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Abstract: During the COVID-19 lockdown in Wuhan, transportation, industrial production and
other human activities declined significantly, as did the NO2 concentration. In order to assess the
relative contributions of different factors to reductions in air pollutants, we implemented sensi-
tivity experiments by Random Forest (RF) models, with the comparison of the contributions of
meteorological conditions, human mobility, and emissions from industry and households between
different periods. In addition, we conducted scenario analyses to suggest an appropriate limit for
control of human mobility. Different mechanisms for air pollutants were shown in the pre-pandemic,
pre-lockdown, lockdown, and post-pandemic periods. Wind speed and the Within-city Migration
index, representing intra-city mobility intensity, were excluded from stepwise multiple linear models
in the pre-lockdown and lockdown periods. The results of sensitivity experiments show that, in the
COVID-19 lockdown period, 73.3% of the reduction can be attributed to decreased human mobility.
In the post-pandemic period, meteorological conditions control about 42.2% of the decrease, and
emissions from industry and households control 40.0%, while human mobility only contributes
17.8%. The results of the scenario analysis suggest that the priority of restriction should be given
to human mobility within the city than other kinds of human mobility. The reduction in the NO2

concentration tends to be smaller when human mobility within the city decreases by more than 70%.
A limit of less than 40% on the control of the human mobility can achieve a better effect, especially in
cities with severe traffic pollution.

Keywords: nitrogen dioxide (NO2); random forest; human mobility; contribution rate; air pollution;
COVID-19 lockdown

1. Introduction

In recent years, severe air pollution has killed many people, which has aroused
concern [1]. The air pollution is a comprehensive result of meteorological conditions and
human activities. Road traffic is deemed as an important source of NO2 and PM2.5 [2–4],
and it also has a significant impact on the concentration of O3.

After the COVID-19 outbreak in Wuhan in December 2019 [5,6], China activated a
first-level public health emergency response in Wuhan on 23 January 2020, taking measures
such as cancelling mass gatherings, reducing the frequency of bus services in the city and
halting long-distance buses [7]. Therefore, transportation, industrial production and other
urban activities fell sharply [8,9]. Moreover, the improvement in air quality emerged, as
was reported that tropospheric NO2 vertical column densities reduced by 22–67% over
East China in the 2020 lunar new year holiday season compared with those in 2019 [10].
Not only in China [11–13], similar situations also occurred in many other areas such as
South Korea [14], Western Europe [15], and the USA [16]. Although secondary pollution
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sometimes enhanced during the COVID-19 lockdown in China, emissions of primary
pollutants undoubtedly reduced [17].

Considering the impact of meteorological conditions and human activities on the
air quality, many models such as Random Forest, Difference-in-differences (DID) and
the Non-Linear Autoregressive Distributed Lag (NARDL) model have been employed
to explain the connection between the COVID-19 lockdown and the reduction in air
pollution [18–21]. Random Forest (RF) is an ensemble learning method, which consists of
several simple decision trees [22]. RF samples with replacement, and constructs several
subsets and outputs predictions by aggregating and averaging the individual predictions
of each weak tree on the subset [23]. Thanks to its out-of-bag estimation, the random forest
algorithm has the advantages of good generalization and simplicity regarding the ingestion
of heterogeneous data [24,25].

Road transport, industries, and thermal power plants may cause a large amount of
NOx emissions [26]. Previous research mainly focuses on the changes in air pollutants and
other relative factors during the lockdown period, while few of them study the contribution
rate of different pollution sources [27]. Although some people have conducted quantitative
analysis on the influence of transportation, they always emphasize the periods before
and after the COVID-19 lockdown and seldom compare the conditions with the same
period in 2021 [18,28], when the government implemented regular epidemic prevention
and control measures. Moreover, there is no tradeoff analysis between the decrease in
pollutant concentration and the decrease in human mobility intensity, which is insufficient
to guide the actual road traffic control.

Taking these into consideration, three questions are put forward in this paper. First,
compared with the same periods in 2019 and 2021, how did the COVID-19 lockdown
affect air pollutants? Second, what respective roles did meteorological conditions, human
mobility and emissions from industry and households play in the change in the NO2 con-
centration during different periods? Third, what is the relationship between the decrease in
air pollutants and the reduction in human mobility? Is there a priority aspect with respect
to human mobility control within the city, into of the city, and out of the city? What is
the optimal extent for road traffic control? To answer these questions, we calculate the
variation in air pollutants and related variables in Wuhan and employ stepwise regression
models to detect the meaningful variables from 1 January to 16 March in 2020 and in the
same period of the lunar calendar in 2019 and 2021. In addition, we operate nine sensitivity
experiments to evaluate the contribution of meteorological conditions, human mobility
and emissions from industry and households to the change in NO2 concentrations. Finally,
an emulator of change in human mobility as well as that in NO2 concentration helps to
identify the relationship between them and thus to find an effective way and a threshold
level to reduce air pollution.

