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Abstract: High-resolution digital elevation models (HR-DEMs) originating from airborne laser
scanning (ALS) point clouds must be transformed into Culvert-modified DEMs for hydrological
and geomorphological analysis. To produce a culvert-modified DEM, information on the locations
of drainage structures (DSs) (e.g., bridges and culverts) is essential. Nevertheless, DS mapping
techniques, whether in connection with the development of new methods or an application setting of
existing methods, have always been complicated. Consequently, wide area DS data are rare, making
it challenging to produce a culvert-modified DEM in a wide area capacity. Alternatively, the breach
algorithm (BA) method is a standard procedure to obtain culvert-modified DEMs in the absence of
DS data, solving the problem to some extent. This paper addresses this shortcoming using a newly
developed drainage structure mapping algorithm (DSMA) for obtaining a culvert-modified DEM for
an area of 36 km2 in Vermont, USA. Benchmark DS data are used as a standard reference to assess
the performance of the DSMA method compared to the BA method. A consistent methodological
framework is formulated to obtain a culvert-modified DEM using DS data, mapped using the DSMA
and resultant culvert-modified DEM is then compared with BA method respectively. The DSs found
from the culvert-modified DEMs were reported as true positive (TP), false positive (FP), and false
negative (FN). Based on TP, FP, and FN originating from the culvert-modified DEMs of both methods,
the evaluation metrics of the false positive rate (FPR) (i.e., the commission error) and false negative
rate (FNR) (i.e., the omission error) were computed. Our evaluation showed that the newly developed
DSMA-based DS data resulted in an FPR of 0.05 with federal highway authorities (FHWA) roads
and 0.12 with non-FHWA roads. The FNR with FHWA roads was 0.07, and with non-FHWA roads,
it was 0.38. The BA method showed an FPR of 0.28 with FHWA roads and 0.62 with non-FHWA
roads. Similarly, the FNR for the BA method was 0.32 with FHWA roads and 0.61 with non-FHWA
roads. The statistics based on the FPR and FNR showed that the DSMA-based culvert-modified DEM
was more accurate compared with the BA method, and the formulated framework for producing
culvert-modified DEMs using DSMA-based DS data was robust.

Keywords: bridge; culvert; ALS point clouds; algorithms; DSMA; breaching algorithm; DEM

1. Introduction

High-resolution (HR) digital elevation models (DEMs) deciphering the fundamental
earth surface processes are in frequent use and obtained from three-dimensional (3D) clouds
of laser point measurements, comprising dense sampling rates (e.g., 230 laser return from a
1 m2 area) [1,2]. Airborne laser scanning (ALS) technology has shown higher horizontal
and vertical accuracies in the range of 10–15 cm, deciphering the hidden topography under
the forests by penetrating through canopies [3,4]. ALS point clouds—ALS ground points
(e.g., bare earth laser returns) in particular—allow the creation of HR-DEMs at a user-
defined ground sampling distance (GSD) (e.g., 1 m), enabling earth surface representation
at several scales through several HR-DEM variants [5,6]. An HR-DEM could adopt certain
variants where each variant serves a different purpose in a particular application setting [7].

ISPRS Int. J. Geo-Inf. 2021, 10, 254. https://doi.org/10.3390/ijgi10040254 https://www.mdpi.com/journal/ijgi

https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-4528-6458
https://orcid.org/0000-0002-9058-3902
https://doi.org/10.3390/ijgi10040254
https://doi.org/10.3390/ijgi10040254
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijgi10040254
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi10040254?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2021, 10, 254 2 of 19

For example, airborne laser scanning (ALS) ground points are interpolated to create an
HR-DEM, deciphering the Earth’s surface for cartographic purposes (e.g., urban planning
and making contour maps) [8]. At the same time, in the application setting of hydrology
and geomorphology, HR-DEM processing must be done by incorporating some additional
yet important data such as drainage structures (DSs) (e.g., bridges and culverts) so that
watercourses (e.g., rivers and streams) and watershed areas can be delineated accurately [9].
Such a type of HR-DEM variant is known as a hydro-enforced DEM or hydrologically
correct DEM (HC-DEM) in many parts of the world [10,11] and, in particular, a culvert-
modified DEM for the U.S. Geological Survey (USGS) [12]. In the rest of the paper, the term
culvert-modified DEM is adopted from the USGS [12].

A common practice among ALS data vendors, including the producers of HR-DEMs,
is to classify the bridges as a separate class from ALS ground points as per the Light
Detection and Ranging (LiDAR) base specifications developed by the American Society
of Photogrammetry and Remote Sensing (ASPRS) [13]. One of the challenges faced while
classifying ALS point clouds is the lack of information on the locations of some bridges
and, particularly culverts that are difficult to discern from ALS point clouds through visual
inspection [14]. Yet, an ASPRS LiDAR-based classification scheme provides a separate
class code representing culverts in the classified ALS data. Subsequently, the classified ALS
point clouds lack a separate culvert classification in the final deliverable of classified ALS
point clouds. The locations of DSs, particularly culverts, are frequently unknown to ALS
data vendors. To incorporate the information on the locations of bridges and culverts for a
certain locality, the DSs are either mapped or acquired from other sources (e.g., departments
of transportation (DOTs), satellite, aerial imagery, and global navigational satellite system
(GNSS)-based field surveys) [10,12,15–17].

