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Abstract: Building and road extraction from remote sensing images is of great significance to urban
planning. At present, most of building and road extraction models adopt deep learning semantic
segmentation method. However, the existing semantic segmentation methods did not pay enough
attention to the feature information between hidden layers, which led to the neglect of the category
of context pixels in pixel classification, resulting in these two problems of large-scale misjudgment of
buildings and disconnection of road extraction. In order to solve these problem, this paper proposes
a Non-Local Feature Search Network (NFSNet) that can improve the segmentation accuracy of
remote sensing images of buildings and roads, and to help achieve accurate urban planning. By
strengthening the exploration of hidden layer feature information, it can effectively reduce the large
area misclassification of buildings and road disconnection in the process of segmentation. Firstly, a
Self-Attention Feature Transfer (SAFT) module is proposed, which searches the importance of hidden
layer on channel dimension, it can obtain the correlation between channels. Secondly, the Global
Feature Refinement (GFR) module is introduced to integrate the features extracted from the backbone
network and SAFT module, it enhances the semantic information of the feature map and obtains
more detailed segmentation output. The comparative experiments demonstrate that the proposed
method outperforms state-of-the-art methods, and the model complexity is the lowest.

Keywords: semantic segmentation; building and road segmentation; self-attention; deep learning

1. Introduction

As the material carrier of human survival and development, land resources have
the characteristics of fixed location, non-renewable, unbalanced distribution of resources
and so on [1]. With the rapid development of population and socio-economic systems,
the remaining disposable land resources are decreasing day by day. Therefore, the overall
planning and rational planning of land resources has important social value. For urban ar-
eas, most of the landforms are composed of buildings and roads, the accurate segmentation
of buildings and roads can help realize macro-urban planning. Therefore, the automatic
segmentation of buildings and roads in remote sensing images is highly necessary.

In the past decades, many scholars had proposed effective feature engineering remote
sensing image segmentation methods. For example, Yuan et al. [2] used the local spectral
histograms to calculate the spectral and texture features of the image. Each local spectral his-
tograms linearly combined several representative features, and finally realized the remote
sensing image segmentation by weight estimation. Li et al. [3] proposed an improvement
on the two key steps of label extraction and pixel labeling in the process of segmentation,
which could effectively and efficiently improve the accuracy of high-resolution image edge
segmentation. Fan et al. [4] proposed a remote sensing image segmentation method based
on prior information. This method used single point iterative weighted fuzzy c-means
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clustering algorithm to solve the impact of data distribution and random initialization
of clustering center on clustering quality. The above feature engineering segmentation
methods could effectively segment remote sensing images. However, they have some
problems, such as poor noise resistance, slow segmentation speed and artificial parameter
design, and could not competent for the tasks of automatic segmentation of large quantities
of data.

In recent years, convolutional neural networks (CNNs) had achieved great success
in many fields, such as health care [5,6], marketing [7], power management [8], civil
engineering [9], distributed database [10], cyber security [11] and so on. The field of
computer vision semantic segmentation is no exception. In the semantic segmentation,
CNNs not only has strong noise resistance, but also can realize the automatic segmentation
of a large number of data, and has achieved excellent segmentation performance. Full
Convolutional Network (FCN) was proposed by Long et al. [12], and it was the first time
to use full convolutional neural network to achieve image semantic segmentation, laying
a foundation for subsequent segmentation methods. Ronneberger et al. [13] proposed
U-shaped structure (U-Net) for semantic segmentation. Based on the FCN framework,
U-Net had improved the feature fusion method, and the features of different grades were
fused to realize the feature reuse. Fusion of different levels of feature maps enabled
the network to contain multi-level semantic information and improve the segmentation
accuracy. However, compared with FCN, the calculation amount was increased to a
certain extent. Zhao et al. [14] proposed Pyramid Scene Parsing Network (PSPNet) using
pyramid structure to aggregate the context information of different regions and can mine
the global context information. DeeplabV3+ proposed by Chen et al. [15] used atrous
convolution to construct multi-scale pyramid feature map, which enabled subsampling to
obtain multi-scale context information and obtain larger receptive field without bringing
computational overhead.

Liu et al. [16] proposed a new multi-channel deep convolutional neural network.
This network had solved the problem that the spatial and scale features of segmenting
objects were lost in some remote sensing images, but it was easy to make mistakes in
the case of shadow occlusion. Aiming at the super-high resolution and complex features
of remote sensing images, Qi et al. [17] proposed a segmentation model using multi-
scale convolution and attention mechanisms. However, the attention mechanism could
only capture local receptive field. Therefore, it was necessary to use the self-attention
method to obtain important information through its own global receptive field and made
effective use of it in remote sensing images. Cao et al. [18] proposed a deep feature fusion
method based on self-attention, which performed deep feature fusion for complex objects in
remote sensing scene images and emphasized their weight. Sinha et al. [19] used a guided
self-attention mechanism to capture the context dependencies of the pixels in the image.
Moreover, additional loss was used to emphasize feature correlation between different
modules, which guided the attention mechanism to ignore irrelevant information and
focused on more discriminant areas of the image. The above self-attention methods [18,19]
had achieved initial results in the field of remote sensing images, but there were still more
room for exploration, such as the use of self-attention mechanism to achieve hidden layer
feature transfer.

