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Abstract: Practical efficient regional land-use planning requires planners to balance competing uses,
regional policies, spatial compatibilities, and priorities across the social, economic, and ecologi-
cal domains. Genetic algorithm optimization has progressed complex planning, but challenges
remain in developing practical alternatives to random initialization, genetic mutations, and to prag-
matically balance competing objectives. To meet these practical needs, we developed a Land use
Intensity-restricted Multi-objective Spatial Optimization (LIr-MSO) model with more realistic patch
size initialization, novel mutation, elite strategies, and objectives balanced via nominalizations and
weightings. We tested the model for Dapeng, China where experiments compared comprehensive
fitness (across conversion cost, Gross Domestic Product (GDP), ecosystem services value, compact-
ness, and conflict degree) with three contrast experiments, in which changes were separately made
in the initialization and mutation. The comprehensive model gave superior fitness compared to
the contrast experiments. Iterations progressed rapidly to near-optimality, but final convergence
involved much slower parent–offspring mutations. Tradeoffs between conversion cost and compact-
ness were strongest, and conflict degree improved in part as an emergent property of the spatial
social connectedness built into our algorithm. Observations of rapid iteration to near-optimality with
our model can facilitate interactive simulations, not possible with current models, involving land-use
planners and regional managers.

Keywords: land-use optimization; genetic algorithm; spatial compactness

1. Introduction

Global population growth and rapid unbalanced urban expansion in the 21st cen-
tury [1] has caused many social–environmental issues such as forest degradation, soil
erosion, biodiversity decline, and irreversible changes in some land uses [2]. In addition,
pressures from population growth have increased land-use demand for transport, indus-
tries, commercial buildings, and housing, resulting in conflicts between different land uses
within restricted geographic zones [3]. Effective urban planning involves the suitable allo-
cation and resolution of conflicting land uses that must also balance regional land resource
demand and supply [4]. Therefore, systematic land-use optimization involves balancing
allocation tradeoffs across complex land-use objectives that must also align with regional
development constraints and aspirations; preferably, it also involves planners interacting
with models to explore the impacts of uncertainties and alternate formulations. Therefore,
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our aim with this study is to detail improvements in land-use planning methodology with
a realistic application demonstration that is much better resolved than previous studies.

Current genetic algorithm (GA)-based land-use optimization models are generally
focused on balancing competing objectives and evolving changes across potentially viable
alternate patterns to enhance the reliability of the optimization [5–7]. However, practical
implementation challenges remain in producing final land-use optimizations that meet the
requirements of constraints and priorities of regional policies. First, initializations of cells
with random land use results in highly fragmented patches, unsuitable land-use patterns,
and computational inefficiencies in the labored iterations toward a potentially pre-mature
and non-optimal solution [8–11]. Second, some internal operators in GA (e.g., crossover
and mutation) crucially affect the compatibility of alternative land uses and the model’s
efficiency [5,12–14]; thus, further consideration is needed on the rationality of land-use
conversion required to resolve patterns. Thirdly, the balance between conflicting land uses
requires careful scaling and weighting to avoid an unbalanced comparison of competing
objectives with differing value profiles [14–18]—for example, economic differences between
very high value residential land and relatively low value forests.

Land-use optimization is essentially about reaching compromises in land-use co-
existence, a modus vivendi, that in an agreed sense best balances regional community
aspirations for society, ecology, and the economy [8]. However, differences among localities
lead to various combinations of conflicting objectives. Therefore, tradeoffs are required,
as it is impossible to completely meet the needs of all objectives everywhere. At present,
planners’ objectives are mainly divided into three competing categories: economic benefit,
environment benefit, and social benefit [7]. Economic benefit is mainly measured by the unit
output or by the conversion cost of each land use [19,20], either by Gross Domestic Product
(GDP) allocation or conversion cost, respectively. Within land-use models, economic
factors can be evaluated for maximum housing capacity, maximum social equity, and
minimum taxes [18,21–23]. Among various ecological factors, Ecosystem Services Value
(ESV), namely the value of ecosystem service and natural capital estimated by economic
rules, is widely used due to its clear scientific significance and ease of calculation [24–26]. In
addition, Net Primary Productivity (NPP), soil erosion, and pollution control can be chosen
if necessary to accord with environmental protection policies [27,28]. For the social benefit
measurement, compatibility or incompatibility of land use is most often adopted [29–31],
while compactness and conflict degree (between neighboring land use localities) are also
used for social objectives [3,32,33].

Present land-use optimization algorithms are generally of three types: linear optimiza-
tion, cellular automata (CA), and intelligent algorithm [33]. Linear optimization estimates
the aspatial optimal area of each land use and cannot deal with spatial arrangements [9,34].
CA uses spatial-neighbor conversion rules to time step the changing land-use pattern, but it
cannot be used to explore relationships among economic, ecological, and other factors [35].
The intelligent algorithm overcomes the shortcomings of above two algorithms by solv-
ing Non-deterministic Polynomial (NP) hard problems, which by definition are decision
problems that are not solved deterministically step-by-step in time, but whose solutions,
derived by non-deterministic methods (non-deterministic Turing machine), are easy to
check from its fitness value. Although intelligent algorithms may not converge to optimal
solutions in some cases, due to the complexity of the problem, near-optimal solutions are
also meaningful [10]; hence, this is the approach adopted for this study.