1.1. Related Work
1.1.1. State of the Present Research in the Departments of Transportation (DOTs)

Substantial information on the locations of DSs is available from DOTs because DSs
fall under the jurisdiction of DOTs. Bridges and culverts are an integral part of transport
infrastructures (e.g., roads and railways), enabling the unobstructed passageway of water-
courses (e.g., a river or a stream). Therefore, the regular inspection, functional assessment,
and repair of DSs are fundamental practices for sustainable transportation and protecting
the surrounding habitat from fragmentation caused by blocked or failed DSs [18–21]. By
default, the DS dataset is deemed available from DOTs. Nonetheless, the locations of a
large number of DSs are unknown to transport agencies, particularly culverts [22–24]. For
that reason, the lack of DS datasets leads to efforts in establishing digital DS databases in a
state-wide capacity [25,26]. To enrich the digital databases with locations of DSs, prepon-
derance resources are being reported (e.g., satellite and aerial imagery), as are geographical
information system (GIS) techniques, and GNSS-based field surveys [27–29].

Yet, such databases are available for certain counties or states in the U.S. with public
access. Additionally, the state-wide DS digital databases established by DOTs are consid-
ered incomplete because several roads and streets are located in private establishments,
and access to those roads is out of the jurisdiction of DOTs, making it challenging to obtain
extensive DS data [24]. From a global perspective, such databases are rare [10,16].

1.1.2. State of the Present Research in Earth Science (ES)

The increased use of ALS point clouds leads to the development of new methods
comprising automated workflows to extract topographic features (e.g., roads, bridges, and
buildings) [30,31]. In particular, the U.S. Geological Survey (USGS) and others have devel-
oped automated workflows to address hydrology and geomorphology in the widespread
adoption of automated geomorphic feature extraction (e.g., a vector flow network of surface
watercourses using a culvert-modified DEM) [12,32,33] (see Figure 1).
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Figure 1. The automated workflow of the geomorphology toolbox developed by the U.S. Geological Survey (USGS) [12,34].

The availability of DSs (e.g., the input culvert file) is the most essential data for
obtaining a culvert-modified DEM and afterward for extracting geomorphic features
correctly (see Figure 1). In their research to assess the automated workflow as shown in
Figure 1, the DSs were mapped through a combination of techniques comprised of manual
digitizing from aerial imagery and GNSS-based field surveys [12]. Nevertheless, ALS
data consumers, particularly those involved in R&D in the earth science (ES) disciplines
of hydrology and geomorphology, acquire the information on the locations of DSs from
external sources [12,15,16].

1.1.3. Algorithmic Solutions

For some regions, external DS data sources [12,15,16] are scarce, and for that reason,
algorithmic solutions were developed [10,17,35]. Among those methods, the first attempt
was made to burn mapped watercourses in an HR-DEM through a process known as stream
burning to create a culvert-modified DEM [36]. The stream burning approach lowers the
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elevation of elevated road surfaces for those locations where watercourses cross the roads.
On the contrary, this approach has proven to be limited because watercourse maps are
difficult to acquire.

The most frequent and standard procedure being used today is the breaching algo-
rithm (BA) method [37] initially developed by the USGS (2010) [35] and recently further
improved by Lindsay et al. (2015) [38] (For details, see Section 3.2).

However, the authors have documented the performance of the BA method to create
a culvert-modified DEM. Their analysis only documented that the bridges, culverts, and
roadside ditches were successfully resolved using a 1 m HR-DEM originating from ALS
data. They reported an overall accuracy of about 80% [38] of DSs resolved correctly from
an HR-DEM using the BA method. On the contrary, the number of DSs incorrectly resolved
by their method were not documented (i.e., the commission error rate). Additionally, the
number of untreated DSs (i.e., the omission error) is not explained. Therefore, the BA
method requires further evaluation.

1.1.4. New Developments

Whether in connection with DS mapping for DOTs (see Section 1.1.1) or R & D in hydrology
and geomorphology (see Section 1.1.2), the state of the present research on the subject of DS
mapping reports a large variety of methods and techniques developed [12,15–17,39]. Yet, no
unified and automated method exists, and the need for such a unified method is reported [10,16].

Only until recently was a cost-effective and automated drainage structure mapping
algorithm (DSMA) developed by Wang and Fareed (2021) [14]. The DSMA was developed
using classified ALS point clouds and road centerline data. The evaluation of DS mapping was
made using a benchmark DS dataset acquired from the Vermont Department of Transportation
(VTrans), which was further augmented using Google Earth Street View (GE-SV) images [14].
In their research, the evaluation metrics of the prediction accuracies (e.g., precision (P), recall
(R), and F1-Score) and positional accuracies, in terms of Euclidean distances of the mapped
DSs compared to the benchmark DSs, were assessed. Using the prediction and positional
accuracies, the authors addressed all aspects of the evaluation metrics for two different sites
in Vermont, USA [14]. The assessment on DS mapping compared to the benchmark DS
dataset showed that the DSMA performance was in close agreement with the benchmark DS
dataset of two different landscapes (e.g., urban and rural) test sites. Therefore, the DSMA is a
capable tool for addressing the DS mapping challenges in a wide area capacity. The detailed
evaluation metrics of the DSMA can be found in [14].