In summary, these convolutional neural semantic segmentation networks [12–19] had
made significant contributions to the field of semantic segmentation in computer vision.
Compared with the feature engineering segmentation method [2–4], it had strong anti-noise
performance and could realized end-to-end mass automatic segmentation. FCN [12] and
U-Net [13] achieved feature enhancement through feature fusion at different levels and
repeated use of feature maps. However, segmentation target lacks scene understanding,
so PSPNet [14] built feature pyramid pooling layer, used different size pooling layers to
splicing and fusion features, and finally performed feature analysis on the network to
obtain scene understanding of segmentation target. In the segmentation process, there
were segmentation targets of different scales, Deeplabv3+ [15] used atrous convolution
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of different atrous rates to achieve multi-scale fusion. The above convolutional neural
network models [12–15] put forward analysis for different problems in the segmentation
process, including feature map reused and fusion of different levels of features, feature
pyramid pooling layer to realized segmentation target scene understanding, and multi-scale
feature fusion of atrous convolution with different atrous rates. However, in the process
of feature fusion of these networks, almost all feature maps were directly concatenated
and merged in the channel dimension, and the feature information of the hidden layers
(the channel dimension of feature map) were not independently developed and utilized.
Ignoring the importance level mining of hidden layer features led to the lack of category
information of context pixels in pixel classification, resulting in problems such as large
area misjudgment of building and road disconnection. In addition, the following semantic
segmentation methods [12–15] are high complexity, slow reasoning speed and high cost of
model training. To solve these problems, this paper proposes a Non-Local Feature Search
Network (NFSNet). The network can improve the segmentation accuracy of buildings and
roads from remote sensing images, and help achieve accurate urban planning through
high-precision buildings and roads extraction. In general, there are three contributions in
our work: (1) the Self-Attention Feature Transfer (SAFT) module is constructed through
the self-attention method to effectively explore the feature information of the hidden
layer. A feature map containing the category information of each pixel and the category
semantic information of the context pixels are obtained. To avoid the problem of large area
misjudgement of building and road disconnection. (2) Global Feature Refinement (GFR)
module is constructed, and the hidden layer feature information extracted from the SAFT
module is effectively integrated with the backbone network. The GFR module guides the
backbone network feature map to obtain the feature information in the hidden layer spatial
dimension, and enhances the semantic information of the feature map. It helps to restore
the feature map with more precise up-sampling, and improves the segmentation accuracy.
(3) Experiments are carried out on remote sensing image semantic segmentation dataset
and obtain 70.54% mean intersection over union, which outperforms the existing model.
In addition, the amount of model parameters and model complexity are the lowest among
all comparison models, saving training time and cost.

2. Methodology

In the process of feature fusion, the existing semantic segmentation methods generally
used splicing method to fuse the feature map in the channel dimension. The semantic
information of the hidden layers (the channel dimension of the feature map) were not been
developed separately. Due to the high resolution of remote sensing images and the high
complexity of the target, the pixel failed to capture the category of context pixels in the
semantic segmentation of remote sensing images, resulting in the misjudgment of large
area of building and road disconnection. Secondly, the existing semantic segmentation
algorithm models [12–15] had high complexity and high reasoning time cost. In order
to solve these two problems, this paper proposes a Non-Local Feature Search Network
(NFSNet) for building and road segmentation in remote sensing images. The overall
framework of the NFSNet is shown in Figure 1. The NFSNet proposed in this work is an
end-to-end training model, and the overall framework is divided into encoding network
and decoding network. ResNet [20] is used as the backbone network for feature extraction
in the encoding network, the decoding network constructs Self-Attention Feature Transfer
(SAFT) module and Global Feature Refinement (GFR) module. The decoding network is the
hidden feature search part in Figure 1. The SAFT module explores the feature associations
between hidden layers through its self-attention query. The semantic information of the
hidden layer is transferred to the original feature map, and a feature map containing
the category information of each pixel itself and its context pixels are obtained. So as to
improve the problem of large-area misclassification of building and road disconnection in
the segmentation process, the GFR module effectively integrates the backbone network
feature map and the hidden layer semantic information extracted by SAFT. The GFR
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module makes global average pooling of features extracted by SAFT, instructs backbone
network feature map to obtain semantic information of hidden layer in spatial dimension,
and improves segmentation accuracy. Finally, after the feature fusion of the encoding
network and the decoding network, the bilinear interpolation 16 times upsampling is
directly used to obtain the segmentation output result.

Figure 1. Non-Local Feature Search Network framework.

2.1. Encoding Network

In this paper, CNNs are used as the backbone network to achieve network feature
extraction. In recent years, many excellent CNNs have emerged, such as VGG [21],
GoogLeNet [22], and ResNet [20]. This work chooses ResNet as the backbone network for
feature extraction after weighing the number of network parameters and accuracy. ResNet
is the first method to propose the use of skip connections to mitigate model degradation as
the network depth increases. ResNet sets different convolution layers for different appli-
cation scenarios, including 18, 34, 50, 101 and 152 layers respectively. NFSNet proposed
in this paper is a lightweight network, so the least number of convolution layers network
ResNet-18 is selected as the backbone network. ResNet-18 is sampled layer by layer to
obtain the feature map with rich semantic information, the size of the feature map of the
last layer is 1/32 of the input image. ResNet-18 is sampled to obtain 1/16 size feature map
and 1/32 feature map (hereinafter referred to as CNN), CNN feature maps of different
sizes containing rich semantic information are used as the output of the encoding network
and provided to the decoding network for semantic information decoding.

2.2. Decoding Network

The decoding network is responsible for decoding the encoded information and restor-
ing the semantic feature information of the feature map. The input of the decoding network
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is the feature map of 1/16 and 1/32 sizes of the original image, which is sampled from the
backbone network of the encoding network. The decoding network is mainly composed of
SAFT module and GFR module. The SAFT module uses the self-attention mechanism to
mine the association between hidden layers and transfers the feature information of hidden
layers to the original feature map. A feature map containing the category information of
each pixel’s own category and its context pixels are obtained. The feature map containing
the semantic information of hidden layer can alleviate the problems of building misclassifi-
cation and road disconnection. The GFR module refines the semantic information extracted
from SAFT and integrates it with the feature map of the backbone network. GFR module
can helps the backbone network feature graph to obtain the semantic information of the
hidden layer in the spatial dimension, and improves the segmentation accuracy.

2.2.1. Self-Attention Feature Transfer Module

The prototype of self-attention mechanism was proposed by Vaswani [23], which
usually used for information extraction in the encoding and decoding process of natural
language processing. When a text message is entered, the relationship between each
character in the text and its context is extracted to obtain the importance degree of each
character in the text [24]. Inspired by this idea, the self-attention mechanism is embedded
into the hidden layers of convolutional neural network. The association between each
hidden layer and its context hidden layers are obtained through self-attention, so as to
realize the transfer of hidden layer feature information to the original feature map. When
the feature maps containing the semantic information of the hidden layers are obtained,
the category of the current pixel and its context pixels can be captured during pixel
classification, which can effectively reduce pixel misclassification and avoid large area
building misjudgment and road disconnection.