Intelligent algorithms utilize some form of expert knowledge in decision making [36,37]
and include the simulated annealing (SA) algorithm [19], ant colony optimization (ACO)
method [38], particle swarm optimization (PSO) [39], and GA [40]. Although SA can avoid
local optimizations traps, Aerts et al. (2005) demonstrated that GA performs better than
SA for solution time and compactness [41]. The hybrid PSO requires setting a constant
proportion of land use as a constraint before space allocation, whereas this is not required in
GA [42]. The essence of ACO is to modify the transition probability of cells through positive
feedback loops [43]. However, due to the conflicting nature of objectives, it is not clear
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which objective should be used as feedback during the evolutionary process. These general
considerations led us to choose GA for our study in view of its global search capability
and robustness.

Global optimization with GA algorithms iteratively improves (non-deterministically)
the evolution of solutions by naturally selecting higher quality (“fitness”) genes, that is to
say child solutions that are iteratively generated from parent solutions by sequential opera-
tions of selection, crossover, and mutation [3,25,44]. Iteration here means non-deterministic
algorithmic iteration (not necessarily time-stepping) where it is possible to check if the
“fitness” of the iterated solution is improving or not.

The reliability of the solution in avoiding premature near-optimal, or local optimum
traps, can be enhanced by improved internal operators or by combining with other algo-
rithms. For instance, to enhance the accuracy of the model, Cao et al. (2012) designed a
three-step mutation operator based on patch-based diversity, boundary-based, and elimina-
tion of solutions to satisfy constraints [10]. Ma et al. (2018) used adaptive probability and
elite strategy to avoid local optimization traps [32]. Huang et al. (2014) combined GA and
CA to obtain the Pareto optimal solution for dynamically expanding cities [18]. Although
those methods can improve model reliability, we propose that optimizations more suited
for practical implementation can be obtained if minimum patch size constraint, a common
requirement of land-use planning, is implemented in the initialization. For example, some
initialization improvements have been made such as generating parent solutions with cell
conversion probability [25]. The essential argument with initialization improvements is
that the initial parent land-use patterns are closer to the optimal solution (than random
allocation) and therefore should improve the search efficiency and final land-use distri-
bution. In contrast, random initial seeds will form highly fragmented land uses, causing
difficulties in achieving viable spatial agglomerations in new growth patches. Moreover,
in crossover or mutation, cell changes mostly depend on the number of adjacent cells of
the same type, while other factors (e.g., social and spatial benefits) are rarely considered to
improve efficiency.

In solving the above problems, and in pursuit of an intensive land-use pattern with
less isolated cells and enhanced aggregation ability, we developed a model named ‘Land
use Intensity-restricted Multi-objective Spatial Optimization’ (LIr-MSO), which improves
initialization, mutation, and elite strategies across multi-objectives. We selected two eco-
nomic objectives, one ecological objective and two social objectives, while government
policies and planning standards are implicit in specific constraints. Our study provides
three distinct contributions: the first is the adjustment of the initialization strategy to
improve final optimization reliability by constraining minimum patch sizes for different
land uses; the second is an improvement of the mutation and elite strategy to make it more
efficient; lastly, in the application, we demonstrate how to scale nominalizations to balance
out competing objectives, and the effect of implicit tradeoffs in the model.

2. Materials and Methods
2.1. Study Area and Data Resource

Dapeng Community, located in the east of Shenzhen city, was utilized as the demon-
stration study area. In length, it is about 14.2 km north to south and 18.8 km east to west,
with a total coverage area of about 88.3 km2. More than 45,000 people live and work in this
area (up to 2018). To facilitate the optimization computation, the whole region is rasterized
into 1878 × 1418 = 2,663,004 cells, with each cell being 10 × 10 m in size (Figure 1). This
number of cells is a substantial increase over past models and an indication of our progress
to more realistic models than past simulations; for example, 16,779 cells were used by Cao,
Huang, Wang, and Lin [10] and 1600 cells were used in the early model by Stewart, Janssen,
and Herwijnen [32].
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Figure 1. Land-use map of Dapeng Community in 2017 (map to the right), located within the Greater Bay Area (lower left
map) of China (upper left map). For modeling purposes, the land-use map is divided into 1878 × 1418 cells, with each cell
being 10 × 10 m in size. Color codings show different land-use types as listed in the legend.

Each cell is given a unique land-use type from the following Classes (uppercase
character abbreviation): Residential land (R), Commercial land (C), Industrial land (I),
Arable land (Ar), Aquaculture land (Aq), Forest land (F), Other land (O), Beach (B), Public
land (P), and Water (W).

Social and economic data were derived from Dapeng’s new 13th five-year plan and
the statistical yearbook 2017 of Dapeng District [45]. Land-use types (construction land,
forest land, arable land, aquaculture land, beach, and water) were visually interpreted and
then digitized from remotely sensed images (GF-1, 2017) [46], and finally, construction land
was further divided into commercial land, industrial land, public land, and residential land,
by calibrating with points of interest from Baidu map [47]. Then, the land-use data were
rasterized to the formulated spatial extent and resolution. Digital Elevation Model (DEM)
data from SRTM (Shuttle Radar Topography Mission) [48] were clipped and interpolated
to the rasterized land-use grid.

