban climate indicators in environmental studies is
the Normalized Difference Vegetation Index (NDVI) [3,83], which serves as a reliable index
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for extracting vegetation conditions of remotely sensed data [11]. Therefore, we employed
the NDVI to examine the study area’s vegetation distribution and extract emissivity values.
The index is often associated with various other indices such as biomass, leaf area, and
vegetation cover percentage and, as such, is closely related to the vegetation proportion
(Pv) that is needed in calculating land surface emissivity (ε). The NDVI has values ranging
between −1 and +1, where negative values indicate non-vegetated areas and positive
values represent vegetated areas [84]. It is often calculated based on image pixels using
the normalized difference between the near-infrared band (i.e., band 4 in Landsat TM and
band 5 in Landsat OLI) and red band (i.e., band 3 in Landsat TM and band 4 in Landsat
OLI) [28,85]. The NDVI of the study area was extracted using Equation (9) [79,80].

NDVI =
NIR(Band 4,5 ) − RED (Band 3, 4 )

NIR(Band 4,5 ) + RED (Band 3, 4)
, (9)

where NIR(Band 4) is 0.76–0.90 µm (For Landsat 4–5 TM) and NIR(Band 5) is 0.85–0.88 µm
(For Landsat 8 OLI). RED(Band 3) is 0.63–0.69 µm (For Landsat 4–5 TM and Landsat 7 ETM+)
and RED(Band 4) is 0.64–0.67 µm (For Landsat 8 OLI).

3.2.5. Normalized Difference Built-Up Index (NDBI) Estimation

The Normalized Difference Built-up Index (NDBI) is another vital urban climate
indicator for environmental monitoring [3,68]. This serves as an effective method of
mapping and analyzing land-uses by providing information on the spatial extent of built-
up areas and impervious surfaces. The NDBI designates built-up area’s density in unit
pixel, with values ranging from positive 1 to negative 1. The negative values often signify
vegetation, while the positive denotes built-up urban/impervious surfaces [3,28]. The
NDBI was estimated using the mid and near-infrared bands presented in Equation (10).

NDBI=
MIR(Band 5, 6 ) −NIR (Band 4, 5)

MIR(Band 5, 6) + NIR (Band 4, 5)
, (10)

where MIR(Band 5). is 1.55–1.75 µm (For Landsat 4–5 TM and Landsat 7 ETM+) and
MIR(Band 6) is 1.57–1.65 µm (For Landsat 8 OLI). NIR(Band 4) is 0.76–0.90 µm (For Landsat
4–5 TM and Landsat 7 ETM+) and NIR(Band 5) is 0.85–0.88 µm (For Landsat 8 OLI).

The methodological flow chart illustrated in Figure 2 summarizes the several proce-
dures used in this study.

3.2.6. Correlation Analysis

The study employed a correlation analysis to analyze LULC changes on surface UHI
using the LST of Abuja Metropolis. We performed linear regression analysis using scatter
plots of all four time nodes (i.e., 1990, 1999, 2009, and 2019) to examine the relationship
between the different study variables. This was achieved by converting the study area’s
pixels into point data. These points’ parametric values were then retrieved from the
derived maps of the different periods using 1371 sample points for each period under
consideration. Pearson’s correlation coefficient ‘r’ was further employed to effectively
quantify and analyze the study’s variables using Equation (11).

r= ∑n
i=1(xi − x)× (yi − y)√

∑n
i=1(xi − x)2 ×

√
∑n

i=1(yi − y)2
, (11)

where r represents the Person’s correlation coefficient; x represents the independent vari-
ables measuring the value of xi; y represents the dependent variable measuring value of yi;
xi and yi represents the individual sample points indexed i; while x and y represents the
mean of the samples.
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4. Results

This section presents and discusses the study’s results. It analyzes the historical trend
of LULC patterns, and distribution of LST, NDVI, and NDBI. The section also studies LULC
changes and their influence on surface UHI by analyzing the city’s LST variations with
LULC classes, NDVI and NDBI.