2. Materials and Methods
2.1. Research Area

Wuhan is an important industrial city in central China, with a population of 11 million.
With the development of the economy, many large-scale air pollution events occur in
Wuhan, which pose a significant threat to air quality [29]. Compared to other cities, it has
relatively severe NO2 pollution and stricter epidemic prevention and control.

Wuhan belongs to a typical subtropical monsoon climate with four clearly distinct
seasons. The annual average temperature is 15.8–17.5 ◦C, and total annual precipitation
in the city is 1050–2000 mm [30]. During the lockdown period (24 January–5 April) from
2017 to 2020, the mean temperature, wind speed and relative humidity were 9.24–11.2 ◦C,
2.41–2.93 m/s, and 73.1–78.36%, respectively [31].
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2.2. Data Collection
2.2.1. Ground-Level Monitoring Data

The dataset of hourly concentrations of air pollutants was downloaded from the
website https://quotsoft.net/air/ (accessed on 27 June 2021), a third-party website pub-
lishing air quality data crawled from China National Environmental Monitoring Center
(Beijing, China, http://www.cnemc.cn/, accessed on 27 June 2021). The data are collected
from ten national control points in Wuhan (Donghu Liyuan, Hanyang Yuehu, Hankou
Huaqiao, Wuchang Ziyang, Qingshan Ganghua, Zhuankou Xinqu, Hankou Jiangtan, Wu-
jiashan and 182 Minzu Avenue, with Chenhu Qihao as the reference site), the spatial
distribution of which are depicted in Figure 1. The missing hourly value is replaced by the
average value of other hours, and then the daily concentrations from ten sites are calculated
and averaged into daily means of Wuhan.

Figure 1. Locations of monitoring stations.

2.2.2. Human Activities

Compared with other air pollutants, the NO2 concentration is more directly connected
to anthropogenic factors, among which the road transport emissions are important contrib-
utors [32,33]. The daily migration dataset was obtained from Baidu Migration Platform to
show the real-time information about human mobility [34]. The daily In-Migration Index
(IMI) and Out-Migration Index (OMI) were chosen to represent the inflow and the outflow
traffic volume of Wuhan, and the daily Within-City Migration Index (WMI) to represent
human traffic mobility in Wuhan [20]. The IMI and OMI are the indexed results of the ratio
of the number of people who have moved into and out of Wuhan to the total number of
residents in Wuhan. The WMI represents the indexation result of the ratio of the number of
people traveling in Wuhan to the total resident population in Wuhan [27].

The concentration ratio of NO2 and SO2 is commonly used to represent the change in
contribution rate of mobile emission source and fixed emission source of air pollutants [35].
As a reflection of the characteristics of the energy structure, regions which emit mainly SO2
have developed industries [36]. According to the Bulletin of the second national survey of

https://quotsoft.net/air/
http://www.cnemc.cn/
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pollution sources in Wuhan, nitrogen oxide mainly comes from industrial, households and
mobile sources while SO2 mainly comes from industry and households (Table 1). Therefore,
we employ SO2 as a proxy of the level of emissions from industrial and households.

Table 1. The proportions of air pollutants from different sources in Wuhan.

Different Sources Sulfur Dioxide (SO2) Nitrogen Oxides (NOx) Particulate Matter

Industrial sources 38.36% 37.96% 56.16%
Household sources 61.37% 4.66% 41.42%

Mobile sources 0.00% 57.19% 2.28%
Others 0.27% 0.19% 0.14%

2.2.3. Meteorological Data

The daily surface climate dataset of Wuhan was downloaded from the China meteoro-
logical science data sharing service network (http://data.cma.cn, accessed on 1 July 2021).
Six meteorological variables are considered in our models, including precipitation (prep),
air pressure (pressure), temperature (temp), relative humidity (RH), maximum wind speed
(ws) and maximum wind direction (wd), which have been verified to be closely linked
with the NO2 concentration [37].