2.2. Model for Land-Use Optimization: LIr-MSO

As discussed, fitness impact factors/values are necessary to tradeoff patterns and to
determine one (the fittest) that optimally meets the constraints and requirements of the land-
use objectives. These factors are economic efficiency, ecological protection, spatial allocation,
and regional development policies. According to the inherent properties of such factors,
economic, ecological, and spatial factors are often regarded as objectives to be optimized,
and social factors are implicitly represented by constraints and allowable juxtapositions of
alternate land use in applying government policies and relevant social standards.

Figure 2 shows the workflow procedure of LIr-MSO, which involves initialization,
fitness calculation, genetic evolution, and then feedback to the fitness calculation from the
elite strategy until the land-use pattern is optimized or the maximum iteration is reached.
First, initial patterns are obtained by setting minimum patch sizes to different land-use
types. Second, the fitness of the pattern is calculated for the customized and nominalized
objectives and constraints. Third, roulette is adopted to select candidates based on fitness.
Then, if allowed by their crossover probabilities, any two patterns from candidates are
selected for crossover to generate a new pattern. Next, the pattern is further optimized by
using a two-step, block-based and point-based, spatial mutation operator, and a judgment
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is made to determine whether to go to the next step or to the next loop by comparing the
fitness between the pattern and its parents. Finally, the elite strategy determines whether
the fitness of the optimal pattern in this generation is better than that in the previous
generation, and the final solution is obtained after customized iterations.

Figure 2. Workflow procedure of the Land use Intensity-restricted Multi-objective Spatial Opti-
mization (LIr-MSO) model for iteratively deriving the fittest optimal land-use pattern from an
initial pattern.
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2.2.1. Objectives

Since land-use change involves both static and dynamic adjustments to intrinsic
and conversion value respectively, a single index cannot comprehensively represent the
economic benefits. Therefore, we choose both conversion cost (dynamic) and GDP (static)
to represent economic benefits. For the environment benefit, ESV is chosen due to its wide
use. Moreover, both compactness and conflict degree are adopted for evaluating social
benefit because of their advantages in measuring the social compatibility of land use.

• Objective 1: Minimization of Conversion Cost

The conversion cost is the cost to redevelop the land-use type of one cell to another
land use [49]. According to the literature and expert knowledge, a matrix of transfer
coefficients is used to represents per-unit area conversion cost between all possible land-
use conversions [20,28,50]. The sum of the product of transfer coefficient and changed area
represents the total conversion cost for an existing land-use pattern. The transfer coefficient
ranges from 0 to 1. The formula for objective 1 (O1) is as follows:

MinO1 =
K

∑
s=1

K

∑
t=1

BstTAst. (1)

Bst represents the transfer coefficient from existing land-use type s to type t; TAst denotes
the transfer area from land-use type s to type t; K is the number of land-use types.

• Objective 2: Maximization of GDP

GDP varies according to the regional economic development level, and its real value
involves regional, social, and environmental components partitioned amongst the different
land uses. In this paper, the unit GDP value for each land use is calculated by using
land-use area and GDP statistics. The total GDP for a given land-use pattern was obtained
by summing the product of the unit GDP value and corresponding land-use area. The
formula for objective 2 (O2) is as follows:

MaxO2 =
K

∑
k=1

Uk Ak. (2)

Uk is unit GDP value for land-use type k; Ak is total changed area of land-use type k; K is
the number of land-use types.

• Objective 3: Maximization of ESV

ESV is generally interpreted as the value of services provided by ecosystems and
ecological processes utilized by humans [51]. The ecological benefit for objective 3 (O3) is
estimated as follows (Costanza et al., 1997) [26]:

Max O3 =
K

∑
k=1

AkVk. (3)

Vk represents the ESV of the land-use type k per unit area; Ak represents the total changed
area of land-use type k; K is the number of land-use types.

• Objective 4: Maximization of Compactness

A reasonable pattern normally arranges each land-use cell in coherent companion-
ship with similar and complementary uses to achieve social use objectives. Land-use
compactness is considered a key factor that enhances living convenience and land utiliza-
tion efficiency. Methods for measuring compactness include adjacency-based clustering,
perimeter-area based compactness, and block aggregation [10,19,29]. After reviewing these
approaches, we chose the popular perimeter-area based compactness for its simplicity in
application. In this method, compactness is defined by the perimeter divided by the square
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root of area; higher values indicate less compact aggregation of the same land-use type and
vice versa for lower values. The formula for objective 4 (O4) is as follows:

MinO4 =
K

∑
k=1

∑Hk
h=1

Phk√
Ahk

Hk
. (4)

Phk is perimeter of the h-th patch in land-use type k; Ahk is area of the h-th patch in land-use
type k; Hk is number of patches of land-use type k; K is the number of land-use types.