1.1.5. Contributions

This paper aims at using the BA method [38] to resolve DSs from an HR-DEM to
create a culvert-modified DEM (see Section 3.2). We aimed at calculating the false negative
rate (FNR) (i.e., the omission error) and false positive rate (FPR) (i.e., the commission error)
using the culvert-modified DEM of the BA method so that the overall performance of the
BA method could be assessed, which was lacking in the past studies (see Section 1.1.3).

The DSMA is a newly developed DS mapping algorithm that needs to be quantified
compared to existing standard procedures (e.g., the BA method) for obtaining a culvert-
modified DEM so that the information on this topic can be updated for others (e.g., the
USGS) (Figure 1). We aimed at formulating a framework to obtain a culvert-modified
DEM using the mapped DSs of the DSMA method (see Section 3.3). Afterward, using the
FNR and FPR originating from the newly developed culvert-modified DEM of the DSMA
method [14], the accuracy of the proposed solution will be assessed.

Finally, the FNR and FPR originating from the culvert-modified DEM of the BA and
DSMA methods will be compared to assess the performance of both methods.
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2. Study Area and Datasets
2.1. Study Area and ALS Survey

The focus of the present study was an area of 36 km2 located at the latitude and
longitude of 72◦48′7.84” W and 44◦54′41.76” N in the Missiquoi Watershed in northern
Vermont, USA (Figure 2). The land-use land-cover (LULC) matrices derived from the LULC
map obtained from the Vermont Center of Geographic Information (VCGI) [40] shows that
the dominant land covers were agriculture with 48% and forest with 47.5% of the 36 km2.
The remaining part comprised of bare earth, impervious surface area (ISA), and water
bodies, which represented 4.5% of the total area.

Figure 2. The focus study area in northern Vermont, USA. (a) High-resolution digital elevation model (HR-DEM) obtained
from airborne laser scanning (ALS) data, road centerlines of the federal highway authorities (FHWA) (black lines), and
non-FHWA roads (yellow lines). The red dots indicate the benchmark drainage structure (DS) dataset with DS locations and
orientations as shown in (b), an inset map of a DS.

The overall topography is a hill-to-valley transition from north to south, typical of an
agricultural landscape on both sides of the Missiquoi River (Figure 2a). The mountainous
area is largely comprised of forest cover, while the valley area is agricultural land along-
side the Missiquoi River flood plains (Figure 2a). The agricultural land is dominated by
flat terrain, with a minimum slope range of 0–5 degrees. The minimum and maximum
elevations are 107 m and 273 m above sea level (a.s.l.).

The airborne laser scanning (ALS) survey in the focus study area was performed by
the US Geological Survey (USGS) in the spring, beginning on 15 April 2009 and ending on
16 April 2009, with no snow cover on the ground using a Leica ALS50II laser scanner [41].
The Cessna 206s fixed-wing aircraft equipped with an ALS50II laser scanner was flown
at an altitude of 1372 m a.s.l. with a nominal side overlap of 36%, comprising 158 flight
lines. The Leica ALS50II is capable of collecting four laser returns per outgoing pulse at a
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maximum frequency of 150 kHz with a beam divergence of 0.22 mrad. The acquired ALS
data was further processed into the ground and nonground points with a point density
of 2 pt./m2. The 26 benchmark points over different topographies (e.g., bare earth, grass,
and ISA) were used for ALS accuracy assessment, which showed an Root Mean Square
Error (RMSE) of 8.2 cm. Afterward, the classified ALS point clouds were made available
at OpenTopography by the USGS for public use [42,43]. An HR-DEM obtained from the
acquired ALS data deciphering the topography of the focus area is shown in Figure 2a.

2.2. Benchmark DS Dataset Along with FHWA and Non-FHWA Roads

The cartographic representation of the road centers in vector line format, known
as road centerlines data, was outsourced from the VCGI public portal [40]. The road
centerlines acquired from the VCGI were administrated by federal highway authorities
(FHWA), herein referred to as FHWA roads (see black lines in Figure 2b). The residential
and private roads out of FHWA jurisdiction were acquired using the ISA [44] (see yellow
lines in Figure 2a).

FHWA authorities collected the DS dataset (e.g., bridges and culverts (red dots))
along with FHWA roads (black lines in Figure 2a) [45]. The survey was based on GNSS
coordinates of bridges and culverts, as shown with red dots in Figure 2a. In the focus study
area, FHWA authorities mapped 148 DSs, largely comprised of culverts and a few bridges.
The GNSS survey points of the DSs were converted into a straight line representation, as
shown with the red line in Figure 2b. The straight line representation of a DS carried the
information of the DS locations and their orientations under roads as shown in Figure 2b.

For the non-FHWA roads (yellow lines in Figure 2a) and those out of the jurisdiction
of the state highway authorities (FHWA), a total of 18 DSs were located and digitized
using Google Earth Street View (GE-SV) high-resolution panoramic images [46]. A detailed
description of the acquired benchmark DS dataset could also be accessed [14].