4.1. Land Use/Land Cover Classification

The classified land cover maps of Abuja metropolis for the different periods (i.e., 1990,
1999, 2009, and 2019) are presented in Figure 3 and quantified in Table 3. The LULC were
classified into four broad classes. These classes comprising built-up areas, vegetation,
barren land, and water bodies, are the earlier defined land cover categories of the study
area in Section 3.2.1. The metropolis covers approximately 1722.99 sq. km.

Table 3. Land use/land cover distribution in 1990, 1999, 2009, and 2019.

S/No LULC Types
1990 1999 2009 2019

Area
(sq. km)

Area
(%)

Area (sq.
km)

Area
(%)

Area (sq.
km)

Area
(%)

Area
(sq. km)

Area
(%)

1. Built-up Area 77.26 4.48 157.75 9.15 178.58 10.36 467.68 27.14
2. Vegetation 447.94 26.00 319.91 18.57 274.38 15.92 195.61 11.35
3. Barren Land 981.71 56.98 1151.28 66.82 1210.75 70.28 1005.84 58.38
4. Water Bodies 216.08 12.54 94.05 5.46 59.28 3.44 53.86 3.13

5. Total 1722.99 100 1722.99 100 1722.99 100 1722.99 100
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The result reveals the built-up areas to have expanded the most among the four LULC
classes in the metropolis. However, the city’s vegetation cover decreased continuously
throughout the study period. The gradual decrease in vegetation cover can be attributed
to urban growth and human interference to the natural environment, which led to the
continuous cutting down of forest areas to accommodate the populace’s influx. The results
indicate vegetation loss of about 252.33 sq. km (14.65%) during the study period due
to various human activities. Barren land witnessed a slight increase from 1990 to 2019,
which can mainly be attributed to the massive construction and urban development in the
metropolis. The water bodies in the metropolis declined by approximately 162.22 sq. km
(9.41%) between 1990 and 2019. The distribution of the individual LULC classes extracted
from the four years’ LULC classified maps are graphically presented in Figure 4a,b. The
results show the study area to have undergone four epochs of notable change that might
negatively affect the environment by influencing surface urban heat islands due to the
various LULC changes.
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Figure 4. Distribution of LULC in Abuja Metropolis from 1990–2020 in; (a) sq. km and (b) percentage.

4.2. Accuracy Assessment of Land Use/Land Cover Classification

As earlier stated, the land use/land cover pattern of Abuja metropolis was defined
in four LULC classes that comprise built-up areas, vegetation, barren land, and water
bodies. In this study, the Maximum Likelihood Algorithm (MLA) was employed for the
LULC classification. The accuracy assessments of each year were evaluated using the error
matrix that shows the correctly and incorrectly classified pixels as presented in Table 4.
The producer accuracy and user accuracy of each LULC class in the different period is
also shown in Table 5. The Kappa coefficient was further employed for the assessment of
LULC classification accuracy. The overall accuracies of the four periods were above 90%,
signifying a reliable land cover classification and a good agreement between classified
maps and referenced maps [66,70]. Kappa coefficients ranging between 0.87 and 0.93 were
observed during the study period.

Table 4. Confusion/Error Matrix of 1990, 1999, 2009, and 2019.

(a) 1990 Confusion Matrix

S/No Land Cover
Classes Built-Up Vegetation Barren Land Water Bodies Total

1. Built-up 469 60 23 0 552
2. Vegetation 2 826 12 14 854
3. Barren Land 11 98 531 0 640
4. Water Bodies 0 1 0 332 333

Total 482 985 566 346 2379

Overall Accuracy = (2158/2379) = 90.71%
Kappa Coefficient = 0.8710

(b) 1999 Confusion Matrix

S/No Land Cover
Classes Built-Up Vegetation Barren Land Water Bodies Total

1. Built-up 1033 32 12 0 1077
2. Vegetation 60 537 22 1 620
3. Barren Land 7 2 587 12 608
4. Water Bodies 0 13 21 231 231

Total 1100 584 642 244 2570

Overall Accuracy = (2388/2570) = 92.92%
Kappa Coefficient = 0.8984
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Table 4. Cont.