• Objective 5: Minimization of Conflict Degree

To improve the suitability of the living environment, the incompatibility between
different land-use types should be minimized. The incompatibility is often caused by con-
flicts from urban noise, pollution, land-use density, and other factors. Thus, a quantitative
measure of conflict is necessary. We use degree of unsuitability between two adjacent
land-use types as a measure of the degree of conflict (measured on a scale from 0 to 8),
which should be low to ensure harmony between land uses. The formula for objective O5
is calculated using the eight neighbors (j), around each center cell (i), as illustrated below
(Figure 3).

Figure 3. Illustration of the 3 × 3 matrix arrangement where the degree of conflict around a cell (i = 1
to N, where N is the total number of cells) is calculated with respect to each of its neighbors (j = 1 to 8).

The formula for objective 5 (O5) is then calculated as follows:

Min O5 =
N

∑
i=1

8

∑
j=1

K

∑
k=1

K

∑
l=1

XikXjlCkl . (5)

Xik is a binary variable. Xik = 1 when cell i is developed into land-use type k, otherwise
Xik = 0; Ckl is the conflict degree between two adjacent cells with land-use type k and l in
the changed area; K is the number of land-use types.

2.2.2. Constraints

Specific constraints that align with current planning policies and land-use standards
are as follows:

1. A unique land-use type is assigned to each cell to retain cohesiveness and to avoid
conflicts; this is implicit in the modified mutation algorithm;

2. The upper and lower area limits of each land use are constrained to comply with
planning criteria and government policies, thereby minimizing high fragmentation;

3. Land-use change is excluded within the ecological red line delineated by the local
government, to enhance sustainable living;
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4. Terrain with slopes steeper than 25 degrees can only be used as forest land to
prevent environmental impacts such as erosion.

2.2.3. Procedures of the LIr-MSO Model

To improve the model’s efficiency, some enhancements are made in the procedure,
which comprises six steps: initialization, fitness calculation, selection, crossover, mutation,
and elite strategy. The multi-objective spatial optimization problem can be defined as:

Max ∑ Oi, i ∈ [1, 5] (6)

where minimum objectives (i = 1 to 5) are transformed into maximum objectives
after normalization.

Step 1: Initialization
During initialization, patches within the changeable area are randomly generated to

obtain N solutions to form an initial population. Each land-use alternative is regarded as
being analogous to a chromosome in which genes correspond to grid cells, whose value
represents a special land-use type. Thus, genetic interaction among different chromosomes
can lead to different land-use patterns and optimization results. The commonly used
initialization distributes changed cells in a random pattern consisting of many isolated
cells. This fragmentation affects the efficiency of the algorithm, as many agglomeration
trials are necessary across the whole region, leading to many iterations slowing progress
toward the final solution [21].

As also as suggested by Maitland [52] in the minimal urban structure theory, the
frequency of nodes represented by obvious urban forms (e.g., crossroads) constitutes the
fundamental atomic structure of a city. Maitland [52] suggested that 200 m (4 ha in area for
a 200 × 200 m block) could be used as the minimal unit structure of a city to guide larger
development and construction. Thus, to obtain a representative and practical land-use
pattern, the expansion of land use should be initiated with a minimal land-use-type unit
as an atomic building block (with different atoms/block sizes for different land uses) for
larger genetic land-use structures.

Guided by the minimal block scale theory of Maitland [52] and urban planning
standards in China, the minimum area for residential land is set as 2 ha (comprising
200 cells, each of 100 m2), and for commercial land, industrial land, and public land,
the minimum area is 0.5 ha (50 cells), respectively. As demonstrated in the following
experiments, such initiation will help avoid fragmentation and the phenomenon of large
patches engulfing small patches in the following operators (e.g., crossover and mutation)
whereby some initially generated patches might be merged in the final solution, and also
some isolated cells of impractical size might still exist.

We generated initial patterns depending on the conversion probability of each land
use, the formula is as follows:

CRk =
K

∑
t=1

CPtk Atk. (7)

CPtk is the conversion probability from land-use type t to land-use type k; Atk is the
total changed area from land-use type t to type k; K is the number of land-use types.

Step 2: Fitness Calculation
Currently, two methods are widely adopted: one is the Pareto-based method and the

other is the weighted method. The former resolves optimal solution sets without compro-
mising different objectives; hence, the relative priority of objectives does not determine
optimality. The latter assigns relative weights, determined heuristically, that prioritize each
objective so that the weighted sum of the objectives represents a single fitness measure that
can be used as an index of optimality. We adopted the latter to calculate the fitness, as it
allows planners and managers to tailor their priorities through the selection of appropriate
weights. To account for magnitude differences of objectives, we normalized each into a
range from 0 to 1. Considering the inherent characteristics of objectives, we adopted three
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normalization strategies: Objectives 2 (GDP) and 3 (ESV) need to be maximized and scaled
according to the normalization formula:

Z(V) =
V − Vmin

Vmax − Vmin
. (8)

Objectives 1 (conversion cost) and 5 (conflict degree) need to be minimized so their
nominalization is as follows:

Z(V) =
Vmax − V

Vmax − Vmin
. (9)

V is the raw objective fitness; Vmax, Vmin are the respective maximum and minimum
fitness for that objective.