The self-attention feature transfer module proposed in this paper is shown in Figure 2.
Firstly, the query matrix, key value matrix and numerical value matrix are obtained by
three 1 × 1 convolutions and mapping functions of ϕ, ζ, η; secondly, after multiplying the
query matrix and the key value matrix, softmax is calculated in the first channel dimension;
finally, depth separable convolution is used to enhance features. The input of this module
is a feature map of 1/32 (or 1/16) size from the original image after the backbone network
down-sampled. The dimension of feature map X (CNN in Figure 2) is C′ × H ×W. Due
to the number of channels C′ = 512 (or C′ = 256) too large, the calculation amount in the
parameter transfer process is relatively large. In order to reduce the computational burden,
1× 1 convolution is used to reduce the dimensionality of features, get the feature map
with C = C′/2 channels. The three branches go through 1× 1 convolution, and the batch
normalization (BN) [25] and ReLU activation [26] layers get X̂q, X̂k, X̂v with dimension
C× H ×W respectively. The calculation process is shown in Equation (1):

X̂ = σ(β(Conv1×1(X))), (1)

where Conv1×1 is 1× 1 convolution, β is BN, σ is ReLU activation function.
Next, we need to calculate the attention information between channels, mining the

semantic information between channels, so as to capture the category information of
each pixel and its context pixels. Three mapping functions ϕ, ζ, η are used to map
X̂q, X̂k, X̂v ∈ RC×H×Wto the query matrix X̂q, key matrix X̂k and value matrix X̂v of the
channel respectively. The purpose of feature mapping is to facilitate matrix multiplication.
Matrix multiplication can transfer the extracted feature information of hidden layer to the
original feature map [27].

Through flattening function Fs, mapping function ϕ flattens the last two dimensions
of feature map X̂q into Xq ∈ RC×(HW). The calculation process is shown in Equation (2).

Xq = Fs(X̂q), (2)
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where ζ is similar to ϕ. Firstly, the last two dimensions of the feature map X̂k are flattened
into Xk

′ ∈ RC×(HW) by using the flattening function Fs. Then transpose Xk
′ using the

function Ts to get Xk ∈ R(HW)×C . The transpose operation is to match the dimensions
when multiplying X̂q and X̂k matrices. See Equation (3) for the calculation process.

Xk = Ts(Fs(X̂k)), (3)

Figure 2. Structure diagram of self-attention feature transfer module. The input convolutional neural network (CNN) of
the module corresponds to 16× down and 32× down in Figure 1, ϕ, ζ, η are mapping functions respectively, DWConv
represents the depth separable convolution, BN represents the Batch Normalization, C is the number of channels, H is the
height of the feature map, and W is the width of the feature map.

The value matrix of the channel Xv is obtained by mapping function η in the same way
as the channel query matrix Xq, and Equation (4) is obtained by referring to Equation (2).

Xv = Fs(X̂v), (4)

The query matrix Xq, key value matrix Xk and value matrix Xv are obtained. Query
matrix is used to query the feature information between channels by the key matrix.
The key matrix is multiplied by the query matrix, which can get the feature matrix of
dimension C × C. Softmax is performed on the first dimension of the obtained feature
matrix, and normalized scores are generated for each channel to obtain the feature matrix
X̄. The calculation process is shown in Equation (5):

X̄ = Ω(Xk × Xq), (5)

where × is matrix multiplication, Ω is calculated softmax in the first dimension.
The importance of each channel of the eigenmatrix X̄ is distinguished. Multiply

the value matrix Xv with the containing the degree of channel importance matrix X̄,
the eigenmatrix X̃

′ ∈ RC×(HW) can be obtained. The mapping function δ decomposes the
second dimension of the feature matrix X̃′ into two dimensions through the flattening
function Fs

′, a two-dimensional matrix X̃′ ∈ RC×(HW) maps to a three-dimensional matrix
X̃ ∈ RC×H×W . The calculation process is shown in Equation (6):

X̃′ = (X̄× Xv),

X̃ = Fs
′(X̃′).

(6)

where × is matrix multiplication, Fs
′ is flattening function.

The attention information between each channel is extracted in X̃, which can cap-
ture the category of its context pixels and search for the characteristics of the hidden
layer. The hidden layer feature information is transferred to the original feature map,
and the feature map containing the category information of each pixel and its context
pixels are obtained. Thus, the problems of large area misclassification of building and road
disconnection in the segmentation process can be improved.

Finally, the feature map X̃ obtained by the feature search of the hidden layer is
feature-enhanced to extract the effective information of the feature map. Considering the
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computational efficiency of the model, deep separable convolution is used for feature en-
hancement, and feature enhancement can be achieved without introducing more calculation
parameters. Sets the groups of depth separable convolution to the number of channels [28].
After the depth separable convolution, the connection is Batch Normalization. The forward
propagation is shown in Equation (7):

Xout = β(DWConv3×3(X̃)). (7)

where DWConv3×3 is the depth separable convolution of convolution kernel 3× 3, β is
Batch Normalization, Xout ∈ RC×H×W is output.

2.2.2. Global Feature Refinement Module

After the SAT module explores the hidden layer feature information, this work builds
the GFR module to fuse the hidden layer feature information with the backbone network
feature map. The GFR module can guide the backbone network feature graph to obtain
the rich semantic information of the hidden layer. The feature map with rich semantic
information can help to restore the details better in the process of upsampling. The GFR
module proposed in this work is shown in Figure 3. The GFR module integrates the
backbone network feature map and the hidden layer feature map extracted by the SAFT
module. Similar to the idea of SENet [29], the hidden layer feature map extracted by
the SAFT module is globally averaged pooling to obtain the feature information of the
hidden layer in the spatial dimension. The corresponding multiplication with the backbone
network feature map can guide the backbone network feature map to obtain the semantic
information of the hidden layer in the spatial dimension [30–32]. Finally, the backbone
network feature map and the feature map extracted by the SAFT module are merged to
improve the segmentation accuracy.

Figure 3. Structure diagram of global feature refinement module, θ is global average pooling.

