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Abstract: Current spatiotemporal data has facilitated movement studies to shift objectives from
descriptive models to explanations of the underlying causes of movement. From both a practical
and theoretical standpoint, progress in developing approaches for these explanations should be
founded on a conceptual model. This paper presents such a model in which three conceptual levels
of abstraction are proposed to frame an agent-based representation of movement decision-making
processes: ‘attribute,’ ‘actor,’ and ‘autonomous agent’. These in combination with three temporal,
spatial, and spatiotemporal general forms of observations distinguish nine (3 × 3) representation
typologies of movement data within the agent framework. Thirdly, there are three levels of cognitive
reasoning: ‘association,’ ‘intervention,’ and ‘counterfactual’. This makes for 27 possible types of
operation embedded in a conceptual cube with the level of abstraction, type of observation, and
degree of cognitive reasoning forming the three axes. The conceptual model is an arena where
movement queries and the statement of relevant objectives takes place. An example implementation
of a tightly constrained spatiotemporal scenario to ground the agent-structure was summarised. The
platform has been well-defined so as to accommodate different tools and techniques to drive causal
inference in computational movement analysis as an immediate future step.

Keywords: computational movement analysis; conceptual model; agent-based modelling; graphical
causal models; intelligent agent

1. Introduction

‘The whole practice and philosophy of geography depends upon the development of a
conceptual framework for handling the distribution of objects and events in space.’ [1]
(p. 191)

Understanding geospatial dynamic phenomena, their causes, and their consequences have
been long-standing activities within GIScience. Spatial positions are fundamental elements
of such phenomena, so that associated models tend to represent geometries changing
over time (movement). This body of spatiotemporal movement knowledge necessitated
the designation of Computational Movement Analysis (CMA), a multi-disciplinary field
that draws concepts and methods from computer science, GIScience, and statistics [2].
CMA has brought new insight into dynamic spatial processes through summarizing,
extracting, and visualizing movement behaviours in various applications [3–5]. These data
mining approaches have led to significant progress in organizing unstructured and messy
movement data, but not in modelling the processes that bring about movement behaviour.
For example, Andrienko et al [6,7] propose analytical frameworks to convert movement
data of professional football players into behavioural movement patterns by generalisation,
aggregation, and comparative visual exploration. Explaining such behaviour, however, is
a sophisticated task that demands going beyond representing the distribution of objects
across space or summarizing observations as patterns and associations.
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1.1. Motivation

We are therefore motivated in this research by the need for extensions to spatiotempo-
ral data mining algorithms [7] and CMA, that incorporate reasoning processes to provide
this explanation for the mechanisms and causes behind movement decisions. In so doing,
we hope to transcend the legacy of the data-centric view within GIScience that has limited
CMA to aim, at best, for bridging the gap between low-level spatiotemporal data and the
high-level movement patterns. Despite the importance of hypothesis generation [8,9] and
mining causal relationships [10] in spatiotemporal (movement) modelling and explanation,
a recent CMA journal special issue revealed little progress towards causal modelling and
explanation (see [11]).

If successful, this could overcome a perceived ‘breadth at the expense of depth’ trend
for the CMA field envisioned by Laube [12]. The capability of causal reasoning in CMA
would enable GIScientists and movement analysts to explain spatial dynamic phenom-
ena, to predict future events, to plan appropriate actions, and to customise modelled
spatiotemporal processes at will. These benefits would not be limited to the abovemen-
tioned field experts, but, we hope would spread to related disciplines: cognitive science,
geography, computer and data science, machine learning, ecology, sociology, economics,
and any research field that aims to discover and model the processes that bring about a
spatiotemporal phenomenon.

1.2. Background

Movement studies have recently developed Artificial Intelligence (AI) approaches to
implement ‘thinking machines’ for modelling movement behaviours [13–17]. However,
AI has not provided CMA with the power of these ‘reasoning-models’ to explain the
underlying causes of movement decisions, simply because AI itself has not yet acquired
such a capability. Deep neural networks, for example, is a popular form of AI that has been
successful in making associations to recognize patterns and generate stochastic models,
but without producing explicit explanations. Through fitting a function to the data, with
no requirement or production of reasoning-models [18], deep neural networks reduce
causality to an ad-hoc question of predictability. The ‘model-based’ approaches envi-
sioned by the pioneers of AI, in contrast, involve an explicit representation of knowledge
and reasoning [19].

In the context of GIScience, some scholars have been seeking a solution through the
application of agent-based models (ABM) [20–22], in which the modellers’ prior knowledge
of phenomena is encoded to expand on. ABM is founded on the idea that the real world
can be computationally represented by a collection of adaptive decision-makers (agents)
and a set of rules governing their interactions within an environment [23]. However, there
has been serious criticism against ABM as a relevant method for causal inference due,
for example, to the simplistic assumption that causally-relevant evidence can be inferred
from common-sense simulation models such as ABM ([24] has further critiques while [25]
discusses methodological issues).

The required robust causal analysis could come from statistical-based methodologies
in which analysts try to model the cause–effect relationships among parameters underlying
a spatiotemporal mechanism [26–28]. A geospatial dynamic phenomenon is then seen as
a realization of such a model, observed at discrete points in time and space [29]. These
models are viewed as a possible universe, parallel to ‘reality’, within which researchers
carefully manipulate the observed parameters to analyse their causal hypotheses. Yet, to
the best of our knowledge, there is no study making use of such well-established statistical
models to analyse the possible causes of movement behaviour.

1.3. Objectives

1. Conceptual model: Moving beyond the pattern recognition and visualisation projects
that currently pervade CMA requires a comprehensive methodology that can accom-
modate combined ABM, AI, and statistical-based causal analysis techniques (these
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techniques have been used in isolation up to now). Before any practical implemen-
tation attempt, such a general methodology necessitates the development of a well
theoretically discussed and conceptually defined framework. A conceptual frame-
work can determine the roadmap for different stages of development, provide the
basis for communication, identify potential contributory fields, and the means for
evaluation of findings in movement studies.