(c) 2009 Confusion Matrix

S/No Land Cover
Classes Built-Up Vegetation Barren Land Water Bodies Total

1. Built-up 1259 1 4 29 1293
2. Vegetation 6 787 122 29 944
3. Barren Land 30 45 2275 5 2355
4. Water Bodies 0 20 15 600 635

Total 1295 853 2416 663 5227

Overall Accuracy = (4921/5227) = 94.15%
Kappa Coefficient = 0.9146

(d) 2019 Confusion Matrix

S/No Land Cover
Classes Built-Up Vegetation Barren Land Water Bodies Total

1. Built-up 1219 3 17 3 1242
2. Vegetation 63 683 1 0 747
3. Barren Land 16 51 742 8 817
4. Water Bodies 0 0 0 528 528

Total 1298 737 760 539 3334

Overall Accuracy = (3172/3334) = 95.14%
Kappa Coefficient = 0.9329

Table 5. Producer and User accuracies of individual LULC classes.

S/No Year

Producer’s Accuracy (%) User’s Accuracy (%)

Built-Up
Area Vegetation Barren

Land
Water
Bodies

Built-Up
Area Vegetation Barren

Land
Water
Bodies

1. 1990 97.30 83.86 93.82 95.95 84.96 96.72 82.97 99.70
2. 1999 93.91 91.95 91.43 94.67 95.91 86.61 96.55 87.17
3. 2009 97.22 92.26 94.16 90.50 97.37 83.37 96.60 94.49
4. 2019 93.91 92.67 97.63 97.96 98.15 91.43 90.82 100.00

4.3. Change Detection Analysis

Remotely sensed data are useful in detecting and analyzing spatiotemporal changes
in LULC. The analysis of land cover changes due to urban growth and rapid urbanization
often helps monitor the negate e effects of various human activities on the environment.
The present study analyzed the LULC changes of the Abuja metropolis between 1990 and
2019 in five (5) different periods. These periods include: period 1 (1990–1999), period
2 (1999–2009), period 3 (2009–2019), period 4 (1990–2009), and period 5 (1990–2019). The
study utilized the four identified (4) LULC classes to analyze the study area’s mapping.
The results are quantitatively presented in Table 6, showing each period’s LULC change in
sq. km and percentage.

The study revealed notable spatiotemporal LULC changes during the period, showing
both negative and positive changes in the various LULC classes, which may influence the
ecosystem and are likely to contribute to varying climatic conditions.

During period 1, the land use/land cover change was characterized by an expansion
in the magnitude of built-up areas and barren land while vegetation cover and water bodies
decreased significantly. These positive and negative changes may be attributed to the city’s
growth and development to an urban settlement due to the relocation of Nigeria’s capital
city to Abuja in 1991. During period 2, the study area witnessed a slight increase in built
area by approximately 20.83 sq. km while barren land increased by about 59.47 sq. km.
Vegetation and waterbodies continued along this decreasing trend in this period, declining
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by 45.53 sq. km and 34.77 sq. km. During period 3, the metropolis witnessed an abrupt
increase in built areas and a rapid decrease in barren land. Likewise, vegetation declined
substantially during this period. The results suggest that water bodies experienced little
or no significant change between 2009 and 2019 compared to other LULC classes due to
human-induced activities.

Table 6. LULC change dynamics (statistics) of Abuja Metropolis from 1990 to 2019.

S/No LULC Types
1990–1999 1999–2009 2009–2019 1990–2009 1990–2019

Area
(sq. km) Area (%) Area

(sq. km) Area (%) Area
(sq. km) Area (%) Area

(sq. km) Area (%) Area
(sq. km) Area (%)

1. Built-up Area 80.49 4.67 20.83 1.21 289.10 16.78 101.32 5.88 390.42 22.66
2. Vegetation −128.03 −7.43 −45.53 −2.65 −78.77 −4.57 −173.56 −10.08 −252.33 −14.65
3. Barren Land 169.57 9.84 59.47 3.46 −204.91 −11.90 229.04 13.30 24.13 1.40
4. Water Bodies −122.03 −7.08 −34.77 −2.02 −5.42 −0.31 −156.80 −9.10 −162.22 −9.41