For objective 4 (compactness), the normalization formula allows for compactness
having a fixed minimum value (for a square block = 4 * R/

√
R2 = 4, where R is the length

of the block):

N(X) =
Xmin

X
. (10)

X is the raw objective fitness; Xmin is the minimum fitness nominally 4 for a square.
Then, the weighted fitness is obtained as follows:

fit(x) = w1Z(O1) + w2Z(O2) + w3Z(O3) + w5Z(O4) + w4N(O5) (11)

where fit(x) represent the fitness of the xth chromosome; wi represents the weight of
objective i. The sum of weights is 1.

Step 3: Selection
We use roulette in the selection operation so that the probability of each chromosome

being selected is directly proportional to its fitness. The higher the fitness of the chromo-
some, the greater the probability of its selection in the next generation. The probability
formula for cell i (1 to N cells) is as follows:

P(x i ) = fit(x i) / (
N

∑
i=1

fit(x i)). (12)

The following algorithm details the roulette selection of xi:

R = rand () (13)

s =

{
1 R < P(x i)
0 R > P(x i)

. (14)

R is a random number between 0 and 1. If the selection score (s) is equal to 1, xi will
be admitted to participate in the next step; otherwise, it will enter into the next selection to
determine s; where the other possibility is that it will not be selected (s = 0).

Step 4: Crossover
The purpose of the crossover is to reduce the fragmentation of land-use patterns [25].

The procedure for crossover [7,33] is as follows: after calculating the crossover probabilities
of parents, parent 1 (main parent) is selected along with parent 2 (subsidiary parent);
a portion of cells from the parents are randomly selected according to their crossover
probabilities (determined as frequencies of occurrence). For example, in Figure 4, supposing
two cells, one from parent 1 and another from parent 2, have different land-use types (a
and b respectively) in the same position; a 3*3 window around the selected cell is used
to separately count the number of cells in parent 1 that belong to a and b. The selected
cell in parent 1 (a) will be replaced by b if the new number of b cells will be more than a
after replacement.
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Figure 4. Schematic illustration of the procedure for crossover from two viable parents (Parent1 and
Parent2) with two different land uses (a and b respectively) in the center cells. Crossover to form an
Offspring is performed by replacing the center cell in Parent1 if the new center cell type outnumbers
the old.

Step 5: Mutation
Mutation promotes solution diversity by making changes to genes in the chromosome.

To avoid local optimum traps and promote the compactness of land use, we use a two-step
spatial mutation operator:

(1) Block-based Mutation (BM) promote compactness as follows: after customizing
BM’s probability and selecting a parent, a portion of cells in the parent will be randomly
selected according to the BM probability. Then, a 3*3 window around the selected cell is
used to count the number of cells of each land-use type. Next, the conversion cost from
one land-use type to another is calculated according to the transfer coefficient. Finally, cells
within the window are replaced with the type that has the lowest conversion cost.

(2) Point-based Mutation (PM) is performed after BM to reduce geographic dispersion
(Figure 5). The main procedure is as follows: after customizing PM’s probability and
selecting a parent, a portion of cells in the parent will be randomly selected according to
PM’s probability. Suppose the land-use type of the selected cell is a, a 3*3 window around
the selected cell is used to change the cell if the number of a cells is less than other types;
for example, if type b is the most, the selected cell will be replaced by b. An alternative
way to think of this mutation is that of a median filter in which the center cell is replaced
with the most frequently occurring within the window. Viewed in this way, the mutation
operation acts as a spatial smoothing filter.

Figure 5. Procedure of Point-based Mutation (PM) where the center cell within a 3 × 3 window in
the parent is replaced by the most numerous type.
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Step 6: Elite Strategy
Elite strategy, or “survival of the fittest”, is often adopted to promote convergence

by retaining the fittest individuals in each generation [52]. However, iterations in the elite
strategy can converge slowly toward sub-optimal fitness amongst a juvenile (pre-mature)
set of parents. In order to avoid this local trap and to promote global convergence toward
maturity and optimality, a replacement mode is adopted (Figure 6). In this mode, the best
pattern is conserved as an additional resource to be used when the current generation fitness
is less than that in the previous generation. Assume that A(n) is the parent population,
A(n + 1) is a newly generated population, and n is the number of the iteration. In the
replacement mode, we discuss three cases: the best fitness in A(n) is higher than A(n + 1),
the best fitness in A(n) is equal to A(n + 1), and the best fitness in A(n) is lower than A(n + 1).
The crossover is adopted only if the maximum fitness in A(n + 1) is not greater than that in
A(n), thus ensuring that the fitness keeps increasing.

Figure 6. Replacement mode in the elite strategy applied to a current and future generation (A(n) and A(n + 1) respectively)
for the three cases of relative fitness comparison.
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Step 7: Terminate the algorithm
We ensure that the number of generated chromosomes is consistent with the initial

number in the whole process. The algorithm will not achieve the optimal result until
N-times’ iterations (500 in the case study) are finished or the fitness is deemed to reach
convergence (fitness does not vary over many iterations).

3. Results
3.1. Objective Quantification and Constraints

Basic parameters for the objectives were determined from several papers, published
reports, and expert knowledge, and they are given in the following tables.