2.3. Methods

First, to identify the pollution mechanisms during four periods, including the pre-
pandemic period (12 January to 28 March 2019), pre-lockdown period (1 January to
22 January 2020), lockdown period (24 January to 16 March 2020), and post-pandemic
period (19 January to 4 April 2021), we fitted the NO2 concentration in each period with
stepwise regression models and identified meaningful variables. Second, we fitted the NO2
concentration during the pre-pandemic period with Random Forest models and computed
the relative contributions of meteorological conditions, human mobility, emissions from
industry and households to the changes of NO2 concentration through three groups of
nine sensitivity experiments. Third, we employed Random Forest models to simulate
the changes of pollutant concentrations with the decrease in human mobility in different
scenarios for road traffic control. The flowchart of methodology is illustrated in Figure 2.

2.3.1. Random Forest Models

We employ Random Forest models to conduct regression analysis to fit NO2 concen-
trations in the pre-pandemic period. Two important parameters should be considered
carefully in the random forest algorithm [38]. The parameter mtry determines the variable
sampling value of each iteration and the number of variables sampled to grow each leaf
within a tree. The parameter ntree specifies the number of decision trees contained in
the Random Forest, which is 500 by default. Ten-fold validation is operated in the model
and the most appropriate value of mtry and ntree is chosen by grid search to pursue the
minimum R-squared of the model. The Random Forest model is operated by package
“Caret” in R version 3.6.1.

Apart from the variables about meteorological conditions, human mobility and emis-
sion sectors, time variables are also included in the model. The variable week means the
day of the week, ranging from 1 to 7 and the variable Julian means the day of a year.
Since the Spring Festival effect is an important issue in the study of air pollution, the
variable lunar, which means the number of days after the first day of the Lunar New Year
holiday is used to reflect changes in air pollutants before and after the Spring Festival
holiday [18,39]. For example, the Spring Festival in 2019 is on 5 February, so the value the
variable lunar is −1, 0 and 1 for 3, 4, and 5 February, respectively. The variable lunar is 0
on 25 January 2020 and on 12 February 2021, the days when the Spring Festival holiday
begins in 2020 and 2021.

http://data.cma.cn
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Figure 2. The flowchart of methodology.

2.3.2. Sensitivity Experiments

We performed nine experiments to quantify the contributions of meteorological condi-
tions (EXPMet,i), human mobility (EXPMob,i) and emission from industry and households
(EXPEIH,i) to the changes of NO2 during the pre-lockdown, lockdown and post-pandemic
period, respectively [40] (see Table 2). For example, under the assumption that the level
of the NO2 concentrations without the change of the specific variables will be similar to
that in 2019, except meteorological factors, other variables are set to the same values as
for the same lunar period in 2019 when evaluating the contributions of meteorological
conditions. The NO2 concentration during the pre-pandemic period in 2019 is recorded as
business as usual (BAU), and the NO2 concentrations in other three periods are recorded as
NO2,i, in which i = 1 means the pre-lockdown period, i = 2 means the lockdown period and
i = 3 means the post-pandemic period. The contributions of factors and the normalization
process are calculated as follows,

Con(Met, i) =
BAU − EXPMet,i

BAU − NO2, i
, (1)
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Con(Mob, i) =
BAU − EXPMob,i

BAU − NO2,i
, (2)

Con(EIH, i) =
BAU − EXPEIH,i

BAU − NO2,i
, (3)

NCon(Met, i) =
Con(Met, i)

Con(Met, i) + Con(Mob, i) + Con(EIH, i)
, (4)

NCon(Mob, i) =
Con(Mob, i)

Con(Met, i) + Con(Mob, i) + Con(EIH, i)
, (5)

NCon(EIH, i) =
Con(Emi, i)

Con(Met, i) + Con(Mob, i) + Con(EIH, i)
, (6)

Con(Met, i), Con(Mob, i) and Con(EIH, i) modeled the contributions of meteorolog-
ical conditions, human mobility and emissions from industry and households, with the
normalized contributions represented by NCon(Met, i), NCon(Mob, i) and NCon(EIH, i).

Table 2. Design of the sensitivity experiments.

Experiment Description

EXPMet,i
The simulated NO2 concentrations in RF model run with meteorological
variables in i 1 period and other variables in 2019.

EXPMob,i
The simulated NO2 concentrations in RF model run with variables about road
traffic in i 1 period and other variables in 2019.

EXPEIH,i
The simulated NO2 concentrations in RF model run with variables about
emissions of industry and households in i 1 period and other variables in 2019.

1 i = 1 means the pre-lockdown period, i = 2 means the lockdown period and i = 3 means the post-pandemic period.

2.3.3. Scenario Analysis

We operated an emulator to analyze the relationship between the reduction in the NO2
concentration and the control of road traffic [28]. The level of road traffic in 2019 is deemed
as the pre-pandemic level and three series of scenarios are set, (a) all indexes of human
mobility changed; (b) Within-City Migration Index unchanged, the level of Out-Migration
and In-Migration changed; (c) the level of Out-Migration and In-Migration unchanged,
only the level of Within-City Migration Index changed.