The city’s change detection result at an interval of 9 years (1990–1999), 19 years (1990–
2009), and 29 years (1990–2019) revealed remarkable LULC changes. The study indicated an
average annual change in built-up areas by approximately 8.94 sq. km, 5.33 sq. km, and
13.46 sq. km during the span of 9 years, 19 years, and 29 years. The city’s barren land
increased annually by 18.84 sq. km during the period between 1990–1999. However, this
rate declined to 12.05 sq. km between 1990 and 2009. A decreasing trend of approximately
9.13 sq. km and 8.25 sq. km were observed annually in vegetation and water bodies between
1990 and 2009. Likewise, between 1990 and 2019, the city’s vegetation and waterbodies
declined annually by 8.70 sq. km and 5.59 sq. km, respectively.

Therefore, the LULC change scenarios of the study area suggest the development
and expansion of built-up areas, depicting the rapid urban growth of the metropolis. This
increase in built areas may have contributed to the negative changes in some LULC classes,
as illustrated in Figure 5.
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Figure 5. Net Changes in LULC types of Abuja Metropolis during three study periods.

Figure 6 shows the LULC transition map of the Abuja metropolis from 1990 to 2019
and the result presented in Figure 7. This indicates approximately 969.99 sq. km changes
in the study area’s different LULC classes over 29 years. The results show 301.24 sq. km
(17.48%) of barren land converted into built-up areas as the highest land cover transition
between 1990 and 2019. It was seconded by the transformation of 289.41 sq. km (16.80%) of
vegetation into the barren land and subsequently followed by the conversion of 158.27 sq.
km (9.19%) of water bodies into barren land. A moderate transition was observed in the
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conversion of barren land into vegetation with 84.75 sq. km (4.92%), while 45.06 sq. km
(2.62%) of vegetation was transformed to built-up areas. On the other hand, 23.64 sq. km
(1.37%) of vegetation was converted into water bodies, and 22.62 sq. km (1.31%) of water
bodies were converted to vegetation. A minuscule transition of 0.82 sq. km (0.05%) was
seen in the transformation of built-up areas into water bodies.
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4.4. LST Distribution and Its Relationship with LULC

The spatial distribution of LST in Abuja Metropolis for the years 1990, 1999, 2009, and
2019 were extracted as described in Section 3.2.3 and illustrated in Figure 8. The statistical
data are presented in Table 7. The results indicate that the LST of Abuja metropolis ranged
between approximately 20.30–37.11 ◦C, 21.50–44.46 ◦C, 20.55–46.34 ◦C, and 20.58–40.13 ◦C
during the four distinct periods (i.e., 1990, 1999, 2009, and 2019, respectively). The result
revealed a substantial increase in the mean LST of the metropolis from approximately 30.65
◦C in 1990 to 32.69 ◦C in 2019. The LST analysis indicates that between 1990 and 1999, the
mean LST of the metropolis has decreased by 0.25 ◦C. A similar decrease of 0.24 ◦C was
observed between 1999 and 2009. However, the metropolis witnessed an increase in the
mean LST with roughly 2.50 ◦C between 2009 and 2019. This result indicates a mean LST
increase of about 2.04 ◦C over the last 29 years.
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Table 7. Statistics of LST (◦C) in Abuja Metropolis for the four periods between 1990 and 2019.

S/No Acquisition Date
Land Surface Temperature (LST)

Minimum (◦C) Maximum (◦C) Mean (◦C) Standard Deviation

1. 12/02/1990 20.30 37.11 30.65 2.19
2. 28/01/1999 21.50 44.46 30.40 2.13
3. 15/01/2009 20.55 46.34 30.16 1.87
4. 04/02/2019 20.58 40.13 32.69 2.02

Therefore, to effectively analyze LST and LULC relationship, it is essential to study
the thermal signature of individual land use/land cover classes [73]. In this study, the LST
and LULC comparison was carried out using numerous sampling points. These points
were selected to compare the four LULC classes with the LST values of the study area in
1990, 1999, 2009, and 2019. The mean LST values of each LULC class were computed by
averaging the specific land cover category’s image pixels. The results of the four distinct
periods under consideration are presented statistically in Table 8.