GFR can fuse feature maps of different scales. As shown in Figure 1, GFR is used
to fuse the backbone network feature map of 1/32 (or 1/16) size of the original image
and SAFT feature map. Feature maps of different scales provide semantic information of
different receptive fields. The number of output channels of the SAFT module is reduced to
1/2 of its input channels, and the input of the SAFT module is the backbone network feature
map. Therefore, before the GFR module integrates SAFT module feature map and backbone
network feature map, the channel number of backbone network feature map and SAFT
module feature map should be standardized to the same level [33]. This work reduce the
dimensionality of the channel of the backbone network feature map X (CNN in Figure 3) to
1/2 of the original backbone network feature map by 1× 1 convolution, which matches the
channel dimension of the SAFT module feature map. The output of the SAFT module Xout
is globally averaged pooling by θ, and the feature map of the original dimension C×H×W
is mapped to C× 1× 1, which can obtain the SAFT modules spatial dimension information.
The reduced dimensionality of the backbone network feature map is multiplied by the
spatial information of the SAFT module feature map in the channel dimension, and the
backbone network feature map is guided to obtain spatial semantic information in the
channel dimension [34]. Finally, the backbone network feature map containing the spatial
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semantic information of the hidden layer, the original backbone network feature map and
the SAFT module feature map are combined and fused. In this way, not only the original
backbone network feature information and the hidden layer feature information extracted
from the original SAFT module are retained, but also the backbone network feature map
containing the spatial semantic information of the hidden layer is added. Through the
GFR module, different types of feature images can be fused [35], which can help to further
improve the segmentation accuracy. The calculation and derivation process of GFR is
shown in Equation (8):

XGFR = θ(Xout) · Conv1×1(X) + Xout + Conv1×1(X). (8)

where θ is global average pooling on a channel dimension, Conv1×1 is 1× 1 convolution,
· is corresponding multiplication, + is corresponding addition, Xout is the output of the
SAFT module, XGFR is the output of GFR module.

3. Experiments and Results

In order to verify the effectiveness of the proposed NFSNet, experiments were car-
ried out on the open dataset Aerial Image Segmentation Dataset (AISD) [36] and ISPRS
2D Semantic Labeling Contest (ISPRS) [37]. The quantitative analysis indicators of the
experiment adopted the overall accuracy rate (OA), recall rate (Recall), F1-Score and mean
intersection over union (MIoU). The model proposed in this paper was compared with the
current excellent semantic segmentation models FCN-8S [12], U-Net [13], DeeplabV3+ [15]
and PSPNet [14]. The experimental results showed that the NFSNet proposed in this
paper exceeded the comparison model in multiple evaluation indicators, which proved the
effectiveness of the model proposed in this paper.

3.1. Datasets
3.1.1. AISD Dataset

The original images of AISD dataset were collected from OpenStreetMap online
remote sensing image data, and the semantic segmentation dataset of high resolution
remote sensing images were constructed by manual annotation. AISD included image data
from six regions: Berlin, Chicago, Paris, Potsdam, and Zurich. In this paper, the Potsdam
regional data were selected for the experiment, and the data set was named Potsdam-A.
The Potsdam-A dataset contained a total of 24 original images and labels of 3000× 3000
average size. A schematic diagram of training data is shown in Figure 4. Figure 4a is the
original image and Figure 4b is the label. Potsdam-A consisted of three categories: building,
road and background, corresponding to red, blue and white in Figure 4b.

(a) (b)

Figure 4. Potsdam-A data presentation; (a) original image; (b) label image.

Since the original picture size of Potsdam-A was too large for model training, we
cropped the large size picture of 3000 × 3000 into the small size picture of 512 × 512,
and finally obtained 1728 pictures of 512× 512 size. When the amount of data was small,
the learning feature ability of the model was weak and the generalization effect was poor.
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In order to let the model have reliable learning capability, data enhancement was essential.
We performed random horizontal flips, vertical flips, and 90-degree rotations on the original
data set to expand to 4307 pictures. Finally, the data set was divided into 4000 training sets
and 307 test sets.

3.1.2. ISPRS Dataset

ISPRS 2D Semantic Labeling Contest dataset is a high-resolution aerial image dataset
with complete Semantic Labeling published by the International Society for Photogram-
metry and Remote Sensing (ISPRS). The ISPRS dataset contained semantic segmentation
images of the Potsdam region in the AISD dataset, so the Potsdam region in the ISPRS
dataset was selected to verify the generalization performance of the model, and this dataset
was named Potsdam-B. Potsdam-B contained a total of 38 finely labeled remote sensing
images, there were five types of foreground: impervious surfaces, building, low vegetation,
tree and car. The data display is shown in Figure 5, Figure 5a is the original image and
Figure 5b is the label. In Figure 5b, a total of six categories are shown, including five
foreground categories and one background category.

(a) (b)

Figure 5. Potsdam-B data presentation; (a) original image; (b) label image.

The average size of the pictures in the dataset Potsdam-B was 6000× 6000, and the
same cropping strategy of the Potsdam-A dataset was adopted to obtain 5184 pictures of
512× 512 size. Finally, the data set was divided into 4684 training sets and 500 test sets.

3.2. Implementation Details

This work used overall accuracy rate (OA), recall rate (Recall), F1-Score and intersec-
tion over union (IoU) as the evaluation indicators of the model to verify the learning effect
of the model, the calculation process is shown in Equations (9)–(13). OA is the proportion
of predicted correct pixels in all pixels. Recall refers to the proportion of pixels in the
actual positive sample predicted to be positive sample to pixels in the original positive
sample. F1-score is the harmonic mean of recall and precision. Among them, precision is
the proportion of the pixels predicted as positive samples to the pixels predicted as positive
samples. IoU is the proportion of pixels that are predicted to be positive samples to all
pixels. MIoU is the cumulative average of IoU of all categories.
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OA =
TP + TN

TP + FP + FN + TN
, (9)

Recall =
TP

TP + FN
, (10)

Precision =
TP

TP + FP
, (11)

F1 = 2× Precision× Recall
Precision + Recall

, (12)

IoU =
TP

TP + FP + FN
. (13)

The model in this work was a supervised learning method. At the end of the model,
a loss function needed to be set to evaluate the gap between the predicted value and
the true value. Cross entropy was mainly used to measure the difference between two
probability distributions in information theory, and was often used as a loss function in
deep learning. In this paper, the cross-entropy loss function (CEloss) was used to measure
the difference between the predicted value and the true value, and the difference value was
used to guide the model to conduct back propagation and learn the optimal parameters.
The derivation process of CEloss is shown in Equation (14):

CEloss(p, q) = − 1
m

m

∑
i=1

n

∑
j=1

p(xij)log(q(xij)). (14)

where m is the number of samples, n represents the number of categories, p(xij) is variable
(If the category j and the sample i are the same, it is 1, otherwise it is 0), q(xij)is the
probability sample i is predicted to be class j.