2. Implementation plan: Key contributions from different fields (causal analysis and
ABM) will be highlighted to put fundamental concepts together and articulate them
into an overriding infrastructure. This conceptual model is intended to be a foun-
dation for future developments of a model-based intelligent agent architecture in
movement studies. In the end, a summary of an initial limited implementation of the
proposed agent structure is reported here.

This paper is structured as follows: the ‘Literature Review’ section shortly introduces
two ‘observation-’ and ‘agent-based’ families of causal inference methods and reviews some
of their practical difficulties. ‘Conceptualising the causal analysis framework’ summarizes
the development of a conceptual cube model through a synthesis of observations, inquiries,
and formal scientific objectives. It is supported by a discussion on the commonalities
of objectiveness, agency, and autonomy notions in ABMs, and a reconsideration of the
objectives of movement analysis in the light of causal inference methods reported in this
paper. The ‘A call for adopting causal concepts in movement analysis’ section points
to further work for adopting causal thinking in CMA. ‘Initial Implementation of the
Conceptual Model’ features a summary of an initial implementation. The paper concludes
through a discussion of a data-driven agent architecture as the future generation of causal
inference models in movement analysis.

2. Literature Review
2.1. Causation and Causal Analysis Methods

Causality has been challenging philosophers throughout history. The modern common
treatment of causation dates back to the 18th century, with David Hume’s regularity theory,
according to which a causal relation may be defined as ‘an object followed by another, and
where all the objects, similar to the first, are followed by objects similar to the second’ [30].
Over time, many arguments such as ‘asymmetry,’ ‘imperfect regularities,’ ‘irrelevance,’
and ‘spurious regularities’ have been made against this theory [31]. In response, a variety
of theories have been developed to deal with such criticisms. Probabilistic causation, for
example, suggests replacing the strict assumption of the common occurrence of causes and
effects with an initial assumption that the cause increases the probability of the effect [32].
Despite the valuable insights provided by information about the probabilistic relationships,
stripping causation from correlation is often a problematic issue in the probabilistic view.

The majority of scientific investigations of causality are founded on the ‘counterfac-
tual’ theory of causation [33,34]. In philosophical terms, according to the counterfactual
dependence account of causal relations, event c would be a cause of distinct event e; if c
had not occurred, e would have not occurred [35]. Simply put, counterfactuals explore
what would have happened (in the most similar ‘parallel world’) if, contrary to fact, a
certain aspect of the perceived reality had been different. This theory initially raised many
questions around its subtle description of similar worlds: how similar a counterfactual
world must be, and what criteria can effectively measure this similarity?

In dealing with some critiques against counterfactual causation, regardless of the
theoretical and practical debates, there is substantial support for understanding the causal
structure of any given situation through building a causal model for that situation [36]. This
idea has become a common scientific approach that could address some of the philosophical
arguments, for example, on ‘pre-emption’ cases in which there is a backup event B (B can
be a set of events [b1, . . . , bn]) that would have caused e even in the absence of c (see [35]
for more details). Such models rely on a set of possible outcomes—counterfactual claims—
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designed based upon a set of assumptions, conditional criteria, and an intervention, where
at least one of the criteria is manipulated [37].

The literature seems to be polarized on two distinct ‘data-driven’ and ‘simulation-
based’ schools of thought with respect to counterfactual modelling (see Figure 1 for a
classification). In the data-driven category, ‘experimental’ (e.g., randomised control tri-
als) and ’Observational’ (e.g., graphical models) methodologies control for possible con-
founders represented in the model and an intervention (e.g., randomised control trials).
While, simulation-based (e.g., ABM) methodologies generate alternative realities and
observe them.
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2.2. Graphical Causal Models

Various methodologies have been developed to infer cause–effect relations in observa-
tional studies. The ‘Potential Outcome,’ associated with the work by Donald Rubin [38],
and ‘Causal Graphs,’ mainly articulated by Judea Pearl [39–43], are two of the more popular
frameworks with different strengths that make them particularly appropriate for different
questions (see [44] for an inclusive comparison between them). Recent literature in com-
puter science, epidemiology, and social science favour the Graphical Causal Models (GCMs)
framework [45–49]. Due to the general overlap between the aforementioned fields and
CMA, in particular human movement analysis, the focus of the current study is narrowed
down to GCMs.

GCMs are consisted of a set of variables connected by a set of edges that represent
the existence or absence of causal relations among them in a system (see [50,51] for a
concise description). Causal graphs offer a language to combine background knowledge
with observations: variables and their interrelationships are often selected based on the
modellers’ knowledge, or extracted from the data, or a combination of both. The causal
assumptions, implied by GCMs, are tested against and quantified from empirical data based
on several graphical criteria [42,52]. The relationship between variables are often described
by a set of nonparametric functions, constituting a probabilistic structural model [53].
Figure 2 presents a simple GCM.
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Despite the large uptake of GCMs, there has been a noticeable resistance to accept
them as a standard tool. They are generally criticised for being highly dependent on
data, which is scarce in many fields. Although observations have become increasingly
and abundantly available, data on autonomous individuals’ decisions and rules that
lead to their behaviour remain limited [54]. The main criticism, however, argues that
the inherent complexity of some systems is challenging enough for anyone attempting to
model its constituent components, let alone estimate the causal effects among them. In such
complex systems, the number of observable and unobservable variables, the minor causal
connections among them, and numerous sources of confounders make the observational
causal inference improbable, if not impossible. Economics, sociology, behavioural ecology,
and cognitive science, for instance, often engage with complex mechanisms underlying
individuals’ decisions.

Movement decision-making is dependent on complex processes, its explanation de-
riving from the inference of a set of drivers that often includes: individuals’ capabilities,
preferences, expectations, relations with each other, and their perceptions of the envi-
ronment within which they move and interact with. Spatial and temporal dynamics,
multi-level settings, heterogeneity, and interdependence structures are just a few properties
of movement derivatives that could make it difficult for GCMs to find a plausible narrative
for them. Even if one could overcome all such challenges, representing and validating the
mechanisms responsible for movement behaviours would not be a fruitful task.