3. Methods

The workflow of the proposed research is presented in Figure 3. The proposed research
was carried out in four stages. (a) The ALS data was preprocessed to obtain an HR-DEM.
Furthermore, FHWA and non-FHWA roads were combined into single-road centerline
data at the preprocessing stage. (b) Then, the BA method was applied to the HR-DEM for
creating a culvert-modified DEM. (c) The DSMA method was applied to the HR-DEM for
creating a culvert-modified DEM. (d) The total number of DSs in terms of true positive (TP),
false positive (FP), and false negative (FN), originating from the culvert-modified DEMs of
(b) and (c), was calculated using the benchmark DS dataset as a standard reference (see
Section 2.2). Finally, the TP, FP, FN values were used to obtain the evaluation metrics of the
FNR and FPR originating from both methods. The details about each processing stage are
provided in the following subsections.
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Figure 3. The workflow of the proposed research. (a) Pre-processing ALS point clouds and road centerline datasets.
(b) Processing HR-DEM to produce culvert-modified DEM using BA method. (c) Processing HR-DEM and ALS point
clouds to map DSs in order to create culvert-modified DEM using DSMA method. (d) Evaluation metrics of processed
culvert-modifed DEMs for methods (b) and (c).

3.1. Preprocessing

To obtain a culvert-modified DEM using the BA and DSMA methods, an HR-DEM
was first developed from the ALS ground points at a GSD of 0.5 m (see Figure 2a) using
the natural neighbor interpolation (NNI) technique (see Figure 3a). The choice of NNI was
made because NNI was implemented in the development of the DSMA [14]. Therefore, the
interpolation methods needed to be consistent for the BA [38] and DSMA [14] methods so
that the results from both methods cloud be compared with certainty.

Following the HR-DEM creation, FHWA and non-FHWA roads were merged into
single-road centerline data. The FHWA roads were the roads obtained from government
sources, while non-FHWA roads originated from the ISA [40].

3.2. Breaching Algorithm (BA) Method

A consistent narrative reported that sinks alongside roads in an HR-DEM were usually
caused by unprocessed DSs (e.g., bridges and culverts) not supplied at the HR-DEM
processing stage. The researcher found that by draining those sinks with trenching conduits
through elevated roads, the impact of unprocessed DSs left in the HR-DEM could be
minimized [10,17]. To date, sink processing (e.g., with the breaching algorithm (BA))
is used as a standard procedure, which has been developed and improved by many
researchers [35,38,47] to produce culvert-modified DEMs when comprehensive external
DS data is nonexistent.

A sink is a cell or group of DEM cells with the lowest elevation compared with all
immediate neighboring cells, thus making a DEM discontinuous surface at the locations of
DSs (black cells in Figure 4) [48]. The breaching algorithm (BA) method was designed to
process those sinks of an HR-DEM [38]. The BA method first begins by locating all sinks in
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a given DEM, as shown with a schematic diagram in Figure 4. Once all the sinks are found
in the DEM (e.g., the black cells in Figure 4), the BA method selects one sink from the list at
a time (i.e., a source sink that needs to be processed) (see the red cells in Figure 4). This is
followed by finding the candidate sink(s) in the neighborhood within a user-defined search
radius (red circle in Figure 4). Among the candidate sinks (green cells in Figure 4), the
closest candidate is selected based on the Euclidean distances (d1, d2, and d3) computed
from the center of the source sink (red) to the centers of the candidate sinks (green), as
indicated by the black lines in Figure 4. Finally, the elevations of the DEM normal cell(s)
within the source sink and corresponding candidate sink are lowered in such a way that
the steepest descent path can be computed from a sink cell at a higher elevation to a sink
cell at a lower elevation, as indicated with the yellow cells in Figure 4. The BA method
iteratively fixes most of the sinks in an HR-DEM to create a culvert-modified DEM [38].

Figure 4. Schematic diagram of the breaching algorithm (BA) method for fixing sinks in a DEM associated with DSs.

Based on the principle of connecting two sinks in close immediacy by a user-defined
search radius (Figure 4), the BA method was successful in constructing line conduits
through the elevated road surfaces, connecting a sink at one side of the road to a sink on
another side of a road (Figure 5a). Afterward, watercourses can pass freely through newly
developed line conduits of the culvert-modified DEM (Figure 5b) [38].

Using the preprocessed HR-DEM (Figure 3a), the BA method was applied to the
HR-DEM to obtain a culvert-modified DEM using open-source geographical informa-
tion system (GIS) software called Whitebox Geospatial Analysis Tools (GAT) [49]. The
maximum user-defined search radius of 100 m was used for finding a source sink and
corresponding candidate sink (see the schematic in Figure 4). The choice of a 100 m search
radius ensured that all of the DSs in the study area (Figure 2a) of lengths of 100 m or less
could be resolved by the BA method. This met our requirement, as the maximum length
of a DS found in our study area was 70 m. To empower the BA method to resolve all the
DSs from the HR-DEM to create a culvert-modified DEM (Figure 2a), an additional 30 m
margin was allocated for the user-defined search radius for those DSs, in case they were
overlooked by authors and larger than 70 m.
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Figure 5. Input HR-DEM for the BA method. (a) Culvert-modified DEM using the BA method. (b) Drainage network
(DN) computed from a culvert-modified DEM. (c) A benchmark DS (red line) compared with the DN (blue line) from the
culvert-modified DEM.

This is one of the limitations of the BA method, as the user must define a user-defined
search radius. For example, a DS shown in Figure 5c is about 40 m long, and it was
successfully resolved by setting the user-defined search radius to 100 m. For a lower
user-defined search radius, such as 39 m, the 40 m DS (Figure 5c) could remain unsolved.
Therefore, the user-defined search radius was found by trial and error in their method [38].