Table 1: Transfer coefficients between two land-use types were compiled from pub-
lished studies [20,28,50] and presented in Table 1 where rows are the transferred land use,
while the columns are the source land use. Water bodies, beaches, and aquaculture land
are unchangeable areas; hence, their transfer coefficients are 0.

Table 1. Transfer coefficient, from a scale of 0 (change not possible) to 1 (no restrictions in swapping
over) for changing land-use types. Abbreviations are as follows for the land-use type: Residential
land (R), Commercial land (C), Industrial land (I), Arable land (Ar), Aquaculture land (Aq), Forest
land (F), Other land (O), Beach (B), Public land (P), and Water (W). Columns are the source land use
and rows are the changed land use.

Change to\Change from R C I O F Ar P

R 0 0.44 0.32 0.18 0.22 1 0.24
C 0.23 0 0.31 0.18 0.22 1 0.27
I 0.29 0.37 0 0.18 0.22 1 0.45
O 1 1 1 0 1 1 1
F 0.89 0.92 0.89 0.7 0 0.3 0.85
Ar 0.83 0.85 0.82 0.7 0.4 0 0.81
P 0.35 0.51 0.33 0.34 0.18 1 0

In Table 2, the unit GDP of different land uses were determined from remote sensing
interpretation and regional economic statistics. Table 2 also lists the ESV for each land use
as determined from the current land use in China [51]. The GDP of residential land is used
as the maximum for nominalization, whilst for ESV, the value for forest is used as water is
not changeable, despite its ESV being higher.

Table 2. GDP (Gross Domestic Product) and ESV (Ecological Service Value) per unit area for different
land-use types. Land-use type abbreviations are as per Table 1.

Land-Use Type GDP per Unit Area (RMB/m2) ESV per Unit Area

R 30,467 0
C 699 0
I 4508 0
P 0 0
Ar 0 7.9
Aq 4.9 7.9
F 0.001 28.12
O 0 1.39
B 0 28.12
W 0 45.35

In Table 3, the conflict degree for any two land uses is summarized from the present
literature and expert knowledge [28,30]. Moreover, area constraints for each land use are
shown in Table 4.
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Table 3. Conflict degree between different land uses. The matrix is symmetrical so that conflict
degree does not depend on the horizontal directionality of the spatial juxtaposition. Land-use type
abbreviations are as per Table 1.

R C I O F Ar P

R 0 4 8 5 7 8 0
C 4 0 6 5 7 8 2
I 8 6 0 5 7 8 7
O 5 5 5 0 1 1 5
F 7 7 7 1 0 2 6
Ar 8 8 8 1 2 0 8
P 0 2 7 5 6 8 0

Table 4. Regional area constraints for residential and industrial land use in hectares (ha).

Land Use Type Lower Area Limits (ha) Upper Area Limits (ha)

Residential land No less than 410 No more than 660
Industrial land No less than 250 No more than 500

The unchangeable area is shown in Figure 7a, including reserved villages (e.g., Dapeng
Ancient City) and ecological preservation regions. Figure 7b shows a slope-constraint map
that identifies potential construction lands where the slope is less than 25 degrees.

Figure 7. Constraints in Dapeng Community in relation to (a) changeable and unchangeable land, and (b) areas of allowable
development where the land slope does not exceed 25 degrees.

3.2. Implementation and Evaluation

Every objective uniquely affects corresponding benefits, making it difficult to deter-
mine which objective is the most important. In practice, expert knowledge of the tradeoffs
from weightings is necessary, which is possibly in conjunction with scenario experimen-
tation. As this is not the main aim of this study, we assume for demonstration purposes
that regional development is balanced so that every objective has equal weighting; thus,
their weights are all set 0.2 [8,24,36]. Furthermore, the probabilities of crossover, BM-based
mutation, and PM-based mutation are 0.06, 0.05, and 0.3, respectively as determined from
past studies [18,25,31]. A total of 100 chromosomes are initially set, and a maximum of
500 iterations (derived from preliminary experimentation) are performed.
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One nominalization difficulty is with the GDP valuations which differ by over seven
orders of magnitude (≈107) between the highest value and lowest values (30,467 for
Residential to 0.001 for Forest respectively). In preliminary experiments, we tested the
nominalization of Equation (8) and found that the nominal GDP fitness value of the optimal
pattern was not much more than 0.08 compared to, for example, compactness at over 0.9,
leading to GDP playing a very minor role in the overall fitness contribution. With such
a large disparity in GDP values, we resorted to taking log10 of the numerator and the
denominator of Equation (8) to raise the nominal value of GDP (to more than 0.8).

Before achieving the final solution, the summed value of objectives that contribute to
fitness will increase until the fitness reaches a convergence (or the maximum designated
iterations is reached). The change of fitness with iterations (Figure 8) shows an initial phase
of rapid increase in fitness up to about 21 iterations and then a much slower phase of
gradual fitness increase, including almost static phases where the fitness remains relatively
stable through successive iterations. Shorter periods of these static phases are also notice-
able in the rapid phase, so it is not a unique facet of the slow-change phase. The reason for
the static phase is that, in this model, if the value in the parent generation is greater than
that in the offspring, the optimal pattern in the parent generation is preserved. The curve
appears stable after 226 iterations—more than 10 times the number of iterations required
for the first rapid phase.