2.3. Agent-Based Models (ABM)

Computer simulation has become a powerful tool in science for investigating complex
real-world phenomena and conducting what-if analyses in an efficient way [55]. Similar to
observational causal analysis, multiple simulation-based approaches can be implemented
to model causal relations in different sciences: Microsimulation, Cellular Automata (CA), and
ABM, being the most popular of these in the current context (see [56,57] for comparison
and discussion). Although both Microsimulation and ABM have their roots in CA, the
presence of interactions amongst individuals often separates them [58]. This research
concentrates on ABMs as they are a representationally more flexible simulation framework,
able to incorporate various assumptions about space, time, scale, and micro interactions at
individual level [22,59].

Agents in ABMs are computational entities that are often situated in space and time.
They are autonomous by means of assessing their local situation and acting based on their
characteristics, and a few general rules. Macy and Willer [60] state that agents are also
interdependent in the sense that they influence each other in response to the stimuli they
receive. The effects may be the direct result of their interactions or indirect consequences of
the changes they make in some aspects of the environment. Such features can lead to the
aggregation of heterogeneous agents and ‘emergent properties’ arising from this operation.
The emergent properties are more than the sum of the individuals’ attributes that constitute
the modelled phenomena [61]; indeed, they are the macro-level consequences of micro-
level assumptions underlying the model. All of which characteristics seem appropriate to
recreate complex movement behaviours and provide information about the possible causes
behind those behaviours.

ABMs, however, are also facing serious criticism that perhaps could best be sum-
marised in Humphreys’ quote [62] (p. 132) ‘Agent-based models are a powerful addition to
the armoury of social scientists, but as with any black-box computational procedures, the
illusion of understanding is all too easy to generate.’ The quote emphasizes the concerns
that directly target the trustworthiness of ABMs have in principle for supporting causal
claims. In response, Casini and Manzo [24] argue that depending on how an ABM is
developed, analysed, and validated, it can more or less contribute to causal understanding.
First, ABMs must be backed by well-defined theories in the field, which guarantees that
the model is built on reasonable knowledge about the modelled phenomenon. Then its
low-level infrastructure (i.e., the number of agents, their characteristics, rules of interaction,
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and local context) must be calibrated with empirical information. Finally, the macro-level
consequences of an ABM are required to be systematically confronted with their real-
world counterparts. Thus, when such ‘theoretical realism,’ ‘empirical calibration,’ and
‘empirical validation’ are in place, an ABM can produce generative knowledge that is
causally-relevant (see [24] on ABM and causal inference).

2.4. The Case for Integrating GCM and ABM

En route to scientific explanation, researchers opt in favour of multiple approaches,
neither of which alone seems adequate to establish causal understanding, due to various
limitations and the kind of evidence they produce. GCMs facilitate researchers to extract
causally relevant claims from real-world observations, based on a set of assumptions that
their validity is often testable. However, their limited ability to deal with complex mecha-
nisms has raised serious doubts. ABMs on the other hand, claim credible contributions
to understanding the causal mechanisms underlying movement behaviour, while being
criticised regarding their unclear system of verification and validation. The diversity of
causal information available, provided by GCMs and ABMs, seem to be complementary
for overcoming their respective shortcomings. This has rationalised the theoretical efforts
to integrate these approaches into a data-driven agent architecture. Such an architecture
facilitates the integration of all compartmental evidences, extracted from say GCMs, and
instantiate them into an ABM to see how they may act together over space and time [63].
However, developing such a model requires a common ground that itself would require
extracting concepts from competing causal analysis methodologies. This necessitates first
clarifying these concepts that are sometimes incompatible, or even contradictory, then
integrating them into a general framework. Finally, further application and effort is needed
for adopting the framework within movement studies. Please find more information in
Supplementary Materials.

2.5. Movement Representation: An Agent-Based Perspective

In recent years, ABM is seen as a powerful tool that allows for the explicit representa-
tion of the processes underlying the large-scale animal movement patterns [64–70]. They
are also popular in pedestrian modelling [71–78], in experimenting the effects of movement
behaviours on epidemic spread [79,80], and in crowd movement simulation [81,82]. This is
mainly because ABM facilitates an explicit representation of all three components pertinent
to movement data—space, time, moving object [83]. However, movement studies seem to
have little consensus in describing the properties of these components, with many different
implications apparent. In most cases, this is associated with an unclear conceptualization
of the agents targeted by movement observations (autonomous moving objects) and agents
that constitute the environment (spatial objects).

Movement studies aside, the disciplines that the agent-based paradigm has been
mainly developed in do contain a more robust body of material (ecology, computer science,
cognitive science, and social science [61]). Epstein and Axtell [84] (p. 5) define agents as
‘the “people” of artificial societies.’ Wooldridge [85] describes an intelligent agent as one
that is capable of perceiving its environment, performing goal-directed behaviours, and in-
teracting with other agents all in order to satisfy its design objectives. The label is reserved
for discrete autonomous individuals that live in an environment within which they interact
with to achieve a goal [86]. In GIScience, Torrens and Benenson [87] define ‘Geographic
Automata’ as a basic constituent that embodies intelligent, social, and goal-driven corpora-
tions in changing the environment. Yu and Peuquet [88] argue ‘GeoAgent’ are designed
to reason spatially, meaning that their actions are geographically/geometrically depen-
dent, while interacting with an explicitly scale-dependent geographic environment [88].
Moore [89] defines autonomous agents (auto-agents) as the abstract representations of
real-world entities that potentially possess properties, knowledge, and desires, influencing
their decisions in achieving their objectives.
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It seems while most researchers use a common terminology, agents are still influenced
by different fields, which makes reaching a clear agreement difficult. As a potential solution,
Luck and d’Inverno [90] have put forward an agent hierarchical framework, based on
which the world can be modelled via five levels of abstraction: ‘attribute’, ‘entities’, ‘objects’,
‘agents’, and ‘autonomous agents’. They define an entity as any single component that
is described by a group of attributes; an environment as a collection of entities; an object
as an entity that is capable of interacting with its environment; an agent as a goal-driven
actor; and finally, an autonomous agent as a self-motivated agent. For addressing movement
analysis, it is this framework that we will adopt.