After creating the culvert-modified DEM using the BA method. As shown in Figure 5a,
watercourses can pass freely through the newly developed trenches in the culvert-modified
DEM (Figure 5b). Afterward, a drainage network (DN) (i.e., watercourses map) was
extracted (Figure 5b) from the culvert-modified DEM of the BA method. To find the total
DSs resolved in the culvert-modified DEM. The DN was finally intersected with road
centerlines (red dots in Figure 5c).

3.3. DS Mapping Algorithm (DSMA) Method

Wang and Fareed (2021) presented a new and automated approach to map DSs by
developing a drainage structure mapping algorithm (DSMA) using ALS point clouds
and road centerline data [14]. According to their approach, first, all types of roads (e.g.,
government-administrated federal highway administration (FHWA)) and those out of
the jurisdiction of the FHWA (i.e., non-FHWA) were eliminated from the ALS ground
points using a combined road mask created from buffers of various sizes, according to the
corresponding road widths of each road class (Figure 6a).
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Figure 6. The framework of obtaining a culvert-modified DEM using mapped DSs of the drainage structure mapping
algorithm (DSMA) method. (a) ALS-modified DEM (ALS-mDEM) of the DSMA method [14]. (b) Drainage network (DN)
from the ALS-mDEM of the DSMA method. (c) Mapped DSs in line conduits using the DSMA. (d) Mapped DSs in line
conduits were generalized to 5 m. (e) Culvert-modified DEM obtained using DS line conduits as input to the add culvert
tool of the USGS (Figure 1). (f) DNs extracted from the culvert-modified DEM to find the total DSs (red dots) by intersecting
the DNs with road centerlines.
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First, their evaluation showed that, by removing roads from the ALS point clouds,
most of the watercourses, which otherwise were obscured by elevated roads [50], could
be found (Figure 6b) [14]. Following the road removal from the ALS point clouds, the
remaining ALS ground points were interpolated to create a new type of DEM known as an
ALS-modified DEM (ALS-mDEM) (Figure 6), which was used to derive unobstructed DNs
using the D8-method and Strahler stream orders (Figure 6b).

Second, to retrieve the locations of the DSs automatically, the derived DN from the
ALS-mDEM was then intersected with the road centerlines of the FHWA and non-FHWA
roads (blue line in Figure 6c) [14].

The DSMA mapping performance, compared to a trusted benchmark DS dataset,
showed that a large number of DSs were mapped using a DSMA comprised of culverts [14].
The DSMA final output comprised of two datasets. First, the mapped DSs in point format
were already evaluated by Wang and Fareed (2021) [14]. The second mapped DN is
shown in Figure 6b. Nevertheless, The DSMA′s original contribution was to provide the
information on the locations and orientations (see Figure 6c,d) of DSs in a wide area capacity,
and the culvert-modified DEM by default was not produced by the DSMA. However, the
DS data produced by the DSMA could be useful to obtain a culvert-modified DEM using
mapped DSs as the input culvert file to the add culvert tool of the Geomorphology toolbox
developed by the USGS (see Figure 1).

To use the mapped DS data, further processing is required because the add culvert tool
requires line DS inputs. To achieve that, using the road mask [14], the DSs were obtained
as line data (blue line, Figure 6c). However, the DSs in the line conduits mapped using the
DSMA (Figure 6c) were not perfectly straight lines (see Figure 6c). Nevertheless, the line
conduits were generalized up to 5 m to obtain a straight line conduit representing the DSs
(Figure 6d) using the ArcGIS 10.8.1 generalization tool [51]. Generalization is an automated
process to remove extra nodes from a vector line by making the resulting line smoother. We
tried the generalization values of 1–5 m and found that a 5 m generalization value resulted
in better straight line conduits (Figure 6d). Figure 6d shows that the DSs in the straight
line conduits provided the required input culvert file. To consider the generalized line as a
valid input compared to the benchmark DS dataset, the mapped DS inlet and DS outlet
must be aligned (see blue line in Figure 6d). Finally, the DSs in the straight line conduits
were used to obtain the culvert-modified DEM using the add culvert tool of the USGS
developed in ArcGIS desktop 10.8.1 (Figure 3c) [12], as shown in Figure 6e.

To further extend our approach, the culvert-modified DEM was processed twice using
the mapped DS of the DSMA method. First, the HR-DEM was converted into a point
LAS file, and afterward, the point LAS file was used to map DSs. Using the processing
framework as shown in Figure 6, a culvert-modified DEM was produced (Figure 3c). The
assessment was made to see whether a DSMA was capable of mapping DSs using an
HR-DEM when ALS point clouds were not available. Second, the DSMA was used to
map DSs basef on original ALS point clouds. Then, the mapped DSs were used to create a
culvert-modified DEM (see the red box in Figure 3c). This was the validation step to see if
the DSMA performance was similar to those DSs mapped using an HR-DEM compared to
original ALS point clouds (red box in Figure 3c). Finally, DNs were then extracted from the
culvert-modified DEMs and intersected with road centerlines (red dots in Figure 6f) to find
the total DSs found in the culvert-modified DEMs of the DSMA method (Figure 3c).

3.4. Evaluation Metrics

To construct the evaluation metrics of the FPR using Equation (1) and the FNR using
Equation (2), the total DSs found from the culvert-modified DEMs of the BA and DSMA
methods were classified as TP, FN, or FN (Figure 3d).

