
Eo-learn core features

The core library’s structure consists of the four main building blocks: EOPatch, EOTask, EOWorkflow

and EOExecutor [48,49].

EOPatches (Figure S1) are class-objects that can store various features, according to FeatureTypes (eo-

learn, 2018), under a common bounding box. Multi-temporal and multi-band imagery in EOPatches are

multi-dimensional NumPy arrays [91] where the dimensions vary, but usually express raster pixel

width and height, image ingestion time and bands. EOPatches control the data format for a given

FeatureType automatically. They can serve to split (to patch) an area of interest we want to classify,

which allows to scale the training and classification process and thus reduce computational

requirements and the amount of data needed. It is therefore possible to prepare data, train an estimator,

classify imagery and verify the results within a set of patches, which can be stored as *.npy files [92]. As

utilized in this experiment, EOPatches contained geometries for the study area, training/testing data

and multi-temporal Sentinel-2 imagery.

Figure S1. A sample EOPatch object with some of its FeatureTypes (i.e. data, mask etc.) and the required value after

the colon (i.e. Python dictionaries with multi-dimensional NumPy arrays).

EOTask (Figure S2) is an operational class-object that can execute methods on EOPatches. There are

numerous native operations in eo-learn to work with satellite data, inherited from the design of EOTask

(i.e. adding features to EOPatches or exporting results to various formats). Custom EOTasks can be

created with their own attributes and methods. Nevertheless, they always have to implement the

execute method, which performs the desired operation and returns an altered EOPatch. EOTasks used

in this experiment are further described accordingly.

Figure S2. A sample EOTask that calculates a multi-image feature, such as normalized difference indices. Its

components are explained in Python comments.

Figure S3. A sample EOWorkflow and EOExecutor as used to pipeline EOTasks. Components are explained in

Python comments.

EOWorkflow (Figure S3) can be likened to a flowchart diagram or a model builder in common GIS

applications. It is a class-object that defines EOTask execution succession, which can be linear or non-

linear. In EOWorkflow, EOPatches share data for the underlying analyses and among each other,

coordinated by EOTasks. External arguments for executing EOTasks can be defined. EOWorkflows in

this experiment encompass filling EOPatches, preparing data for classification and predicting results.

EOExecutor is a class-object that executes the whole workflow, enabling to parallelize executions (if

performed on multiple EOPatches). It outputs a report (log) of how the execution was performed.

EOExecutors were used along with the EOWorkflows.

Figure S4. The aoi.py module source code

Figure S5. The pipeline.py source code

Figure S6. Jupyter Notebook with the implementation applied to the example usage experiment