3. Conceptualising the Causal Analysis Framework

Despite the disparity in the relevant literature, the Luck and d’Inverno [90] hierarchy
suggests a universal language that could assist achieving a consensus to satisfy both
theoretical and applied agent-based movement representation. Borrowing their notions
of Attribute, Object/Agent (Actor), and Autonomous Agent, combining with three temporal,
spatial, and spatiotemporal general forms of observations (see [83,91] on data types) allow
us to, conceptually, distinguish nine (3× 3) representation typologies of the movement data
within the agent framework. Here, we take temporal to mean observations taken at explicit
times only, spatial for observations that are subject to either absolute or relative space only,
and spatiotemporal observations as having both space and time recorded with them. These
observations may be subject to analytical processes (e.g., a spatial analysis example is the
convex hull of a set of points –the smallest n-sided polygon that circumscribes those set
of points). This creates the front layer or cover page of a conceptual cube, presented in
Figure 3, with first, middle, and back layers extending space-time observations into causal
claims along ‘Association’ (what), ‘Intervention’ (how), and ‘Counterfactual’ (why) lines.
This three-layer model of operation, derived from Pearl and Mackenzie [18], is the basis for
the key contribution of the presented research, and is explained later on in this section.

The Actors class (middle column in Figure 3) is more complex than the other classes, as
it includes both objects and non-autonomous agents [90], separated by a subtle distinction.
An object can turn into an agent, given that assigning a goal to an object makes it a goal-
driven actor when pursuing its ascribed objective. This agent status can thus be temporary,
which means an agent at some point might become an object again. A falling rock, for
example, could be an agent to shatter a window and reverts to the state of objectiveness
after the window has shattered. Agent status also depends on the observer’s perspective:
in the given instance, one might see the purpose underlying the motion of the rock while
another may not, thus observations might or may not include the individual who has
thrown the rock. We also represent events by actors. An event is a change to some
attributes of the environment [90]. It is the result of an executed action: the ability to
perform it is the minimum requirement for objectiveness, thus it can be thought of as an
actor or a group of them. In this context, an actor could represent a phenomenon with more
focus on its: temporal dimension as an event (e.g., a bankruptcy), spatial dimension as an
object (e.g., an intersection), or spatial and temporal dimensions together as an entity (e.g.,
a traffic light). In short, the contextual environment (e.g., soil, road network, buildings,
weather, topography) within which the autonomous agents move is represented by the
actors class. These are all environmental factors that have some kind of causal effect on the
movement decisions taken by autonomous agents. Contrary to Luck and d’Inverno [90],
we call them (environmental) actors to avoid having to attribute them as continuous-field
and discrete-object. Thus, an instance of this class can be represented spatially by a single
raster cell or a group of cells or vector objects (points, lines, polygons).
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Performing actions to achieve a state of affairs—a goal—is the minimum require-
ment for being an agent but not enough for autonomy [90]. In this model, a goal-driven
object—an agent—must be self-motivated to denote autonomy—these Autonomous Agents
are at the lowest level of abstraction. Self-motivation in an agent is indicated by possessing
any preference that potentially affects its behaviour while satisfying any self-generated or
-adopted goal. Such a description allows us to implement the auto-agents only in repre-
sentation of moving objects that possess a set of characteristics, capability to perceive and
interact with their surroundings, and ability to choose among alternatives (e.g., animals,
humans, self-driving cars).

Lastly, the Attribute is defined as the most abstracted representation of the world that
could be any perceivable feature of an entity (e.g., colour, age, weight, height). In Figure 3,
the first column only includes a subset of attributes that are specified to characterise an
autonomous agent (auto-agent) and are expected to have a causal effect on their movement
behaviour. These attributes vary, or are measured and analysed, over time (e.g., age, energy,
and vision ability), space (e.g., motion abilities, and sense of safeness), or both space and
time (e.g., desires, interaction capabilities, and navigation ability).

Such a three level organisation serves well to model all movement mechanisms that
consist of four basic components—the moving organisms’ internal state, their motion and
navigation capacities, and finally the external factors [92]. Autonomous moving agents
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thus execute the decision-making processes; considering their endogenous attributes; in re-
sponse to their interactions with the environmental actors; and based on their relationships
with other animate or immovable auto-agents. We call these the (attributes:) zero-order
internal-, the (actors:) first-order external-, and the (autonomous agents:) second-order
external-causal factors of movement.

Movement Inquiries: A Causal-Based Perspective

This section explores Figure 3, specifically describing the operation axis (causal analy-
sis levels) having explored the other two axes through the lens of the agent. As background,
we present a formal—educational—scientific progress of understanding. This view consists
of five fixed steps: starting with observation and description of a phenomenon, producing
an explanatory hypothesis, conducting experiments to test the hypothesis, observing and
assessing the results of intervention, and ending with drawing explanatory considerations
and causal conclusions [93]. This process seems to be well-established in experimental
practices but has remained problematic in observational studies, specifically when trying
to teach an artificial agent to imitate it. Fundamentally, Pearl and Mackenzie [18] try to
reconsolidate the two through distinguishing association, intervention, and counterfactual
stages of understanding in a ‘ladder of causation’ framework, built into the Operations axis
in Figure 3. These correspond to three distinct levels of cognitive ability: ‘seeing’, ‘doing’,
and ‘imagining’, respectively [18].

The authors describe a seeing agent—an observer—as an entity capable of sensing
its surroundings. Such an observer is also qualified to answer various forms of ‘what’
inquiries (e.g., what, when, or where something happened or may happen), or any dual
and triple combination of them (e.g., a question of movement implies when and where).
Such associational answers satisfy a few primary scientific objectives, in most cases. The
scientific objectives are often presented as a set of goals starting from ‘exploring’, ‘de-
scribing’, ‘changing’, ‘evaluating’, ‘assessing’, ‘understanding’, ‘explaining’, and ending
with ‘predicting’, which are mainly pursued by ‘what’, ‘how’, and ‘why’ general question
types [94]. Therefore, the first couple of objectives above are within the domain of what
questions and of passive observations, or with some processing, the extracted summaries
of such observations. In terms of movement data, an observer can detect regularities
and associations in our environment and provide answers for such direct questions as in
Table 1. Examples have been given from football, a spatiotemporally intensive domain
(also Tables 2 and 3, and the summarised case study later on).