First, after dividing the level of human mobility into ten parts, we employed Random
Forest models to predict the corresponding NO2 concentration with step = 10% in each
scenario. Second, we further calculated the change rate of the NO2 concentrations for each
ten percent of the level of human mobility index. Third, we compared the change rate and
the decline rate to see whether the control of specific human mobility index was inhibitory
to the NO2 concentrations. Finally, when the change rate of the NO2 concentrations was
mostly equal to 0 (above 50% probability), we considered that the current effect of human
mobility control reached a threshold level.

3. Results
3.1. Different Mechanisms in Different Periods

The change in NO2 concentration was the most prominent. The average NO2 concen-
trations for the pre-lockdown and lockdown periods in 2020 were 42.04 and 19.75 µg/m3,
compared with 55.99 and 42.84 µg/m3 for the same lunar calendar periods in 2019 and
48.87 and 35.22 µg/m3 in 2021, showing that the air pollution significantly decreased
in 2020 and rebounded slightly in 2021. Similar to the abovementioned trend, for the
pre-lockdown period, average PM2.5 concentrations were 96.68, 60.60, 65.98 µg/m3 and
average SO2 concentrations were 9.92, 6.83, 8.29 µg/m3 in 2019, 2020 and 2021. For the
lockdown period, average PM2.5 concentrations were 55.70, 38.61, 39.06 µg/m3 and av-
erage SO2 concentrations were 8.31, 7.57, 7.75 µg/m3 in 2019, 2020 and 2021. In contrast
with the NO2 concentrations, the average O3 concentrations increased in 2020 and then
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dropped in 2021, with 41.26, 59.67, 48.28 µg/m3 for the lockdown period in each year. The
average CO concentrations showed a slight decreasing trend over three years, with 0.95,
0.91, 0.78 mg/m3 for the lockdown period in each year.

As is shown in Figure 3, it is obvious that the NO2 and PM2.5 concentration dropped
sharply after the lockdown began in Wuhan (23 January 2020), while the O3 concentration
obviously increased. There was an inverse relationship between the amount of NO2 and
ozone [41]. During the first week after the Spring Festival, the CO, NO2, PM2.5, and SO2
concentrations significantly decreased. The difference between the NO2 concentration
in 2020 and in 2019 during the week after 30 January reached a relatively small value
as the enterprises offering protective products and emergency supplies resumed work
and production. In the pre-pandemic period in 2019, the NO2 concentration rebounded
slowly after the Spring Festival. However, in 2020, it kept a low level even after the Spring
Festival, showing a close correspondence with the COVID-19 lockdown. Meanwhile, the
concentrations of the two pollutants in 2021(the post-pandemic period) were still lower than
that in 2019. The change in NO2 concentration was most prominent, dropping by 24.9% in
the pre-lockdown period, 53.9% in the lockdown period and 15.4% in the post-pandemic
period in 2021, compared to the pre-pandemic period.

The meteorological conditions for different periods over the three years are listed
in Table 3, and the changes in human mobility over the same periods are illustrated in
Figure 4. The meteorological conditions changed a little. During the lockdown period, the
average pressure (pressure) and wind direction (wd) in 2020 were higher than those in
2019 and 2021 while the average wind speed (ws) was lower than those in 2019 and 2021.

Table 3. Descriptive statistics of meteorological conditions over three years. (prep, pressure, temp,
RH, ws, and wd represent precipitation, air pressure, temperature, relative humidity, maximum wind
speed and maximum wind direction, respectively.).

Property
The Pre-Lockdown Period The Lockdown Period

2019 2020 2021 2019 2020 2021

prep (mm)
Mean 1.4 4.5 1.68 2.25 2.61 3.93

Median 0 0.2 0.85 0 0 0
Std. 3.72 9.18 2.35 3.85 7.81 7.83

pressure (hPa)
Mean 1020.44 1022.84 1020.6 1018.98 1020.76 1015.85

Median 1023.9 1022.65 1020.45 1019.1 1021.8 1016.7
Std. 4.2 2.77 2.81 5.96 5.64 6.16