Table 8. Mean LST values for each LULC type in Abuja Metropolis for the period between 1990 and 2019.

S/No LULC Types
Mean LST (◦C) Mean LST Difference (◦C)

1990 1999 2009 2019 1990–
1999

1999–
2009

2009–
2019

1990–
2009

1990–
2019

1. Built-up area 31.09 30.27 30.50 32.98 −0.82 0.23 2.48 −0.59 1.89
2. Vegetation 28.18 27.44 28.05 29.67 −0.74 0.61 1.62 −0.13 1.49
3. Barren Land 31.83 31.12 30.73 33.23 −0.71 −0.39 2.50 −1.10 1.40
4. Water Bodies 30.15 30.09 29.21 30.65 −0.06 −0.88 1.44 −0.94 0.50

The mean LST value of the built-up areas was established to be 31.09 ◦C in 1990 and by
1999 this had reduced to 30.27 ◦C. However, it rose slightly to 30.50 ◦C in 2009 and further
increased to 32.98 ◦C in 2019. The result clearly shows that the Abuja metropolis’ built
areas witnessed a higher mean LST of 1.89 ◦C in 2019 than in 1990. Analysis of the different
periods indicates the mean LST in built-up areas has experienced the highest increase of
2.48 ◦C between 2009 and 2019. The mean LST for vegetation was 28.18 ◦C in 1990, and
subsequently, in 1999, it reduced to 27.44 ◦C. However, the mean LST increased to 28.05 ◦C
in 2009 and increased further to 29.67 ◦C in 2019. Therefore, it is evident that vegetation
witnessed a rise of 1.49◦C in mean LST from 1990 to 2019. The result revealed that the mean
LST of vegetation observed the most significant rise of 1.62 ◦C between 2009 and 2019. The
mean LST value of barren land was 31.83 ◦C in 1990, which decreased slightly to 31.12 ◦C
in 1999. The result showed a further decline to 30.73 ◦C in 2009 and a rapid increase to
33.23 ◦C in 2019. Therefore, it is apparent that barren land experienced various changes
with a higher LST value of 1.40 ◦C in 2019 than in 1990. Additional analysis reveals that
barren land has experienced the highest increase in mean LST of 2.50 ◦C from 2009 to 2019
and the lowest decrease of 0.39 ◦C from 1999 to 2009. The study also revealed the mean
LST of water bodies in 1990 to be 30.15 ◦C, which decreased slightly to 30.09 ◦C in 1999.
The mean LST further declined to 29.21 ◦C in 2009, but significantly increased to 30.65 ◦C
in 2019. The result indicates an increase of 0.50 ◦C in the mean LST of water bodies from
1990 to 2019, signifying the lowest mean LST change during the study period.

4.5. NDVI and Its Relationship with LST

The derived maps of the Normalized Difference Vegetation Index of Abuja Metropolis
are presented in Figure 9 which portrays the four different study periods, i.e., 1990, 1999,
2009, and 2019. The statistical results are quantified and presented in Table 9. The result
revealed the highest NDVI values ranging between approximately 0.29 and 0.54, with
such areas having mostly shrubs, grasslands, cultivated lands, and undeveloped natural
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surfaces, while the lowest NDVI values ranged between −0.09 to −0.39, with such areas
covering mainly built-up areas, barren land, and water bodies.
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Table 9. Statistics of NDVI in Abuja Metropolis for the period between 1990 and 2019.