Figure 8. Change in fitness score of the comprehensive model with the number of iterations showing a relatively rapid
change up to about 21 iterations followed by a transition toward a much slower phase of increase, punctuated by periods of
static fitness. Shorter periods of relatively static change are also noticeable in the rapid phase. The different Conditions refer
to the contrast experiments described in the main text: (1) without initialization revision; (2) without mutation revision;
(3) without initialization and mutation. LIr-MSO refers to the comprehensive model that includes both initialization and
mutation revision.

The maximum fitness is about 0.8520 after 226 iterations, while the fitness at the end
of the rapid phase is 0.8422 after rising from 0.7645 in 21 iterations. So, the fitness change
in the rapid phase, relative to the range from start to end, is about eight times greater than
the slow phase. What is more, the rate of change (relative change per iteration) is about
77 times greater during the rapid phase, which is an indication that the LIr-MSO model is
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very efficient at achieving near-optimal fitness within what is a relatively short period of
iterations compared to much longer iterations reported in other studies (e.g., Cao, Huang,
Wang and Lin [10]) for much smaller models.

Five representative regions are selected to describe the differences between the initial
and the optimal patterns (Figure 9). Compared to the initial pattern (Table 5, Figures 9
and 10), the best solution has more commercial, industrial, public, and residential land,
while forest, arable, and other land decrease. The main reasons for this change are the
development needs of the economy. This suggests that there is still potential for further
development in the study area while protecting the ecological environment. In the optimal
pattern, residential land increased by 7.81%, mainly in Regions 2 and 3. The increase in
residential areas near existing patches increased compactness. Commercial land increased
by 107.07%, some patches merged in Region 2, and some newly generated patches appear
in Region 1 and Region 5. Some increased commercial land along the coast suggests an
increased effective utilization of coastal resources for regional GDP. Most of the reduced
forest land was converted for further development to commercial, industrial, and residen-
tial land. In addition, in both the initial and optimal patterns, the industrial land situated
in the west and east coasts is always surrounded by forest land, which can effectively
reduce the impact of industrial pollution on human settlements. Moreover, industrial land
use increased by 24.39%, mainly in Region 2 and Region 5, and several complementary
commercial and residential patches appear within the industrial region, which can provide
living space to workers to improve their quality of life.

Figure 9. The final optimal pattern of land use showing different land uses (colored as per the Legend) with example
zoomed in comparisons. Changes in land use in the numbered regions from 1 to 5 are referred to in the main text.
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Table 5. Comparison of the change in area (km2) between initial pattern and optimal multi-objective
optimal pattern for the different land uses. Abbreviations are described in Table 1.

Objs\Land Use (km2) C I O F Ar

Initial 2.3894 6.5216 2.0319 67.2372 1.7036
LIr-MSO 4.9478 8.1120 1.8262 62.8576 1.6818

Changed (%) 107.07% 24.39% −10.12% −6.51% −1.28%

Objs\Land Use (km2) Aq W B R P

Initial 1.2413 1.3628 0.2270 4.8931 0.6966
LIr-MSO 1.2413 1.3628 0.2270 5.2754 0.7726

Changed (%) - - - 7.81% 10.91%

Figure 10. The pattern of areas of changed land use (regardless of type) in the developable area between the original and
the optimal land-use pattern. No changed areas occur within the ecological reserve area.

In order to demonstrate the reliability of the model, three contrast experiments were
conducted: (1) without initialization revision, namely patches generated without area
constraint (condition 1); (2) without mutation revision (condition 2), namely all eight
neighbors around the central cell converted to central cell’s land-use type; (3) without
initialization and mutation revision (condition 3).

In Condition 1 (Figure 11a), although the full model has increased fitness by 1.74%,
if no area constraint is adopted, land use will mainly change through patch expansion,
contraction, and merging; thus, new patches will not be generated. In addition, this results
in expanded, extended patches with a more rounded appearance that is most likely due to
the compactness objective, as also evident in the comprehensive optimal pattern. While
optimal from a compactness perspective, in practice, rounding off straight transport-related
boundaries may be unacceptable in certain situations.
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Figure 11. Comparison, including zoomed inserts, of final land-use patterns across three contrast experiments (a–c):
1. without initialization revision; 2. without mutation revision; 3. without initialization and mutation revision. In (d),
the normalized values are listed for each experiment/condition and compared to the optimal solution obtained with the
LIr-MSO model.

The pattern from Condition 2 (Figure 11b) suggests that the proposed mutation opera-
tor better handles isolated patches because in this simulation, there are some fragments,
and the comprehensive fitness simulation is better by 2.05%.

In Condition 3 (Figure 11c), the fitness of the full model is better by the largest margin
of 2.71%. This pattern is very similar to that under Condition 1, but land use is less altered
in Condition 3, and the expansion trend is less than in Condition 1—suggesting that this
pattern is likely to be subject to inefficient land use, as evident from the lowest scores for
conversion cost for this simulation.

The experiment results demonstrate that our model provides decision makers and
managers with spatially pleasing, efficient, and less conflicting land uses within a regional
development setting, and that the proposed mutation modification significantly enhances
overall fitness whilst also adhering to minimum patch size requirements. Furthermore,
near-optimality is reached relatively quickly.