temp (◦C)
Mean 4.46 4.03 7.27 8.25 8.79 12.22

Median 4.95 4.15 7.7 8.5 8.9 11.8
Std. 2.3 2.03 1.54 5.06 4.04 3.39

RH (%)
Mean 79.53 86.51 86.24 82.09 80.58 79.86

Median 83.65 87.65 88.75 84.5 81.5 83.5
Std. 12.06 8.07 7.4 10.35 7.9 11.65

ws (m/s)
Mean 3.92 3.45 3 4.02 3.89 4.23

Median 3.2 3.4 2.65 3.9 3.5 4.1
Std. 1.62 1.07 1 1.56 1.37 1.27

wd (◦)
Mean 128.27 155.64 136.95 145.21 154.42 131.7

Median 106 78.5 121.5 107 125 102
Std. 119.62 143.3 112.83 128.55 119 116.63
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Figure 3. Observed changes in air pollutants over three years: (a) NO2; (b) PM2.5; (c) SO2; (d) O3; (e) CO (The black dashed
vertical line means the date of the Spring Festival and the green area means the lockdown period in our study.).



ISPRS Int. J. Geo-Inf. 2021, 10, 836 9 of 18

Figure 4. Changes in human mobility over three years: (a) WMI; (b) IMI; (c) OMI (The black dashed vertical line means the
date of the Spring Festival and the green area means the lockdown period in our study. The daily In-Migration Index (IMI)
and Out-Migration Index (OMI) represent the inflow and the outflow traffic volume, and the daily Within-City Migration
Index (WMI) represents human traffic mobility within the city).

There are obvious trends in the variables about human mobility. The average WMI,
IMI, OMI during the lockdown period in 2020 were 0.66, 0.37, and 0.37, respectively, much
lower than those in 2019 (3.89, 5.43, and 3.93) and in 2021 (5.43, 4.26, and 3.48). The Spring
Festival holiday usually results in the decrease in PM2.5 and NO2 and an increase in ozone
in big megacities [42] because many people return to their hometowns [43,44]. The changes
in air pollutants are the comprehensive results of the holiday effect and the pandemic
control policies [45]. At the beginning of the Spring Festival migration in 2020 (10 January),
the values of the WMI, IMI and OMI were higher than those in 2019. As can be seen from
Figure 4c, a large number of people left Wuhan a few days before the lockdown, which
was more than the number in 2019. Even on 23 January 2020 (on which day 10:00 a.m. was
Wuhan’s lockdown time), the number of people leaving Wuhan on that day was higher
than that on the same day of the lunar calendar in 2019. When Wuhan undertook the
COVID-19 lockdown policy, the flow of persons was reduced to zero and the IMI decreased.
Different from that, indexes rebounded after the first week of the holiday of the Spring
Festival in 2019 and 2021, the levels of human mobility in 2020 remained at a low level
because of the COVID-19 lockdown.
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In addition, the average WMI during the post-pandemic period in 2021 was 5.23,
higher than 3.85 during the pre-pandemic period in 2019, while the average IMI and OMI
were 3.57 and 3.44, both less than 5.03 and 4.50 in 2019. We can notice that in 2021, when
the epidemic prevention and control was regular, the travel intensity of residents in the
city increased, while the activities of moving into the city and moving out of the city
decreased compared with pre-pandemic conditions, with most of residents traveling in the
city. Notably, there was a high value of WMI on 3 April 2021, corresponding to the first day
of the Tomb Sweeping Day holiday.

Different mechanisms are illustrated over four periods. The stepwise regression model
of the pre-pandemic period included four explanatory variables, which explained 82.8% of
the variance of the NO2 concentration. The stepwise regression model of the pre-lockdown,
the lockdown and the post-pandemic period included one, one, and four explanatory
variables, respectively, and each explained 54.0%, 47.6% and 63.9% of the variance of the
NO2 concentrations.

The regression coefficients of the models are shown in Table 4. The explanatory
variables significantly affect the NO2 concentrations (p < 0.01). It is obvious that emissions
from industry and households (represented by SO2) are closely connected with the NO2
concentration and have a positive impact on it whichever period. The wind speed (ws) had
a lowering effect on the NO2 concentration in the pre-pandemic and post-pandemic period,
showing the impact of meteorological elements. The models in the pre-pandemic and post-
pandemic period were more similar, while the Within-City Migration Index played a more
important role in the post-pandemic period. The NO2 concentrations in the pre-lockdown
and lockdown period fluctuated largely and the Within-City Migration Index and wind
speed were meaningless in the two periods.

Table 4. Regression coefficients of stepwise multiple linear models over four periods.