The network training parameters were as follows: using a single GTX1080TI graphics
card for inference calculation on the Ubuntu16.04 platform. The model was built using
the deep learning framework Pytorch, the model converged with 300 epochs, the initial
learning rate was 0.001, and every 10 epochs was multiplied by the attenuation coefficient
0.85. Using adam as the optimizer to optimize the model, we set the weight_decay of the
adam optimizer to 0.0001, and the other parameters as default values.

3.3. Analysis of Implementation Results
3.3.1. Comparison of Model Test Evaluation Index and Visualization Effect

(1) Main experimental dataset Potsdam-A experimental results
In order to verify the effectiveness of our proposed model, this work conducted

comprehensive experiments on the Potsdam-A dataset, and various indicators on the
test set exceeded the existing model. The specific quantitative experimental results are
shown in Table 1, and the visual comparison effect is shown in Figure 6. The comparison
models were U-Net, FCN-8S, DeeplabV3+ and PSPNet, the backbone networks for which
were as consistent as possible with the original paper; the backbone networks of FCN-8S,
DeeplabV3+ and PSPNet were VGG16, ResNet-50 and ResNet-50 respectively. In order to
verify the effectiveness of the proposed GFR module, ablation experiments were carried
out. The network without GFR module was tested, and the network with sat module was
named NFSNet-1.
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Table 1. Experimental results of Potsdam-A test set. The highest values for the different metrics are
highlighted in bold, ↑means the higher the better.

Methods Backbone Recall (%)↑ F1 (%)↑ OA (%)↑ MIoU (%)↑
U-Net - 83.29 81.78 77.35 63.61

FCN-8S VGG16 85.35 84.01 79.90 66.99
DeeplabV3+ ResNet-50 85.70 85.06 81.12 68.61

PSPNet ResNet-50 85.48 85.70 81.41 69.11
NFSNet-1 ResNet-18 86.64 86.00 82.25 70.17
NFSNet ResNet-18 86.96 86.31 82.43 70.54

(a) (b) (c) (d) (e) (f)

Figure 6. Visual effect comparison of Potsdam-A test set; (a) the superposition of the original image and the label; (b) U-Net;
(c) FCN-8S; (d) DeeplabV3+; (e) PSPNet; (f) NFSNet.

As can be seen from Table 1, the NFSNet network proposed in this paper, recall, F1, OA
and MIoU obtained 86.96%, 86.31%, 82.43% and 70.54% respectively. The network proposed
in this work strengthened the importance search between hidden layer channels, effectively
integrated the hidden layer feature information with the backbone network feature map,
reducing the large-area misjudgement of building and road disconnection in remote sensing
images. All four indicators exceeded comparison networks [12–15]. The U-Net network
with the lowest indicators, OA and MIoU achieved 77.35% and 63.61% respectively. FCN-8S,
which used VGG16 as the backbone network, had slightly improved indicators, with 79.90%
OA and 66.99% MIoU. DeeplabV3+, which used dilated convolution to obtain a larger
receptive field, had a certain improvement in segmentation accuracy compared with FCN-
8S, with OA and MIoU of 81.12% and 68.61%, respectively. Compared with Deeplabv3+,
PSPNet used deep convolutional network to extract high-level feature information and
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feature pyramid module for multi-scale fusion, was 0.29 higher than that of OA and 0.5
higher than that of MIoU. The above advanced semantic segmentation network achieved
satisfactory segmentation accuracy. However, in the process of feature fusion of these
networks, almost all feature maps were directly concatenated and merged in the channel
dimension, and the feature information of the hidden layers (the channel dimension of
feature map) was not independently developed and utilized, leading to the neglect of the
category of context pixels in pixel classification, resulting in problems such as large area
misjudgment of building and road disconnection. Compared with the PSPNet with the
highest index in the comparison network, the NFSNet proposed in this paper outperformed
the PSPNet in both OA and MIoU by making full use of the characteristics of hidden layer,
1.02 higher on OA and 1.43 higher on MIOU. NFSNet-1 without GFR module achieved the
highest accuracy except NFSNet, with OA reaching 82.25% and MIOU reaching 70.17%,
the effectiveness of the proposed module was verified.

The IOU results of different model categories on the Potsdam-A test set are shown in
Table 2. The IOU indexes of building, road and background categories proposed by NFSNet
on the test set were 59.50%, 71.19% and 80.91% respectively, exceeding the four existing
excellent comparison [12–15]. NFSNet was compared with other models, the category
background IoU was 2.02 higher than the highest DeeplabV3+, the category road IoU was
1.74 higher than the highest PSPNet, the category building IoU was 0.73 higher than the
highest PSPNet. It can be seen from the experimental results that the NFSNet proposed
in this work effectively improved the segmentation accuracy of roads and buildings.
The improvement of segmentation accuracy could effectively identify buildings and roads
in remote sensing images, which is of great significance to realize accurate urban planning.

Table 2. Potsdam-A test set category IoU results. The highest values for the different metrics are
highlighted in bold, ↑means the higher the better.