4. Discussion

In past decades, considerable progress has been made in multi-objective optimization
using genetic algorithms for land-use optimization. However, most studies created imprac-
tical random initial patterns without minimum patch size constraint, resulting in the use
of considerable computing toward a slow development of large patches engulfing small
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patches. In addition, social and spatial factors were only considered in objectives rather
than in the implemented algorithm, resulting in differences between the optimal solution
and actual land-use planning. Moreover, local optimum traps may appear because of inad-
equate internal process in GA causing premature convergence to non-optimal solutions.

To solve these problems, we developed the LIr-MSO model, which improves the
initialization of patches, mutation, and elite strategy. First, patch size constraints for
different land use was applied in initialization to obtain practical spatial agglomerations.
Second, spatial allocation with implicit social relationships was enhanced through a two-
step mutation operator to limit fragmentation and cell conversion. Finally, prematurity
was minimized through a modified elite strategy.

The Dapeng Community was used as the study area to demonstrate the model’s ability
to provide reliable support for land-use planning and sustainable development. The model
used conversion cost, GDP, ESV, compactness, and conflict degree as objectives. According
to the minimal block scale and relevant standards of urban planning in China, we set the
minimum generated area of residential, commercial, industrial, and public land as 2, 0.5,
0.5, and 0.5 ha, respectively. A two-step mutation operator was used, which included block-
based mutation and point-based mutation: block-based mutation used transfer coefficients
to determine the change of land-use type with the lowest conversion cost for cells in a
3 × 3 window, while point-based mutation eliminated isolated cells by evaluating whether
the center cell’s land-use type has the lowest count within a 3*3 window. In addition, elite
strategy was improved by dividing the replacement mode into three conditions.

As the optimal land-use pattern is a tradeoff for all objectives, we found that Dapeng
Community still has great potential for development. In the optimized pattern, residential,
commercial, and industrial land increased by 7.81%, 107.07%, and 24.39% respectively.
Residential land grew new space around the original area; commercial lands more than
doubled through clustering and merging; arable land remained almost unchanged; and
some commercial and residential land began to appear around industrial land in response
to favorable alternative land-use transfer coefficients.

To demonstrate the priority of the model, experiments without improved operators
were conducted with three experiments: without initialization or mutation or without both.
The comprehensive fitness of the LIr-MSO model was 1.74%, 2.05%, and 2.71% higher
than that of each condition, respectively. The experiments without the improved mutation
had inefficient land use with less optimal conversion cost. This comparison shows that
LIr-MSO can, under the assumed objectives and constraints, achieve an optimal more
realistic land-use pattern. However, the land-use planning implications of the compactness
objective being independent of patch size and in rounding off patches (due to rounding off
reducing compactness) needs further consideration, especially in situations where existing
transport networks cannot be redeveloped.

Lastly, the fitness trajectory showed a rapid initial phase to near optimality and a
much slower parent–offspring mutation progress to the optimal pattern. Considering that
the realistic simulation of millions of raster counts take hours or days to converge on a
typical laptop, this observation could be used in realistic quick simulations that only run to
near-optimal solutions to interactively assess the impacts of alternative nominalizations
and weightings of objectives. This unexpected benefit of our model opens the possibility
of interactive simulations involving planners and managers who can now assess the
sensitivity of planning uncertainties before running a final convergent simulation.

5. Conclusions

Our proposed multi-objective genetic algorithm LIr-MSO model provides land-use
planners with more realistic, efficient, and fitter land-use optimizations through much more
detailed patterns, minimum initial patch size constraints, more balanced scaling, and novel
genetic replacements in the mutation and elite strategy. Cell generation improvements
result in a rapid increase of fitness to near-optimality, and the final fitness patterns appear
to be practical with respect to the patch sizes of different land use and their placement
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relative to one another. The rapid fitness phase can facilitate quick realistic simulations that
would allow planners to experiment with uncertainties and alternate models.

The reliability of the model was tested in an application to Dapeng Community,
Shenzhen, which showed that the fitness of the model was 2.71% higher than that without
improvements in the initialization and mutation. However, the percentage increase in
fitness from initial to final pattern does not reflect substantial increases in some land
use—for example, in commercial land use, which more than doubled.

However, improvements of the optimization model are still needed for practical
applications. First, due to the complexity of urban development, more effective objectives
should be considered. For example, the set of objectives should include increased pressures
from population, traffic, accessibility, livability, and pollution control. The balance of
these objectives in determining the final land use also needs further experimentation with
planners to determine sets of suitable relative weights, which now seems computationally
plausible using near-optimal solutions. Rapid near-optimal solutions would also allow
decision makers to be intimately involved in land-use planning. Thus, it may be possible
to combine models that can simulate the decision-making process from different agents—
as in multi-agent systems—especially those involved in transport planning in view of
potential tradeoffs between compactness and changes to transport networks. In addition,
planning scenarios in the form of alternate regional development policies and plans should
be designed to meet the different needs in practical land-use planning. For example, with
the ecology-first concept, spatial optimization based on ecological security can be tested.
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