Periods Property
Unstandardized Coefficients

Standardized Coefficients
B Std. Error

The pre-pandemic period

(Constant) −7.188 5.221
SO2 3.910 0.286 0.694

WMI 9.902 1.288 0.432
ws −2.708 0.568 −0.236

julian −0.163 0.045 −0.200

The pre-lockdown period (Constant) 9.938 6.827
SO2 4.700 0.971 0.735

The lockdown period (Constant) 5.632 2.173
SO2 1.866 0.274 0.690

The post-pandemic period

(Constant) 15.278 6.787
SO2 2.341 0.405 0.431
ws −4.097 0.830 −0.380

WMI 6.448 1.218 0.462
julian −0.221 0.060 −0.344

3.2. Relative Contributions of Meteorological Conditions and Human Activities

We used a Random Forest model to fit the NO2 concentrations during the pre-
pandemic period, along with a Support Vector Machine model, a Linear model and a
Stepwise Multiple Linear model to evaluate the performance. The four models all had high
accuracy, the smallest cross-validation R-squared (CV-R2) of which was 0.771. Other good-
ness indicators are shown in Table 5. Overall, all the simulation results were acceptable,
and the simulated concentrations agreed well with the observed data, with the correlation
coefficient (COR) above 0.9 for each model.
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Table 5. Models and performance evaluation. (CV-R2, COR, R2, RMSE, MAE, NMB and NME mean
the cross-validation R-squared, the correlation coefficient, R-squared, the root mean square error, the
mean absolute error, the normalized mean bias, and the normalized mean error, respectively).

Model CV-R2 COR R2 RMSE MAE NMB NME

Random Forest 0.771 0.984 0.968 4.493 3.632 0.039 7.821
Support Vector Machine 0.826 0.967 0.934 0.934 3.109 −1.307 6.695

Linear 0.798 0.917 0.841 7.146 5.276 0.000 11.361
Stepwise Multiple Linear Model 0.844 0.910 0.828 7.441 5.628 0.000 12.120

We employed Random Forest models to operate sensitivity experiments and then
calculated the relative contributions of meteorological conditions and human activities
for different periods. The results are shown in Table 6 and Figure 5. The contributions
of meteorological conditions and human activities varied from day to day, and we cal-
culated the average NO2 concentration and the average contributions during the whole
period. In the pre-lockdown period, the NO2 concentration simulated with human mobility
in 2020 was more similar to the NO2 concentration in the pre-pandemic period than that
simulated with meteorological conditions and emissions from industry and households
in 2020, which means that road traffic led to the least contribution to the change of air
pollutants and the changed emissions from industry and households contributed the most.
The mean values of the daily normalized contribution were 35.2%, 13.8% and 51.0% for
NCon(Met), NCon(Mob) and NCon(EIH). During the first week of the pre-lockdown
period, changes in meteorological conditions made the greatest contributions to the daily
reductions in the concentrations. During the last two weeks of this period, the reduction in
emissions from industry and households played the most important role in the reduction
in the concentrations.

Table 6. The observed concentrations and the simulated results of sensitivity experiments (unit: µg/m3).

Periods Average
Observed NO2

Average Observed NO2 during
the Pre-Pandemic Period in 2019

Average
EXPMet,i

Average
EXPMob,i

Average
EXPEIH,i

The pre-lockdown period 42.04 55.99 52.19 54.73 50.02
The lockdown period 19.75 42.84 45.34 40.14 41.74

The post-pandemic period 39.31 46.44 47.34 46.79 44.70

During the lockdown period, the observed NO2 concentrations were lower than those
in the pre-pandemic period in 2019 except for the days between 28 January and 5 February
(when the variable lunar is between 4 and 12). The average NO2 concentration simulated
with meteorological conditions in 2020 was higher than the observed NO2 concentrations in
the same period in 2019, indicating that the meteorological conditions during the lockdown
period essentially were unfavorable to the reduction in the air pollutants. The average
NO2 concentration simulated with human mobility in 2020 was the lowest, which means
that road traffic dominated the reduction in the NO2 concentration during the lockdown
period. In addition, the average normalized contributions of NCon(Met), NCon(Mob) and
NCon(EIH) were, respectively, 10.0%, 73.3% and 16.7%, which emphasized the role of
human mobility again. The changes in road traffic dominated changes of the concentration
during the third, fourth, and last week of the lockdown period.
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Figure 5. The simulated NO2 concentrations and the normalized contributions in three periods:
(a) Simulated results in the pre-lockdown period; (b) Normalized contributions in the pre-lockdown
period; (c) Simulated results in the lockdown period; (d) Normalized contributions in the lock-
down period; (e) Simulated results in the post-pandemic period; (f) Normalized contributions in the
post-pandemic period. (NCon(Met, i), NCon(Mob, i) and NCon(EIH, i) mean the normalized contri-
butions of meteorological conditions, human mobility and emissions from industry and households.
EXPMet,i means the simulated NO2 concentrations in RF model run with meteorological variables
in i period and other variables in 2019; EXPMob,i means the simulated NO2 concentrations in RF
model run with variables about road traffic in i period and other variables in 2019; EXPEIH,i means
the simulated NO2 concentrations in RF model run with variables about emissions of industry and
households in i period and other variables in 2019, where i = 1 means the pre-lockdown period, i = 2
means the lockdown period and i = 3 means the post-pandemic period).