TP represents when the watercourses correctly allowed through DSs in the culvert-
modified DEM of the BA method (Figure 5c) and DSMA method (Figure 6c) compared to a
corresponding benchmark DS dataset. FP represents when watercourses were allowed through
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artificially constructed DSs compared to the benchmark DS datasets. Finally, FN represents
when watercourses were not allowed through DSs compared to the benchmark DS dataset:

FPR = NFP/(NFP + NTP) (1)

FNR = NFN/(NFN + NTP) (2)

4. Results
4.1. DS Mapping Assessment of the BA Method Using the HR-DEM

We first report the results of the descriptive statistics of DSs as TP, FP, and FN, obtained
from a culvert-modified DEM with the BA method (see Table 1). The DS classification was
carried out separately, along with FHWA and non-FHWA roads (see Section 2.2), to assess
the performance rate of the BA method along with each road type.

Table 1. True positives (TPs), false negative (FN), false positives (FPs), false positive rates (FPRs), and
false negative rates (FNRs) of FHWA and non-FHWA roads originating from the culvert-modified
DEM of the BA method.

Road Type NTP
NFN NFP

FPR FNR
Case-1 Case-2 Case-3

BA
Method

FHWA roads 78 23 13 31 0.28 0.32

Non-FHWA
roads 16 19 6 25 0.62 0.61

Using the TP, FP, and FN, the FPRs of 0.28 for the FHWA roads and 0.62 for the
non-FHWA roads were found. Similarly, the FNRs of 0.32 for the FHWA roads and 0.61
for the non-FHWA roads were reported (Table 1). On viewing Table 1, some clear trends
emerge, where the BA method has shown similar values for the FPR and FNR along FHWA
and non-FHWA roads, respectively.

We are the first who have investigated the causes and effects of FN and FP cases
compared to the benchmark DS dataset for the BA method in order to assess its performance.
Therefore, the FN and FP cases were further categorized into three distinct cases based on
our evaluation. Case-1 and Case-2 were associated with FNs, and Case-3 was associated
with FPs. The detailed descriptive statistics are shown in Table 1, whereas each case
scenario is discussed in Section 4.3, compared to the DSMA method using benchmark DS
data as a standard reference.

4.2. DS Mapping Assessment of the DSMA Method Using an HR-DEM and ALS Point Clouds

The number of DSs found from culvert-modified DEM using a DSMA-based DS
dataset are also reported as TP, FP, and FN in Table 2 for comparison with the BA method
(Table 1).

Table 2. Commission and emission error rates originating from the culvert-modified DEM obtained
using DSMA-based mapped DSs, whereas the input source datasets were the HR-DEM and original
ALS point clouds.

Road Type NTP NFN NFP FPR FNR

DSMA
Method (HR-DEM)

FHWA roads 108 6 9 0.05 0.07

Non-FHWA roads 27 15 4 0.12 0.38

DSMA
Method (ALS ground clouds)

FHWA roads 108 6 9 0.05 0.07

Non-FHWA roads 27 15 4 0.12 0.38
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Table 2 shows that the total number of DSs classified as TP, FP, and FN from the
culvert-modified DEM based on the mapped DSs using a HR-DEM equaled the TP, FP, and
FN from the culvert-modified DEM based on mapped DSs using ALS point clouds only
(see Table 2). Table 2 shows the interesting trends which emerged, as the culvert-modified
DEM obtained either HR-DEM-based mapped DS data or the original ALS point clouds
were not affected by the data source (see Table 2).

The following evaluation emphasizes that, alone, the HR-DEM is equally useful
compared to ALS point clouds for mapping DSs using the DSMA method and thereafter
producing the culvert-modified DEM. Therefore, the DS could be mapped by transforming
the HR-DEM into point data without compromising the DS mapping results.

The accuracy evaluation when creating the culvert-modified DEM using DS data
originating from the DSMA method (Table 2) compared to the BA method (Table 1) showed
interesting trends. Table 2, compared to Table 1, shows that the FPR of 0.05 observed for
the FHWA roads and 0.12 observed for the non-FHWA roads were much lower compared
with the BA method, which was 0.28 for the FHWA roads and 0.62 for the non-FHWA
roads. Similarly, the FNR of 0.07 for the FHWA roads and 0.38 for the non-FHWA roads
were found, compared with the BA method, which found 0.32 for the FHWA roads and
0.61 for the non-FHWA roads (for comparisons, see Tables 1 and 2).

In the context of creating the culvert-modified DEM, the emerging trend of higher eval-
uation matrices of the DSMA method compared to the BA method was further investigated
and compared based on each case scenario of Table 1.

4.3. Comparative Assessment of BA and DSMA Methods

Our evaluation suggests that the DSMA is based on a better approach than the BA
method, resulting in a more precise culvert-modified DEM. The DSMA first corrects the
ALS point clouds from obstructing man-made features (e.g., roads) before it can generate
an ALS-modified DEM (ALS-mDEM), and afterward, a DN, as shown in Figure 6c [14].
By removing the man-made impediments from the ALS-mDEM, the stage is set to map
almost all watercourse pathways (Figure 6c) passing through roads. Bridges and culverts
are mostly found over watercourses, and by intersecting with road centerlines, the found
DSs are approximated very close to the benchmark DS dataset, which makes the DSMA
approach more robust to map DSs. Afterward, the mapped DSs could be incorporated in
an HR-DEM using the formulated framework (see Figures 3c and 6).