In Pearl and Mackenzie’s framework, the ‘intervening’ ability (the middle layer in
Figure 3) distinguishes an observer from a ‘doer’ −‘tool user’− which entails choosing
among alternatives to make changes at will. They claim a tool user does not necessarily
know why those alternatives make such differences yet knows how to achieve the desired
outcome. Controlled interventions can be applied at all scales, with practitioners able to
make changes to some elements of nature to observe, evaluate and assess the effects of such
interventions. Thus, we perceive how the phenomenon occurs, which is a part of a greater
endeavour to initiate the researchers’ idea of causal relations. In this perspective, the quest
to find laws of nature is more than observing the objective facts and calls for creative
innovation and clever testing of hypotheses. Regarding movement analysis, an agent
possessing intervening ability is capable of providing answers for some typical questions,
given in Table 2.
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Table 1. Some typical association and what questions that can be answered by an observer about the auto-agents Aui and
Auj (players P1 and P2 in the football example).

Spatiotemporal

What is the probability of
observing Aui at location l at
time t, given that I know its

attribute a?
e.g., What is the probability of

observing P1 with opponent P2
in the last 10 minutes of the
game, given that I know P1’s

stamina?

How frequently does Aui
coincide with object o?

e.g., How frequently does P1
coincide with the ball object in a

game?

Does Aui set a trend for Auj?
e.g., Does P1 mark –closely move

with– P2?

Space

Is Aui’s spatial convex hull
associated with its attribute a?
e.g., Is P1’s spatial convex hull

associated with its pace?

What is the mean distance
between Aui and geographic

object o?
e.g., What is the mean distance
between P1 and the opponent’s

goal?

Is there an overlap between
Aui’s and Auj’s spatial convex

hull?
e.g., Is there an overlap between

P1’s and P2’s spatial convex
hull?

Time

Is Aui’s action n temporally
independent from its attribute

a?
e.g., Is P1’s decision to carry the
ball independent from its energy

level?

What is the correlation
between Aui‘s action n and

event e?
e.g., What is the correlation

between P1‘s average speed and
the time of the game?

How likely is that Aui
performs action n after Auj

executes it?
e.g., How likely is that P1 starts

running after P2 runs?

Attributes Actors Autonomous Agents

Table 2. Some typical intervention and how questions that a doer can potentially answer about the auto-agents Aui and
Auj (players P1 and P2).

Spatio-temporal

Would Aui be at location l at
time t if I change attribute a?

e.g., Would P1 stay more with P2
in the last 10 minutes of a game

if I decrease P1’s stamina?

How can I make Aui meet
actor o?

e.g., How can I make P1 meet the
ball more in the second half of a

game?

Would the probability of
action n being performed by
Auj change if I remove Aui?

e.g., Would the probability of P1
passing the ball change in a

game if I remove P2?

Space

Would Aui’s spatial convex
hull be smaller if I change its

attribute a?
e.g., Would Aui’s spatial convex

hull be smaller if I change its
pace?

Would Aui execute action n if I
increase its distance with actor

o?
e.g., Would P1 try to get the ball

more if I expand its role-area?

Would Aui’s spatial convex
hull change if I make Auj stop

moving?
e.g., Would P1’s spatial convex
hull change if I decrease P2’s

role-area?

Time

What would Aui’s action be at
time t if I manipulate its

attribute a?
e.g., Would P1 run more in the
last 10 minutes of a game if I

increase its energy?

How likely is Aui to perform
action n at time t2 if I make
event e happen at time t1?

e.g., How likely is P1 to run more
in a game if P1’s team scores a

goal at the beginning of a game?

What would be the likelihood
of Aui performing action n, at
time t if I make Auj perform

the same action?
e.g., What would be the

likelihood of P1 starting to run,
if I make P2 start running?

Attributes Actors Autonomous Agents
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Table 3. Some typical counterfactual and why questions that can be answered by an imaginer about the auto-agents Aui

and Auj (players P1 and P2).

Spatio-temporal

Where would I have seen Aui
at time t if its attribute a had

been different?
e.g., Would I have seen P1 with

P2 more in the last 10 minutes of
the game had P1’s stamina been

higher?

Was Aui at location l to meet
actor o?

e.g., Would P1 have moved
forward had the ball not been

there?

What if Aui had not co-located
with Auj at timet?

e.g., What if P1 had not
co-located with P2 at timet?

Space

Would Aui’s spatial convex
hull have been smaller had its

attribute a been different?
e.g., Would P1’s spatial convex

hull have been smaller if its pace
had been lower?

Is distance to actor o the cause
of action n taken by Aui?

e.g., Would P1 have shot the ball
had the opponent’s goal been

further away?

Would Aui’s spatial convex
hull have changed had Auj

been further away on average?
e.g., Would P1’s spatial convex
hull have been bigger had P2

been further away on average?

Time

What would have Aui’s action
been at time t if its attribute a

had been different?
e.g., Would P1 have run more at
the last 10 minutes of the game

had P1 had more energy?

Would Aui have performed
action n at time t2 had event e

happened?
e.g., Would P1 have run more if
its team had scored a goal at the

beginning of the game?

Would Aui have performed
action n had Auj not

performed it?
e.g., Would P1 have run at time t

had P2 not run?

Attributes Actors Autonomous Agents

The authors state the third level of understanding concerns counterfactual thinking
(the back layer in Figure 3) that permits, and calls for, imagination. Human beings ‘possess
a “theory” of their tool that tells them why it works and what to do when it does not’ [18]
(p. 22). Stepping into the realm of causation means mastering the science to understand
how to make a natural phenomenon happen and finally to explain why such a phenomenon
behaves the way it does. A theoretical explanation of causes and effects and an answer
as to why, both come from comparing the counterfactual worlds to the observed one.
We intend to adapt this thinking to show the potential of counterfactual reasoning in
movement studies. To take a few out of many possible examples, in movement analysis,
a counterfactual reasoning agent should be able to ask and answer such questions as
demonstrated in Table 3.