Methods Backbone Background (%)↑ Road (%)↑ Building (%)↑ MIoU (%)↑
U-Net - 51.76 61.95 77.13 63.61

FCN-8S VGG16 55.59 66.02 79.36 66.99
DeeplabV3+ ResNet-50 57.48 68.84 79.49 68.61

PSPNet ResNet-50 56.99 69.45 80.18 69.11
NFSNet-1 ResNet-18 59.37 70.85 80.29 70.17
NFSNet ResNet-18 59.50 71.19 80.91 70.54

In order to facilitate intuitive comparison of model prediction results, this work
visualized the prediction results of different models and obtained Figure 6. Figure 6
shows a total of five prediction maps, and each row in Figure 6 represents a comparison
map of one image. Figure 6 is divided into six columns, column (a) is the superposition
of the original image and the label, while column (b)–(f) respectively correspond to the
visualization diagram of the predicted results of U-Net, FCN-8S, DeeplabV3+, PSPNet
and NFSNet. The green boxes in column (a) are the prominent effect area of NFSNet.
From the first row in Figure 6, it can be seen that the NFSNet proposed in this paper had
the best performance in segmentation noise control. The segmentation result realized the
accurate extraction of roads and greatly reduced the misclassification of buildings. This
achievement was attributed to the NFSNet proposed in this work, which made up for the
existing network to ignore the use of hidden layer feature information, and fully excavated
the hidden layer feature information. The feature map included the category of its context
pixels during classification, helping to achieve accurate classification. From the second
row of Figure 6, it can be seen that there were large areas of background misclassified
as buildings from column (b) to column (e). The f-column network this work proposed
could overcome this difficulty and accurately classify the background by exploring the
semantic features of the hidden layer. The third row and the fourth row in Figure 6
reflect the situation of extracting disconnections from the comparison network roads.
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Columns (b) to (f) show the effect of reducing road disconnection in order. The NFSNet
proposed by us could basically extract the outline of the road, which was the result of
fusing the hidden layer feature information extracted by the SAFT module through the
GFR module and the backbone network feature map. The fused feature map contained not
only the rich location information of the backbone network but also the spatial dimension
information of the hidden layer feature map, which effectively solved the problem of
road disconnection. The last line in Figure 6 shows the problem of unclear buildings
outlines. The f-column network this paper proposed fully explored the hidden layer
feature information, provided rich semantic information feature maps, and achieved
effective extraction of buildings outline.

(2) Generalization experimental dataset Potsdam-B experimental results
Since it was difficult for a single datum set to reflect the generalization performance of

the model, this work used the Potsdam-B data set to test the generalization performance of
the model. The results of the foreground experiment on the Potsdam-B test set are shown
in Table 3. It can be seen from Table 3 that the recall, F1, OA and MIoU of NFSNet reached
89.12%, 87.41%, 87.52% and 78.09% respectively. All indicators achieved the highest value,
which could prove the effectiveness and good generalization performance of the model
proposed in this paper.

This work quantified each category on the Potsdam-B test set. Through experiments,
the NFSNet proposed in this paper could achieve good segmentation effect in different
categories. Among them, the IoU index of impervious surfaces (Imp_sur), building, low
vegetation (Low_veg), tree and car were the highest values in the comparison model, which
could prove that the NFSNet proposed by us had good generalization ability. The IoU
results for each category on the Potsdam-B test set are shown in Table 4.

Table 3. Experimental results of Potsdam-B test set. The highest values for the different metrics are
highlighted in bold, ↑means the higher the better.

Methods Backbone Recall (%)↑ F1 (%)↑ OA (%)↑ MIoU (%)↑
FCN-8S VGG16 86.06 86.96 85.58 75.69
U-Net - 87.69 86.70 86.11 76.80

DeeplabV3+ ResNet-50 88.26 86.81 86.18 76.99
PSPNet ResNet-50 87.53 86.85 86.73 77.09
NFSNet ResNet-18 89.12 87.41 87.52 78.09

Table 4. Potsdam-B test set category IoU results. The highest values for the different metrics are highlighted in bold, ↑
means the higher the better.

Methods Backbone Imp_sur (%)↑ Building (%)↑ Low_veg (%)↑ Tree (%)↑ Car (%)↑ MIoU (%)↑
FCN-8S VGG16 77.98 88.09 66.65 69.52 76.19 75.69
U-Net - 79.61 88.82 69.83 69.51 76.23 76.80

DeeplabV3+ ResNet-50 80.15 89.80 70.39 68.69 75.92 76.99
PSPNet ResNet-50 80.02 90.93 71.10 69.06 74.35 77.09
NFSNet ResNet-18 81.14 91.11 71.68 70.15 76.35 78.09

In order to visually compare the segmentation effect of the model, this paper shows
three renderings in Figure 7. Through comparison, it can be found that, because of the deep
mining of hidden semantic information in the network proposed by us, the classification
feature map contained the category of its context pixels, which greatly reduced the situation
of large-area misclassification and continuous category disconnection. The second and
third lines of Figure 7 well illustrate the advantages of our proposed model.
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(a) (b) (c) (d) (e) (f)

Figure 7. Visual effect comparison of Potsdam-B test set; (a) the superposition of the original image and the label; (b) FCN-8S;
(c) U-Net; (d) DeeplabV3+; (e) PSPNet; (f) NFSNet.

3.3.2. Model Parameters and Complexity Experiments

The NFSNet this paper proposed not only had a high level of segmentation accuracy,
but also had good advantages in model parameters, model complexity and inference speed.
The number of parameters, model complexity and inference speed of different networks
are shown in Table 5. Generally, floating point operations (FLOPs, GFLOPs is equal to
109 FLOPs) were used to measure the complexity of the model, and frames per second
(FPS) was used to measure the reasoning speed. The inference speed test equipment was a
single GTX1080TI, the input is a three-channel size picture, a total of three categories. When
NFSNet used ResNet-18 as the backbone network, it had the least amount of parameters
and GFLOPs, and the model inference speed was the fastest. The model parameter quantity
was 11.91 M, which was only 24% of PSPNet. The model complexity was 9.82 GFLOPs,
which was only 0.05% of U-Net. The inference speed was 116.26 FPS, which was 17.43 times
that of PSPNet.

Table 5. Comparison of Parameters, floating point operations (FLOPs) and frames per second (FPS)
of different networks. The highest values for the different metrics are highlighted in bold, ↑means
the higher the better, ↓means the lower the better.