During the post-pandemic period, the average observed NO2 concentration was still
less than that during the same period in 2019, mostly due to emissions from industry and
households. The NO2 concentration simulated with meteorological conditions in 2021 was
higher than that in 2019, which shows that the general meteorological elements in the post-
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pandemic period in 2021 are favorable to the increase in the NO2 concentration. Moreover,
the level of road traffic recovered to the pre-pandemic level, with the NO2 concentration
simulated with human mobility in 2021 being similar to that in 2019. According to the
normalization process, the meteorological conditions controlled about 42.2% of the decrease,
and the reduced emissions from industry and households controlled 40.0% of the decrease,
while the level of human mobility only contributes to 17.8% of the decrease. As was shown
in Figure 5f, in the post-pandemic period, the NO2 concentrations do not completely show
a downward trend compared with the same period in 2019, and the contribution rate of
variables varies greatly from day to day. When the variable lunar was −6 (5 February 2021),
meteorological conditions led to an increase of 490.4% of pollutants, while human mobility
led to a decrease of 569.4% of concentration. When the variable lunar was 32, 33 and 47
(15, 16, and 30 March 2021), human mobility led to an increase of 799.5%, 117.2% and
126.0% of concentration, while meteorological conditions were conducive to the reduction
in pollutants.

3.3. Simulations of Different Scenarios for Road Traffic Control

The emulator demonstrates the link between NO2 concentrations and road traffic
by predicting the concentrations with different reductions in human mobility compared
to the level in 2019 in three scenarios. As shown in Figure 6, all the changes tend to
approach a stable level when the reduction in human mobility continues. According to
the variation rate of the NO2 concentrations, for the three scenarios, all the change rates
are very large at the beginning, but with the reduction in human mobility, the variation
rate becomes gradually flat. This means the control of human mobility has a stronger effect
at the beginning, with a gentler change trend later. Generally, in Figure 6c, when human
mobility within the city is controlled, the decreasing trend is almost constant whatever the
basic NO2 concentration. In Figure 6a, bscenario (a) and (b), only when the initial basic
NO2 concentration is relatively high, the NO2 concentration will remain decreased with
the level of human mobility within the city reduced.

Figure 6. The simulated results of the decreased road traffic and the NO2 concentration: (a) 3 indexes changed; (b) WMI
fixed, OMI and IMI changed; (c) OMI and IMI fixed, WMI changed).
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When the reduction in all kinds of human mobility is beyond 70%, the effect of the
control policy reaches a threshold level. This means that when the proportion of the overall
human mobility is less than 30% of the pre-pandemic level, the pollutant concentration will
remain stable. When we control the human mobility out of and into the city and leave the
mobility within the city unchanged, the threshold level is 60%, and when we only control
the mobility within the city, the threshold level is 70%, which indicates that the control
policy in Figure 6b is less sustainable. Moreover, the variation rate is less than 10 when
the reduction in human mobility is more than 40% both in Figure 6a,c, while the variation
rate in Figure 6b is less than 10 when the reduction in human mobility is more than 20%.
We can conclude that controlling the human mobility within the city is more effective than
controlling the mobility out of and into the city, and the effect of the former policy almost
equals that of taking an overall control of all kinds of human mobility.

4. Discussion
4.1. Contributions of Meteorological Conditions and Emissions during Different Periods

The RF models have good accuracy as an atmospheric physical transport model,
compared with the validation parameters in other studies [40]. Assessing meteorological
differences is important because similar meteorological conditions usually accompany
similar NO2 levels [46]. As for meteorological conditions, the importance of wind speed
is emphasized in Table 4. Wind speed affects the horizontal diffusion of pollutants [47].
The average wind speed in 2020 was lower than that of the pre-pandemic period, which
would have increased the NO2 concentration. Previous studies find that pressure, relative
humidity and temperature play an important role in pollutant concentrations. High
pressure may decelerate the diffusion of pollutants while high relative humidity is also
helpful to eliminate NO2 [48,49]. During the lockdown period in 2020 (Table 3), the average
pressure was the highest, and the average relative humidity was relatively low, which was
unfavorable to the reduction in the NO2 concentration. In addition, the NO2 concentrations
are much higher in the cool season [50]. During the pre-lockdown period, the temperature
was relatively low, while during the lockdown period, the temperature was higher than
that in the pre-pandemic period. Despite all those negative effects on reduction, the NO2
concentrations 2020 were lower than that in the pre-pandemic period, which reflected that
road traffic dominated the reduction in the NO2 concentration during the lockdown period
(contributing 73.3% to the reduction), while the meteorological conditions contributed the
least (only 10.0%).