The given set of examples at each operation level includes what if queries and claims
to scientifically offer answers to such questions at all stages of understanding. This frames
the basic distinction between ‘forecasting’ and ‘counterfactual prediction’ in practical
studies (see [95,96] for a concise distinction between these tasks). Forecasting, in general,
is an attempt to map some features of a phenomenon to its other features. Whereas
counterfactual prediction aims to predict a certain state of a phenomenon as if its certain
features had been different. Forecasting relies only on passive observations, not necessarily
on a deep understanding of a phenomenon’s behaviour. While counterfactual prediction
requires an in-depth understanding of a phenomenon, formulated in a causal model.

4. A Call for Adopting Causal Concepts in Movement Analysis

In moving towards a more autonomous agent-based environment capable of address-
ing ‘How’ and ‘Why’ as well as ‘What’ questions, Figure 4 presents a causal interpretation
of a few key concepts in CMA. This section is an attempt to connect the literature to the
proposed conceptual framework and generalise its potential applications into other move-
ment analysis related fields. Note that this figure concentrates on the Level of abstraction
(the horizontal axis in Figure 3), implying that its contents would apply to all association,
intervention, and counterfactual levels of operation, and, time, space, and spatiotempo-
ral dimensions of observation within movement analysis. Acknowledging the inherent
complexity within movement data and considering the degree of importance of the objects’
position rather than their shape and size [91], physical autonomous moving agents are
simplified in Figure 4 to a point spatial representation.
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Figure 4. The key movement analysis concepts interpreted in causal language, mapped to the Figure 3 conceptual cube.
Three sets of causes of movement operate at three different levels of abstraction: categorised as zero-order (intrinsic
attributes), first-order (interaction with environmental actors), and second-order (interaction with other auto-agents) factors.
This figure illustrates that movement studies could analyse the effect of each causal factor across various dimensions
(spatial, temporal, spatiotemporal, and trajectory-based movement descriptors) and levels of operation (association,
intervention, counterfactual).

Movement paths taken by an auto-agent can be the result of its internal state and capacities
(e.g., motion, navigation, learning, needs, and emotions). Sharif and Alesheikh [97] categorise
this as the ‘Modality context’ that relates to the auto-agents’ conditions. We prefer to use
zero-order causal factors for these intrinsic properties (i.e., attributes), due to their possible
unknown impact on movement decisions. Acknowledging that handling logical reasons within
movement decisions is already difficult, here all physiological and psychological conditions
of the auto-agents are classified as zero-order causal factors. Movement decisions can also be
subject to the auto-agent’s interactions with external environmental actors [98] (e.g., pursuing,
querying, constraining, frightening, protecting). Many animal movement studies in ecology
have the latter group as the first-order causal factors, and we adopt that view here. This
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is despite the intrinsic properties being neglected in the literature or at best considered as
factors in a random walk process [99]. Even though some aspects of (say) animal movements
can be mined by such zero- or first-order factors, and might be all that is needed for some
auto-agents, they will fail in extracting all features inside more complex movement data [100].
Given a complex and high-resolution dataset, second-order causal factors reflect the auto-
agent’s interaction with other auto-agents (e.g., leading, playing, mating, flocking), also external.
Sharif and Alesheikh [97] again categorise these two recent external causes of an auto-agent’s
movement in the ‘Milieu context,’ which involves any external factor that affects its internal
context and thus movement. This verifies that our classification complies well with the three
mentioned canonical objectives in the movement analysis literature.

Another item in Figure 4 is the descriptors (of movement). These are in fact spatial and
temporal quantified movement parameters, describing the objects of interest’s relocations
over time. Such parameters can be temporal (i.e., duration, travel time), spatial (i.e.,
latitude [x], longitude [y], altitude [z]), or spatiotemporal (i.e., speed, velocity). They also
can be primitive (i.e. interval, instance) or derivative (i.e., distance, azimuth, travel time,
speed) [101]. Movement parameters are scale-dependent and require extra caution while
conducting causal inference research: different granularity and scale in both movement
observation and parameterization can accommodate diverse patterns and understanding.

At the analysis level, movement descriptors can be associated with any combination of
the three sets of causal factors (see Table 1). They can be manipulated, and be measured
post-intervention, in order to compute the average effect of each factor on the movement
behaviour of auto-agents (see Table 2). Finally, such movement parameters can be subject
to a counterfactual analysis to examine if the same movement decision (e.g., turning left at a
specific space and time) would have happened, had the hypothetical causal factor been
different (see Table 3).

Movement analyses can be conducted on spatiotemporal trajectory(s) (see [102–104]).
A spatiotemporal trajectory is an ascendant connected timestamp of geometric relocations
of an autonomous moving agent performed in order to achieve a goal (see [105] a detailed
description of trajectories). Spatiotemporal trajectories are often described and analysed
by various vector quantities (e.g., direction, magnitude, head, tail) or trajectory sample
point measures (e.g., distance, interval). The movement trajectory of an auto-agent can be
analysed solely to provide zero-order causal information. However, such trajectories are
usually compared with observed trajectories of the environmental moving actors (i.e., the
trajectory of a ball in a football game) or other auto-agents (i.e., the trajectory of another
player in a football game).

5. An Initial Implementation of the Framework: Grounding the Proposed
Agent-Structure

Before implementing the intervention and counterfactual aspects of the ‘Level of
operation’ axis, it is important to ground the proposed agent-structure (i.e., attribute, actor,
auto-agent) within a simple example. This helps to show the accessibility and application
of these core concepts in CMA. For this purpose, we try to conceptually represent the
complex decision-making mechanism underlying movement of team-sport (i.e., football,
or soccer) players. The domain of football is chosen for two reasons; first, it is an example
scenario that is tightly constrained in both time and space; second, the motion of football
players is perhaps one the most intensively observed and thoroughly discussed movement
processes [106,107].