Methods Backbone Parameters↓ GFLOPs↓ FPS↑
U-Net - 19.52M 184.01 11.03

FCN-8S VGG16 15.12M 80.70 26.13
DeeplabV3+ ResNet-50 40.35 69.22 8.88

PSPNet ResNet-50 48.94 177.46 9.54
NFSNet ResNet-18 11.91M 9.82 116.26

In order to see the comparison of model segmentation accuracy (MIoU) and inference
speed more intuitively (FPS), this paper provide a visual comparison chart of different
models on the Potsdam-A data set, as shown in Figure 8. The abscissa of Figure 8 is the
model name, and the ordinate is the segmentation accuracy MIoU and FPS. It can be seen
intuitively from Figure 8 that NFSNet ranks first with the highest accuracy and fastest
inference speed.
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Figure 8. Visualized comparison of model segmentation accuracy and inference speed.

3.3.3. Backbone Network Quantification Experiment

Since the backbone network of the comparison model used ResNet-50, in order to
reflect the fairness of the experiment, the backbone network was replaced with ResNet-50
with a deeper ResNet layer for comparison experiments, and the network was named
NFSNet*. The quantitative comparison results of the backbone network are shown in
Table 6. Although NFSNet* OA and MIoU were both 0.24 higher than NFSNet, the model
parameters of 35.08M and model complexity of 26.25 GFLOPs were about three times that
of NFSNet. Moreover, NFSNet had 116.26 FPS in inference speed, which was 80 FPS faster
than NFSNet*.

This proves the advantage of using ResNet-18 as the backbone network. Without losing
too much accuracy, our proposed NFSNet saved a lot of training costs with lower model
complexity and parameter amount, and had a good speed performance in predictive inference.

Table 6. Quantitative comparison results of backbone network based on Potsdam-A dataset. The high-
est values for the different metrics are highlighted in bold, ↑ means the higher the better, ↓ means the
lower the better.

Methods Backbone OA (%)↑ MIoU (%)↑ Parameters↓ GFLOPs↓ FPS↑
NFSNet ResNet-18 82.43 70.54 11.91M 9.82 116.26
NFSNet* ResNet-50 82.67 70.78 35.08M 26.25 36.00

4. Conclusions

In this paper, NFSNet is proposed for building and road segmentation of high reso-
lution remote sensing images. Compared with existing semantic segmentation networks,
NFSNet has the following advantages: (1) SAFT module is constructed to enhance the
importance search between hidden layer channels and obtain the correlation between
channels. The semantic information of the hidden layer is transferred to the original feature
map, which contains the category semantic information of each pixel and its context pixels.
Thus, the problems of large area misclassification of building and road disconnection in
the segmentation process can be improved. (2) Using the GFR module, the hidden layer
feature information extracted from the SAFT module is effectively fused with the backbone
network feature map. In this way, the backbone network can obtain the feature information
of the hidden layer in the spatial dimension, enhance the up-sampling feature information
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and improve the segmentation accuracy. (3) The model has the lowest complexity but
achieves the highest precision index.

However, there are still some defects in the segmentation of building and road:
(1) There is room for improvement in the accuracy of edge segmentation of building
and road. (2) When there is a lot of noise in the remote sensing image, the segmentation
accuracy will decrease. We will continue to optimize NFSNet to improve the edge seg-
mentation accuracy of building and road, and overcome the reduction of segmentation
accuracy caused by large amounts of noise in remote sensing images. (3) The module
structure proposed in this paper can be easily transplanted to other models, and we will
experiment on more benchmark networks to expand richer application scenarios.

Author Contributions: Conceptualization, Cheng Ding, Min Xia and Liguo Weng; methodology,
Cheng Ding and Min Xia; software, Cheng Ding; validation, Cheng Ding, Min Xia and Haifeng Lin;
formal analysis, Cheng Ding, Min Xia and Liguo Weng; investigation, Cheng Ding and Min Xia;
resources, Min Xia and Liguo Weng; data curation, Liguo Weng; writing—original draft preparation,
Cheng Ding; writing—review and editing, Liguo Weng and Haifeng Lin; visualization, Cheng Ding;
supervision, Min Xia; project administration, Liguo Weng and Min Xia; funding acquisition, Min Xia.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of PR China of grant
number 42075130.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and the code of this study are available from the correspond-
ing author upon request.

Acknowledgments: The authors would like to thank the Assistant Editor of this article and anony-
mous reviewers for their valuable suggestions and comments.

Conflicts of Interest: No potential conflict of interest was reported by the author.

References
1. Pham, H.M.; Yamaguchi, Y.; Bui, T.Q. A case study on the relation between city planning and urban growth using remote sensing

and spatial metrics. Landsc. Urban Plan. 2011, 100, 223–230. [CrossRef]
2. Yuan, J.; Wang, D.; Li, R. Remote sensing image segmentation by combining spectral and texture features. IEEE Trans. Geosci.

Remote Sens. 2013, 52, 16–24. [CrossRef]
3. Li, D.; Zhang, G.; Wu, Z.; Yi, L. An edge embedded marker-based watershed algorithm for high spatial resolution remote sensing

image segmentation. IEEE Trans. Image Process. 2010, 19, 2781–2787.
4. Fan, J.; Han, M.; Wang, J. Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image

segmentation. Pattern Recognit. 2009, 42, 2527–2540. [CrossRef]
5. Sarki, R.; Ahmed, K.; Zhang, Y. Early detection of diabetic eye disease through deep learning using fundus images. EAI Endorsed

Trans. Pervasive Health Technol. 2020, 6, e1. [CrossRef]
6. Sharma, M.; Kaur, P. A comprehensive analysis of nature-inspired meta-heuristic techniques for feature selection problem.

Arch. Comput. Methods Eng. 2020, 1–25. [CrossRef]
7. Sarkar, M.; De Bruyn, A. LSTM response models for direct marketing analytics: Replacing feature engineering with deep learning.

J. Interact. Mark. 2021, 53, 80–95. [CrossRef]
8. Elbes, M.; Alrawashdeh, T.; Almaita, E.; AlZu’bi, S.; Jararweh, Y. A platform for power management based on indoor localization

in smart buildings using long short-term neural networks. Trans. Emerg. Telecommun. Technol. 2020, e3867. [CrossRef]
9. Ni, F.; Zhang, J.; Noori, M.N. Deep learning for data anomaly detection and data compression of a long-span suspension bridge.

Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 685–700. [CrossRef]
10. Sharma, M.; Singh, G.; Singh, R. Design and analysis of stochastic DSS query optimizers in a distributed database system.

Egypt. Inform. J. 2016, 17, 161–173. [CrossRef]
11. Ferrag, M.A.; Maglaras, L.; Moschoyiannis, S.; Janicke, H. Deep learning for cyber security intrusion detection: Approaches,

datasets, and comparative study. J. Inf. Secur. Appl. 2020, 50, 102419. [CrossRef]
12. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
13. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference

on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

http://doi.org/10.1016/j.landurbplan.2010.12.009
http://dx.doi.org/10.1109/TGRS.2012.2234755
http://dx.doi.org/10.1016/j.patcog.2009.04.013
http://dx.doi.org/10.4108/eai.13-7-2018.164588
http://dx.doi.org/10.1007/s11831-020-09412-6
http://dx.doi.org/10.1016/j.intmar.2020.07.002
http://dx.doi.org/10.1002/ett.3867
http://dx.doi.org/10.1111/mice.12528
http://dx.doi.org/10.1016/j.eij.2015.10.003
http://dx.doi.org/10.1016/j.jisa.2019.102419


ISPRS Int. J. Geo-Inf. 2021, 10, 245 17 of 17

14. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

15. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 801–818.

16. Liu, W.; Zhang, Y.; Fan, H.; Zou, Y.; Cui, Z. A New Multi-Channel Deep Convolutional Neural Network for Semantic Segmentation
of Remote Sensing Image. IEEE Access 2020, 8, 131814–131825. [CrossRef]

17. Qi, X.; Li, K.; Liu, P.; Zhou, X.; Sun, M. Deep attention and multi-scale networks for accurate remote sensing image segmentation.
IEEE Access 2020, 8, 146627–146639. [CrossRef]

18. Cao, R.; Fang, L.; Lu, T.; He, N. Self-attention-based deep feature fusion for remote sensing scene classification. IEEE Geosci.
Remote Sens. Lett. 2020, 18, 43–47. [CrossRef]

19. Sinha, A.; Dolz, J. Multi-scale self-guided attention for medical image segmentation. IEEE J. Biomed. Health Inform. 2020.
[CrossRef]

20. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

21. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
22. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper

with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 1–9.

23. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
In Advances in Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 5998–6008.

24. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
25. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015,

arXiv:1502.03167.
26. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323.
27. Xia, M.; Zhang, X.; Weng, L.; Xu, Y. Multi-stage feature constraints learning for age estimation. IEEE Trans. Inf. Forensics Secur.

2020, 15, 2417–2428. [CrossRef]
28. Xia, M.; Tian, N.; Zhang, Y.; Xu, Y.; Zhang, X. Dilated multi-scale cascade forest for satellite image classification. Int. J. Remote Sens.

2020, 41, 7779–7800. [CrossRef]
29. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.
30. Xia, M.; Cui, Y.; Zhang, Y.; Xu, Y.; Liu, J.; Xu, Y. DAU-Net: A novel water areas segmentation structure for remote sensing image.

Int. J. Remote Sens. 2021, 42, 2594–2621. [CrossRef]
31. Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid attention network for semantic segmentation. arXiv 2018, arXiv:1805.10180.
32. Xia, M.; Wang, T.; Zhang, Y.; Liu, J.; Xu, Y. Cloud/shadow segmentation based on global attention feature fusion residual network

for remote sensing imagery. Int. J. Remote Sens. 2021, 42, 2022–2045. [CrossRef]
33. Qian, J.; Xia, M.; Zhang, Y.; Liu, J.; Xu, Y. TCDNet: Trilateral Change Detection Network for Google Earth Image. Remote Sens.

2020, 12, 2669. [CrossRef]
34. Xia, M.; Wang, K.; Song, W.; Chen, C.; Li, Y. Non-intrusive load disaggregation based on composite deep long short-term memory

network. Expert Syst. Appl. 2020, 160, 113669. [CrossRef]
35. Chen, B.; Xia, M.; Huang, J. MFANet: A Multi-Level Feature Aggregation Network for Semantic Segmentation of Land Cover.

Remote Sens. 2021, 13, 731. [CrossRef]
36. Kaiser, P.; Wegner, J.D.; Lucchi, A.; Jaggi, M.; Hofmann, T.; Schindler, K. Learning aerial image segmentation from online maps.

IEEE Trans. Geosci. Remote Sens. 2017, 55, 6054–6068. [CrossRef]
37. Rottensteiner, F.; Sohn, G.; Gerke, M.; Wegner, J.D. ISPRS Semantic Labeling Contest; ISPRS: Leopoldshöhe, Germany, 2014.

http://dx.doi.org/10.1109/ACCESS.2020.3009976
http://dx.doi.org/10.1109/ACCESS.2020.3015587
http://dx.doi.org/10.1109/LGRS.2020.2968550
http://dx.doi.org/10.1109/JBHI.2020.2986926
http://dx.doi.org/10.1109/TIFS.2020.2969552
http://dx.doi.org/10.1080/01431161.2020.1763511
http://dx.doi.org/10.1080/01431161.2020.1856964
http://dx.doi.org/10.1080/01431161.2020.1849852
http://dx.doi.org/10.3390/rs12172669
http://dx.doi.org/10.1016/j.eswa.2020.113669
http://dx.doi.org/10.3390/rs13040731
http://dx.doi.org/10.1109/TGRS.2017.2719738

	Introduction
	Methodology
	Encoding Network
	Decoding Network
	Self-Attention Feature Transfer Module
	Global Feature Refinement Module


	Experiments and Results
	Datasets 
	AISD Dataset
	ISPRS Dataset

	Implementation Details
	Analysis of Implementation Results
	Comparison of Model Test Evaluation Index and Visualization Effect
	Model Parameters and Complexity Experiments
	Backbone Network Quantification Experiment


	Conclusions
	References