S/No Acquisition Date
Normalized Difference Vegetation Index (NDVI)

Minimum Maximum Mean Standard
Deviation

1. 12/02/1990 −0.23 0.51 0.06 0.05
2. 28/01/1999 −0.39 0.54 0.09 0.07
3. 15/01/2009 −0.30 0.29 −0.03 0.05
4. 04/02/2019 −0.09 0.40 0.15 0.04

The results demonstrated the highest NDVI in the southern part and north-eastern
fringes of the metropolis, mainly covered by forest areas and vegetation. To examine the
relationship between LST and NDVI, we generated 1371 random sample points for each
period’s scattered plots (i.e., 1990, 1999, 2009, and 2019). The results are shown in Figure
10, indicating a negative relationship between the values of LST and NDVI in all four
periods. The scatter plots analysis results show a considerable decline in the determination
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coefficient during each period. This had a value (R2) of approximately 0.42 in 1990, 0.40 in
1999, 0.38 in 2009, and 0.20 in 2019.
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scattered plots.

4.6. NDBI and Its Relationship with LST

The spatiotemporal maps of the Normalized Difference Built-up Index of Abuja
Metropolis are presented in Figure 11 and quantified in Table 10. The results of the different
periods (i.e., 1990, 1999, 2009, and 2019) indicates that the metropolis’ NDBI values ranges
between approximately 0.65 to −0.25 in 1990, 0.77 to −0.96 in 1999, 0.66 to −0.54 in 2009,
and 0.58 to −0.25 in 2019. These values represent the maximum and minimum NDBI for
the different periods, respectively. Previous studies suggest that NDBI values greater than
−0.22 represent land mainly occupied by built-up areas [3].

Table 10. Statistics of NDBI in Abuja Metropolis for the period between 1990 and 2019.

S/No Acquisition Date
Normalized Difference Built-Up Index (NDBI)

Minimum Maximum Mean Standard
Deviation

1. 12/02/1990 −0.25 0.65 0.24 0.07
2. 28/01/1999 −0.96 0.77 0.28 0.08
3. 15/01/2009 −0.54 0.66 0.15 0.07
4. 04/02/2019 −0.25 0.58 0.04 0.05
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Figure 11. NDBI Spatial Distribution of Abuja Metropolis in; (a) 1990, (b) 1999, (c) 2009, and (d) 2019.

The graphical relationship between LST and NDBI is demonstrated in Figure 12. It
shows a positive association between LST and built-up areas. The results indicate that
lower LST values corresponded to lower NDBI, while higher LST values corresponded to
built-up areas of high density.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 21 of 27 
 

 
Figure 12. Relationship between LST and NDBI of Abuja Metropolis for; (a) 1990, (b) 1999, (c) 
2009, and (d) 2019 using scattered plots. 

5. Discussion 
From the change detection results obtained, it is evident that urbanization coupled with 

socio-economic activities in Abuja metropolis may have contributed remarkably to the tran-
sition of natural surfaces into built areas. The results conform with previous studies, which 
suggest an increasing trend in the spatial extent of built-up/urban areas in developing coun-
tries such as Nigeria, Bangladesh, Egypt, and many others [6,19,37,39,68]. These are conse-
quences of rapid urban growth and the quest for better living conditions. The development 
of urban areas has negatively affected the natural and built environment, contributing sig-
nificantly to the increase in the land surface temperatures of cities [8,39,68].  

The present study revealed the built-up area of Abuja Metropolis to have exhibited 
the most significant increase in the mean LST, followed by barren land, vegetation, and 
water bodies over the last 29 years. During the study periods between 1990 and 2019, the 
western, northwestern, eastern, and central parts of the study area exhibited the highest 
LST, with such areas corresponding to built-up areas and barren land. The southern parts 
of the metropolis exhibited the lowest LST, with such areas corresponding to vegetation 
and waterbodies. The lower LST values can be ascribed to the high evapotranspiration in 
vegetation that reduces land surface temperatures [86,87]. In contrast, the study attributes 
the higher values of LST in most areas of the metropolis to urban development and the 
replacement of natural vegetation with non-evaporative and non-transpiring surfaces that 
comprise construction sites for residential, commercial, and industrial development. The 
consequences of these land use/land cover changes play a significant role in the increased 
LST of the metropolis and contribute to Urban Heat Island development, as observed in 
similar studies [11,80,86,88,89]. 