A limited agent-based movement simulation of a football game has been developed
(see Supplementary Materials), based on the assumption that movement decisions are
caused by the three sets of factors (Figure 5):

1. The zero-order factors characterise the players’ inherent capabilities. These are
‘Stamina’, ‘Energy’, ‘Pace’, ‘Agility’, and ‘Shooting’ abilities (or attributes).

2. The first-order causes represent the environmental actors. These actors include an
imagined hard-bounded-box around each player’s role-area (an area that players
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mostly tend to move within), the elements that shape the football pitch (i.e., bound-
aries), and the Goals. The ball is also considered as an environmental actor, as it does
not move due to an autonomously-made decision.

3. The second-order causal factors indicate the interactions between this auto-agent and
other auto-agents (players).
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This configuration explicates three types of interaction: among auto-agents (e.g., a
player and teammates), between auto-agents and environmental actors (e.g., players and
the ball), among environmental actors (e.g., the ball and the pitch’s boundaries).

Figure 6 shows a simplified mechanism underlying the football players’ movement
decision based on the above set of assumptions. An autonomous movement decision
involves selecting a direction and speed (zero if not moving), based on player objectives
of movement (actions). To select an action, players try to find out ‘who possesses the ball’
first and foremost. If it is possessed by an opponent, they find a location at which they can
possibly intercept and possess the ball, dependent on their current abilities, ball velocity,
and whether it is inside their role-area. Otherwise, they decide to closely move with the
nearest opponent.

When players possess the ball, they choose either to carry or shoot the ball towards
the opponent’s goal, or to pass it to one of their teammates, as a function of distance to
opponents, to goals, to the centre of their role-box and their current abilities. If one of the
player’s teammates possesses the ball, players try to create empty space or move randomly
around the centre of their role-area. These actions are subject to player capability, e.g.,
current level of energy, which decreases throughout the game as a function of stamina.
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Figure 6. Schematic representation of football players’ movement decision based on the proposed agent-structure in Figure 3.
In total, three sets of causes of movement (zero-order, first-order, and second-order factors) are represented in blue, green,
and red colour, respectively.

In ABM, it is important to inspect model behaviours under various configurations to
understand the potential mechanisms upon which the complex movement patterns emerge
(see Figure 7 and Supplementary Materials). Given the complexity and variety of model
outcomes, three types of outcome were focussed on in assessment: (i) ball possession
patterns, (ii) the frequency of executed actions (objectives of movement: Act-1 to Act-7),
and (iii) players’ movement relative to the ball and the closest opponent player. A total of
five configurations of model parameters were used to generate outcomes, varying energy
consumption (E), formation (F), and marking strategy (M):

• E—consumed, F—3-5-2, M—man-to-man (C1);
• E—not consumed, F—3-5-2, M—man-to-man (C2);
• E—consumed, F—3-5-2 (Team A) 4-4-3 (Team B), M—man-to-man (C3);
• E—consumed, F—4-4-3 (Team A) 3-5-2 (Team B), M—man-to-man (C4);
• E—consumed, F—3-5-2, M—zonal marking plan (C5).

For a single model run, Figure 7a shows intra- and inter-team ball possession patterns
for most configurations. An example role-based pattern emerging is Team A’s strong link
between midfielders and strikers and Team B’s emphasis on the defender-midfielder link,
seemingly due to individual attributes (e.g., high average stamina). Figure 7b,c shows
the frequency of selected executed actions over all configurations for each player (player
numbers are in order of roles—goalkeeper, defender, midfielder, striker—for both teams),
demonstrating a consistency from player to equivalent player in the opposing team (roles
demonstrate consistent groupings, too). Figure 7d shows the movement and distance
relative to the ball for one player only (Player 10, the most active agent). One obvious
trend that emerges is that the closer the player is to the ball, the more consistently oriented
towards the ball that player is.
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Figure 7. Selection of result visualisations for team, role and individual aspects: (a) Changing ball possession among
players and between teams for selected configurations. The green colour indicates successful passes among teammates. The
red cells show the accumulated number of successful attempts to get the ball (retrieves, tackles, interceptions etc.) from
the opposition; (b,c) The variation of selected executed actions (attempting ball possession, shooting, running into space)
over all configurations, at individual-level. The lower values in Act-6 (the shooting case) are due to the requirement for
possession of the ball, making it relatively rare; (d) Relative distance and orientation towards the ball for Player 10 only.
Some values for the dominant ‘north’ orientation (i.e., towards the ball) beyond the plot extent are represented as numbers
according to colour-coded configuration.
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Referring to the model parameters used to structure this model assessment, the
variation of team formation has a bigger impact on the emergent outcome than the energy
consumption rate and marking strategy, possibly due to the high influence of role-boxes on
the running of the simulation. Ultimately, the movement behaviour of players does not
seem to change radically across all the model settings, which underpins the robustness of
the simulation.

6. Discussion

Movement analysis applications draw concepts and implement methods from CMA,
GIScience, GeoComputation, ABM, and recently AI, which are neither necessarily compati-
ble nor designed to pursue common objectives. Additionally, while the new generation of
computational movement studies effectively advocates answering some ‘what’ and ‘what-
if’ questions, conceptualization and implementation is needed for a model that can handle
‘how’ and ‘why’ inquiries. Such a model needs to theoretically comply with concepts from
the diverse literature underpinning CMA and causal analysis, while remaining compatible
with computational algorithms.

Theoretically, one data-driven and one simulation-based school of thought (GCM and
ABM in practice) both claim to explore scientific causally relevant evidence. Although
principally different, both approaches are founded on the idea that an initial model of a
phenomenon is necessary for causal analysis. Counterfactual analysis is also central to both
approaches: one investigates it by controlling for possible confounders and an intervention,
while the other simply simulates alternative realities and observes them. In GCMs, causal
analysis begins with making a model on what variables (events) might have caused a
phenomenon, then setting one of them to a value to explore what would have happened if
it had been different, and finally concluding why the phenomenon has happened. While
in ABMs, causal mechanisms are pursued by encoding a set of assumptions in a model
configuration, generating what would have happened under such configuration, and
representing what chain of connections may have caused the phenomenon.