On the contrary, the BA method is for solving the sinks by trenching the conduits
based on the Euclidean distance between two sinks very close to each other (see Figure 4).
The culvert-modified DEM was obtained using the BA method, but not all of the DSs were
processed. Our investigation showed that by following the underlying principle of fixing
sinks caused by DSs, the BA method resulted in three different case scenarios (Table 1)
where it lacked resolution for several DSs in order to create a culvert-modified DEM.

4.3.1. Case-1: No Source or Candidate Sink Found

To trench a conduit through elevated roads, the BA method must find an upstream
sink (i.e., a source sink) and a corresponding downstream sink (i.e., the candidate sink)
(see Figure 4). Figure 7a shows a DS deciphered correctly (TP) in a culvert-modified DEM
(blue line) and the same DSs deciphered by the DSMA method (yellow line) compared to
the benchmark DS (red line).

However, this is not always the case for several DSs where an upstream source sink
was found while a corresponding downstream candidate sink was missing. Therefore,
trenching a conduit by the BA method was not possible, causing an FN (Figure 7b). This
finding also validates the Duke et al. (2003) observations [50] as a DN becomes discontinu-
ous (Figure 7b) at both sides of the road. For several other locations, the source sink and
corresponding candidate sink were missing both sides of the road as shown in Figure 7c,
causing FN cases for the BA method originating from the Case-1 scenario (Table 3).
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Figure 7. (a) DSs resolved correctly by the BA and DSMA methods in their respective culvert-modified DEMs. (b,c) DSs
resolved correctly using the DSMA-based DS data (TP, yellow line) and FN (blue line) for the BA method in Case-1.

Table 3. Positional accuracies of mapped DSs using the DSMA, as evaluated by Wang and Fareed for
the study area [14].

Min First Quartile Median Third Quartile Max Mean

Study area
(36 km2) 0.65 5.71 10.17 10.17 72.53 15.82

On the contrary, Figure 7b,c shows that the DSMA method did not suffer through such
problems associated with the BA method (e.g., searching for source and corresponding
candidate sinks) (Figure 4). Instead, the DSMA found the watercourse pathways using an
ALS-mDEM, whereas the roads were already removed so that watercourses passed freely
on both sides of the road. The DN was based on the flow direction and flow accumulation
metrics [14], as indicated by the yellow line, deciphering all DSs mapped correctly (TP) by
the DSMA method compared with the BA method (blue line).



ISPRS Int. J. Geo-Inf. 2021, 10, 254 15 of 19

4.3.2. Case-2: No Solution within the Found Sinks

It has been observed that a source sink and corresponding candidate sink both were
found upsteam on the same roadside within the user-defined search radius (see Figure 4),
as shown in Figure 8. Yet, the candidate sinks on the other side of the road were absent,
causing no solution to be found by the BA method, resulting in FN cases (Figure 8 and
Table 1). Compared with the BA method, the DSMA method successfully found the
underlying DS, as shown by the yellow line in Figure 8.

Figure 8. DSs resolved correctly (TP, yellow line) by DSMA-based DS data compared with the BA method (FN, blue line).

Due to the above-stated reasons, the number of FN cases was always higher for
the BA method for the FHWA and non-FHWA roads compared with the DSMA method
(Tables 1 and 2). This led the BA method to an FNR of 0.32 along FHWA roads and 0.61
along non-FHWA roads, which was significantly higher than the DSMA method′s FNR of
0.07 along FHWA roads and 0.38 along non-FHWA roads (Tables 1 and 2).

4.3.3. Case-3: Wrong Solutions within the Found Sinks

In Case-3, the BA method was successful in finding a source sink upstream and a
corresponding candidate sink downstream (Figure 9). Afterward, a conduit was trenched
between the source sink and corresponding candidate sink. However, the proposed
solution was wrong compared with the benchmark DS dataset, indicating no DS for that
location and therefore causing FP cases (Figure 9 and Table 1).

All of the FPs originating from the BA method belonged to Case-3 for the FHWA and
non-FHWA roads (Table 1).

Figure 9. FP cases originating from the culvert-modified DEM obtained using the BA method.



ISPRS Int. J. Geo-Inf. 2021, 10, 254 16 of 19

The nature of the FPs caused by the DSMA algorithm was briefly explained by Wang
and Fareed (2021), and readers should refer to [14], which states that the DSMA creates
some artificial DN causing FP cases; therefore, that error propagates to the culvert-modified
DEM based on mapped DSs using the DSMA method. However, the total FP cases caused
by the DSMA method was much lower compared with the BA method (see Tables 1 and 2).

The overall comparison of FP and FN cases caused by the BA method showed similar
statistics, where the FP cases were almost equal to the FN cases (Table 1). Therefore, the FPR
and FNR for the BA method were similar along the FHWA and non-FHWA roads, respectively.

To understand this trend, the case scenarios shown in Figures 7–9 were further an-
alyzed. We found that for the BA method, if a right solution was not found (FN) (see
Figures 7 and 8), a corresponding false solution (FP) was found (Figure 9). Therefore, if the
watercourses aere not allowed through the DS (FN), the watercourses were then allowed
through artificial DSs (Figure 9) created by the BA method (FP).