Findings from the study area’s NDVI indicate that the vegetation cover of Abuja me-
tropolis tends to decrease with an increase in the alteration of the natural environment 
into other land uses, as found in some rapidly growing cities [11,29,32]. However, it is 

Figure 12. Relationship between LST and NDBI of Abuja Metropolis for; (a) 1990, (b) 1999, (c) 2009,
and (d) 2019 using scattered plots.



ISPRS Int. J. Geo-Inf. 2021, 10, 272 20 of 25

5. Discussion

From the change detection results obtained, it is evident that urbanization coupled
with socio-economic activities in Abuja metropolis may have contributed remarkably
to the transition of natural surfaces into built areas. The results conform with previous
studies, which suggest an increasing trend in the spatial extent of built-up/urban areas in
developing countries such as Nigeria, Bangladesh, Egypt, and many others [6,19,37,39,68].
These are consequences of rapid urban growth and the quest for better living conditions.
The development of urban areas has negatively affected the natural and built environment,
contributing significantly to the increase in the land surface temperatures of cities [8,39,68].

The present study revealed the built-up area of Abuja Metropolis to have exhibited
the most significant increase in the mean LST, followed by barren land, vegetation, and
water bodies over the last 29 years. During the study periods between 1990 and 2019, the
western, northwestern, eastern, and central parts of the study area exhibited the highest
LST, with such areas corresponding to built-up areas and barren land. The southern parts
of the metropolis exhibited the lowest LST, with such areas corresponding to vegetation
and waterbodies. The lower LST values can be ascribed to the high evapotranspiration in
vegetation that reduces land surface temperatures [86,87]. In contrast, the study attributes
the higher values of LST in most areas of the metropolis to urban development and the
replacement of natural vegetation with non-evaporative and non-transpiring surfaces that
comprise construction sites for residential, commercial, and industrial development. The
consequences of these land use/land cover changes play a significant role in the increased
LST of the metropolis and contribute to Urban Heat Island development, as observed in
similar studies [11,80,86,88,89].

Findings from the study area’s NDVI indicate that the vegetation cover of Abuja
metropolis tends to decrease with an increase in the alteration of the natural environment
into other land uses, as found in some rapidly growing cities [11,29,32]. However, it is
often challenging to use the NDVI to differentiate between LULC categories such as barren
land and built-up areas due to their relative similarities [90,91]. Therefore, our study
established the city’s vegetation cover as areas with higher NDVI and lower LST. The
results of NDVI shows a significant decrease over the last 29 years, which can be ascribed
to the transformation of natural surfaces to built-up areas [15,27,92]. Due to the negative
correlation between LST and NDVI during the different study periods, it is also apparent
that the decrease in the vegetation of Abuja Metropolis has contributed substantially to
the increase in land surface temperature of the city. This result aligns with similar studies
in Anshun City, China [93], Colombo Metropolitan Area and Kandy City, Sri Lanka [8,9],
Seoul Metropolis, Korea [94], Bahir Dar city, Ethiopia [86], and many others [15,27,83,85,88].
Their findings found that vegetation cover comprising forest areas, shrublands, green belts,
and surfaces usually have lower LST within cities and urban centers due to the cool-island
effect. Therefore, an increase in NDVI leads to a decrease in LST.

The study also observed a gradual increase in the city’s NDBI, i.e., built-up areas,
which can be mainly ascribed to urban growth, which has contributed to the reduction of
the city’s vegetation cover. This aligns with previous studies that reported positive NDBI
representing built-up areas and negative NDBI signifying vegetation cover [3,30,83,85].
The positive correlation between LST and built-up areas conforms to earlier studies that
revealed higher variation in the LST of impervious surfaces, i.e., mostly built-up areas and
barren land/soil, compared to vegetated areas [31,88]. This implies that urban growth and
land-use alterations have contributed substantially to the decline of vegetation, thereby
increasing surface UHI through higher LST [8,15,87]. The development of surface UHI
affects the environment and its inhabitants through increased demand for energy that
adversely affects life quality and human health [32,95].