Whilst both methodologies are increasingly being developed and used in different
fields, their utility for scientific understanding is the subject of many recent disagreements.
ABMs are accused of being too simplistic or, at best, black-boxes that run under untestable
assumptions. GCMs are criticised for being highly dependent on data, and incapable of
dealing with complex mechanisms. They both also rely on theoretical, substantive, and
domain-specific knowledge to show that the assumptions on which the causal identification
strategy relies are satisfied.

A few solutions have been proposed across a range of different disciplines to address
some of these challenges. For example, Herd and Miles [55] present an intervention-based
causal analysis model to explicate the complex causal mechanism within an agent-based
simulation. Their automated approach is capable of examining and detecting causal
connection between any given pair of events at a particular instant of time in ABMs.
Opposite to this methodology, integrating both approaches into data-driven ABMs is
also receiving interest in sociology, economics, and sports analysis. In data-driven agent
architectures, the modellers’ initial assumptions, agents’ behaviours, and the outcomes
could be constructed and validated based on collected observations [108–110]. The value of
such an approach is that it can represent the plausible implications of the separate elements
together and so provide a better understanding of their effects in ways that might not
have been expected from understanding each element separately [63]. Such models can
also facilitate testing the causal claims: where researchers have observed probabilistic
correlations among variables, or the outcomes of an experimental intervention, ABMs
may help to determine which causal claims are consistent with these observations. Casini
and Manzo [24] go beyond these utilities and argue that when such a well-calibrated and
validated model is built the hypothesis on which the model is founded is rational; therefore,
the simulated mechanisms may be treated as a replica of their real-world counterparts;
when these justifications are in place, generated counterfactuals from intervention on such
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simulated mechanisms appear credible. Both approaches seem appealing, but a data-driven
architecture appears to be more plausible in CMA, particularly when a sufficient amount
of movement data is accessible.

Acknowledging the value, and possibility, of data-driven ABMs in movement studies,
we argue that it becomes increasingly important to develop a common ground that can
facilitate the communications between different paradigms as more integrated applications
appear. Figure 3 presents a three-level cognitive framework for explaining movement
mechanisms along association, intervention, and counterfactual lines. This is founded
on a conceptual agent-based model in which the movement mechanisms could be repre-
sented through reconstructing the causal effects of moving entities’ indigenous attributes,
environmental actors, and other autonomous agents’ actions. These causal factors are
observed, analysed, and validated over space, time, or both space and time. By way of
demonstration, the proposed conceptual model was implemented, in a limited sense, to
realise an agent-based representation of the movement behaviour of football players in a
robust simulation, deriving insights at team, role and individual level.

In trying to extend the boundaries of a conceptual model we need to consider three
sets of descriptive, explanatory, and predictive goals that are sought with what, how, why,
and what if questions. Thus, scientific explanations and counterfactual predictions need
explicit modelling of causation, which itself requires manipulation of data and imagination
alongside validation of possible outcomes. These map to the notions of intervention and
counterfactual operations that together with association are modelled in a conceptual
framework, the ladder of causation [18], and are featured in our model as a strategy for
extending what CMA can do. We have presented a few empirical instances as the essence
of adopting a theoretically and computationally supported model for CMA (Tables 1–3).
A small subset out of many potential questions were expressed here, which ought to be
addressed by an entity that is equipped with reasoning ability. These instances are neither
jointly exclusive nor mutually exhaustive, yet, may ambitiously guide an artificial agent in
transition from the observation to deeper layers of operation in the conceptual cube. These
exemplars were provided at a generic level to preserve the generality of the framework.
Each inquiry was accompanied with an example question from the conceptualised agent-
based football simulation to make their applications clearer.

7. Conclusions

Current movement data have encouraged researchers to prioritize finding credible
narratives that account for the observed movement behaviours. This together with a
widely accepted model would potentially enable both theoretical and applied CMA to
shift their objectives from describing ‘what happened’ towards explaining ‘how and why it
happens’. A conceptual framework necessitates finding commonalities in a vast array of
phenomena in which space, time and moving objects are important. In an attempt towards
a model that supports both theory and application, we put forward three conceptually
different zero-, first-, and second-order causal factors to be measured in three temporal,
spatial, and spatiotemporal dimensions that are being processed through three (association,
intervention, and counterfactual) operation levels. This supports unifying 27 possible
operations in a conceptual cube as an arena where movement related inquiries and their
relevant objectives takes place.

This paper intended to contribute to the theory of GIScience by conceptualising an
integrated framework for causal reasoning in movement analysis, moving beyond the
current pattern recognition and visualization emphasis of that discipline. Planning fu-
ture research, with the inclusion of putting the proposed model into practice, suggests a
proposed three-level study. The first step is to fully design, implement, and test a model
development guideline (based on the agent-structure proposed in this paper) through
which an agent-based movement model can acquire explanatory status. The start of this
model development guideline is summarised in this paper, and needs to be expanded
on in a separate study. The second step would be an attempt to adopt the main concepts
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around the graphical causal models in CMA. These concepts are not intuitive and are
often hard to be made sense of, particularly in a field with no or limited background.
Given the complexity within movement observations, analysing a real-world scenario
with GCMs may not be a practical choice for this (specific) purpose. Therefore, we aim
and suggest working on a set of simulated data to examine the machinery of intervention
and counterfactual analysis in the context of movement causal studies. Finally, a separate
practical study is required to thoroughly implement and verify the applications of the
proposed data-driven agent-architecture. Thus, the last step is to implement a GCM as the
cognitive structure of auto-agents that would imbue them with a human-like mental model
in an explanatory agent-based movement model. This aligns with the call for developing
model-based AI algorithms that are increasingly being encouraged. Implementing this
integrated architecture (a GCM-informed agent) can rightly be identified as the next key
challenge for agent-based movement modelling, benefitting the wide range of disciplines
(cognitive science, geography, computer and data science, machine learning, ecology, soci-
ology, economics, as well as GIScience and movement analysis itself) in which movement
is important.

Supplementary Materials: The following are available online at https://figshare.com/s/d9f895
cff7f713d8ddcb, the source code of the Netlogo simulation model, and more figures on verification
and validation.
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