For that reason, the FPR and FNR were similar in the focus study area. For FHWA
roads, an FPR of 0.28 was reported, corresponding to an FNR of 0.32. Similarly, for non-
FHWA roads, we found an FPR of 0.62 with a corresponding FNR of 0.61. The BA method,
as reported by others, can fix major bridges and culverts [40]. Therefore, the FPR and FNR
along non-FHWA roads were found to be higher because non-FHWA roads are frequently
comprised of culverts of smaller sizes, as observed by Wang and Fareed (2021) [14].

Compared with the BA method, the DSMA approach showed reasonably consistent
performance along FHWA and non-FHWA roads [14]. For FHWA roads, an FPR of 0.05
was found, corresponding to an FNR of 0.07, which was significantly lowere than the BA
method. Similarly, for non-FHWA roads, we observed an FPR of 0.12, corresponding to an
FNR of 0.38.

5. Discussion

In the context of creating a culvert-modified DEM, this study found that the DSMA
method was useful for mapping DSs in a straight line conduit format automatically, which
could be incorporated in an HR-DEM to obtain a culvert-modified DEM (see Figure 1),
compared with manual methods, although with available information on the locations
of DSs (e.g., GNSS locations), a significant amount of time is required to digitize the
DS locations into straight line conduits manually for producing culvert-modified DEMs.
However, the DSMA supplies the DSs in straight line conduits automatically, reducing the
manual digitization workload.

Compared with the BA method, the DSMA showed improved performance for creating
culvert-modified DEMs. Our evaluation showed that DSMA-based DSs resolved a much
higher number of DSs from HR-DEMs compared with the BA method (Tables 1 and 2).
Figures 7–9 show that the culvert-modified DEM obtained using DS data mapped by the
DSMA always allowed the watercourses to connect both sides of the roads compared with the
BA method, which does not permit the watercourses to pass either side of the road [50,52].

However, for the DSMA method, the watercourses did not exactly pass through the
DSs compared with the benchmark DS dataset (see Figures 7–9). The detailed statistics
on the positional accuracy of the mapped DS using the DSMA are shown in Table 3 and
were found by Wang and Nadeem (2021) [14]. The positional accuracy was based on the
Euclidean distances between the mapped DSs and their corresponding benchmark DS
reference data. Thus, positional accuracy determined how well the DSs were mapped by
the DSMA compared to the standard reference (e.g., the benchmark DS dataset). A detailed
description of the positional accuracy of mapped DSs was given in [14].

The descriptive statistics, as shown in Table 3, indicate that the positional accuracy
was about 10 m for the median and third quartile of the mapped DSs by the DSMA.
The positional accuracy in the range of 10 m was acceptable according to Lidberg et al.
(2017) [39], where the positional offset of watercourses was set to 10 m in their research.
Nevertheless, for exceptionally fewer cases, a maximum offset of 72.53 m was expected
for those regions where the topography is nearly flat (e.g., slope ≈ 0◦) [14]. For such
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regions, once DSs are mapped using the DSMA method, it is possible to adjust the mapped
DS to their original positions manually using hillshade images, orthophotos, and GE-
SV images [53–55]. Such required manual interventions are exceptionally few and only
associated with flat topographies [14].

Our evaluation showed that the DSMA-based mapped DSs were useful in the follow-
ing application environments.

First, we have shown that for those regions having no access to ALS point clouds but
an available HR-DEM, the HR-DEM could be used to map DSs using the DSMA method.
This is useful for those who have access to ALS derivatives such as an HR-DEM and access
to original ALS point clouds that is constrained by many factors (e.g., copyrights and
data privacy). Second, to derive a culvert-modified DEM, extensive ground surveys could
besignificantly reduced, as the DSMA provides extensive DS maps in a wide area capacity
using either an HR-DEM or is based on ALS point clouds.

6. Conclusions

A newly developed DSMA′s (https://github.com/Nadeem1geo/Drainage-Structure-
Mapping-Algorithm-DSMA-, accessed on 6 February 2021) performance was assessed in
the context of producing a culvert-modified DEM compared to the breaching algorithm
(BA) method. The culvert-modified DEM is essential in the ES disciplines of hydrology
and geomorphology. Previously, the breaching algorithm was commonly used to create
culvert-modified DEMs. While the DSMA is a newly developed algorithm that has never
been tested in this context, both methods were assessed using a benchmark DS dataset
along FHWA and non-FHWA roads. The classified ALS point clouds and road centerlines
were acquired for the study area of 36 km2 in Vermont, USA.

The evaluation of prediction accuracies of both methods was carried out using the
FPR and FNR with the benchmark DS dataset. We found that the DSMA was robust and
created a more precise culvert-modified DEM compared with the BA method by returning
the lowest FPR of 0.05 along FHWA roads and 0.12 along non-FHWA roads. Similarly,
the FNR of 0.07 for the FHWA roads and 0.38 along the non-FHWA roads were observed
for the DSMA method, making prediction accuracies closer to the benchmark DS dataset.
In contrast to the DSMA, the BA method showed an FPR of 0.28 along the FHWA roads
and 0.62 along the non-FHWA roads. Similarly, the BA method resulted in an FNR of 0.32
along the FHWA roads and 0.61 along the non-FHWA roads, making prediction accuracies
five times lower than the DSMA method. We conclude that the DSMA can potentially
be used to develop a culvert-modified DEM, compared with the BA method, and the
methodological framework is presented in this study.
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