Therefore, it is of paramount importance for the city’s authorities to implement the
following land-use strategies to mitigate the increasing surface Urban Heat Island. These
strategies include:
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i. Increasing the city’s vegetation and tree cover: the increase in trees, shrubs, grasses,
vines, and other smaller plants can significantly lower the city’s land surface tem-
perature by providing shading and cooling the urban environment through evapo-
transpiration. Other potential benefits of utilizing this strategy include reducing
energy demand, reducing greenhouse gas emissions and air pollution.

ii. Encouraging the use of green and cool roofs: the use of vegetative layers such as
trees, plants, grasses, and shrubs on rooftops provides shading and removes heat
through evapotranspiration. Cool roofs also help in reflecting heat and sunlight.
Therefore, this strategy will mitigate the city’s urban heat island by reducing roofs’
surface temperature. It will also contribute significantly towards improving the
thermal condition of the urban environment through reduced energy demand.

iii. Adopting cool pavements as an alternative to the conventional impermeable sur-
faces: the use of cool pavements on parking lots, sidewalks, and streetways has the
potential not only to store less heat than conventional paving materials but also to
lower the city’s surface temperature by reflecting more solar energy and enhancing
water evaporation.

iv. Implementing smart growth practices: the implementation of smart growth strate-
gies can reduce the effect of urban heat through the design of urban spaces. This
strategy covers wide-ranging conservative and developmental measures that seek
to protect the natural environment and make the city more livable. It includes the
creation of walkable, bike-friendly, transit-oriented, and mixed-use neighborhoods.

The recommended strategies align with the UHI cooling strategies of the U.S. Envi-
ronmental Protection Agency [96]. Therefore, the city’s planning authorities can effectively
implement these initiatives through the deliberate enactment of zoning and other plan-
ning regulations.

6. Conclusions

The present study analyzed the spatiotemporal influence of LULC changes on the
surface UHI of Abuja metropolis over the last 29 years (1990–2019) with the aid of multi-
temporal satellite data. The change dynamics were mapped and quantified for four periods
(1990, 1999, 2009, and 2019) using four different LULC classes comprising built-up areas,
vegetation cover, barren land, and water bodies. To achieve the study’s objectives, we
examined the spatial distribution of LST, NDVI, and NDBI. We also studied the relationship
between LST and the different LULC classes and the correlation between LST and land-use
indices such as NDVI and NDBI. The LULC change analysis indicates a rapid urban growth
in Abuja Metropolis with a considerable built-up area increase from 77.26 sq. km in 1990
to 467.68 sq. km in 2019. On the other hand, vegetation and water bodies decreased
significantly during the study period by 252.33 sq. km and 162.22 sq. km, respectively.
The most remarkable land cover transition in the metropolis was the conversion of barren
land to built-up areas with an area of 301.24 sq. km. The LST analysis result revealed
barren land and vegetation as the LULC classes with the highest and lowest LST during
the study period. The mean LST also increased from 30.65 ◦C in 1990 to 32.69 ◦C in 2019.
This suggests that the LST of the metropolis transformed along with changes in LULC. The
most significant change in mean LST was observed in built-up areas with a 1.89 ◦C increase
between 1990 and 2019. Similarly, the mean LST of vegetation cover, barren land, and
water bodies increased by 1.49 ◦C, 1.40 ◦C, and 0.50 ◦C, respectively. Therefore, the result
indicates a substantial LST increase in all the LULC classes. The study further revealed a
negative relationship between LST and NDVI while establishing a positive relationship
between LST and NDBI during the different periods. This implies that higher LST is
experienced along with a decline in vegetation and an increase in built-areas. This study’s
findings suggest that LULC changes in Abuja metropolis have substantially influenced
the city’s increase in LST, therefore contributing to the development of surface UHI. The
present study only examined the historical period between 1990 and 2019. Therefore,
further research is needed to investigate the city’s future LULC change dynamics and
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its potential LST variations using various geospatial-modeling techniques. The study
concluded by recommending various strategies to mitigate the adverse influence of LULC
changes by ensuring sustainable land-use practices.
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