The NO2 concentration is closely tied to the volume of traffic, fossil fuel use and emis-
sion by industrial activities. During the pre-lockdown period, the normalized contribution
of human mobility and emissions from industry and households to the reduction was
13.8% and 51.0%. However, during the lockdown period, human mobility contributed
73.3% to the reduction, which emphasizes the role of traffic control measures. During
the post-pandemic period, human mobility only contributed to a 17.8% decrease. On one
hand, compared to the lockdown period, the traffic control measures are weaker, and
people can go outside within the city or travel between cities with their health passes.
That is why human mobility contributes much less than during the lockdown period.
On the other hand, when the government takes regular epidemic prevention and control
measures in 2021, although the number of people moving out of and into the city became
less, the number of people who moved within the city was larger than during the pre-
pandemic period (Figure 4), which indicates the role of human mobility within the city in
pollutants concentrations.

4.2. Insights for the Control of Human Mobility

Since traffic plays an important role in the NO2 pollution, actions should be taken to
set traffic restrictions to improve air quality. Many cities such as Amsterdam [51], Berlin [52]
and Madrid [53] in Europe and Nanchang [54] in China have adopted policies of creating a
low-emission zone (LEZ) area, with different levels of rules with regard to access to the
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restricted area, which have brought positive effects on reducing air pollutant concentra-
tions [53,55]. A zero-emission zone (ZEZ), only allowing access to zero-emission vehicles
also reduce CO2 emissions dramatically [56]. Enterprises with low energy consumption
and high technologies should gain support. Moreover, highway tolls are another effective
way to reduce air pollution in Chinese cities [57]. The government should pay great atten-
tion to the role of the public in environmental governance [58]. Similar to other studies [46],
our study shows that setting travel restrictions also helps improving air quality.

The Random Forest model indicates a strong link between road traffic and NO2
concentration. This shows that it is feasible to reduce the air pollution by controlling road
traffic. Nevertheless, it needs to be carefully evaluated since the effect of reducing the
pollutant level by controlling traffic has a certain threshold. Among different road traffic
control policy, the thresholds of controlling all kinds of human mobility and the mobility
within the city are 70%, higher than the threshold of controlling the human mobility out
of and into the city (which is 60%). This means the former two measures can be used for
longer term. Moreover, the former two measures have relatively high variation rates before
the reduction in human mobility reaches 40%. When the reduction is beyond 20%, the
variation rate in the last measure is less than 10. Controlling the human mobility within
the city is more effective than controlling the mobility out of and into the city and more
efficient than overall control of all kinds of human mobility. Overall, the control of the road
traffic in the city has an obvious and efficient effect on the NO2 concentration.

4.3. Limitations and Future Directiosn

It should be noted that in the past few years, China has implemented new environ-
mental regulations and actively promoted end-of-pipe treatment and industrial structure
optimization [33,59]. Therefore, the actual value of the NO2 concentration in the case
of no COVID-19 lockdown may be slightly different from the predicted value the NO2
concentration calculated using the 2019 model.

The impact of this trend can be optimized by using the relevant data in 2018 or even
earlier in future research. In addition, the relationship between anthropogenic activities
with different travel purposes and air pollutants could be further analyzed with Google
mobility data [60]. Although there is difficulty in finding the same contribution rate
of pollution sources in different cities [27], it will be meaningful to make a comparison
between many cities in different areas.

5. Conclusions

In this study, we curated datasets on air pollutants, meteorological conditions and hu-
man mobility to model the contributions of relevant factors for the changes of air pollution
before, during and after the COVID-19 lockdown. Using the Random Forest models, we es-
tablished sensitivity experiments to estimate quantitatively the relative contributions of the
meteorological conditions, human mobility and emissions from industry and households.
In addition, we also implemented a predictor to find an effective way to reduce the air
pollution by controlling specific kinds of human mobility. The conclusions are as follows:

1. The COVID-19 lockdown led to a significant decrease in the NO2 concentration.
Among the five air pollutants, the change of NO2 concentration was the most promi-
nent, dropping by 24.9% in the pre-lockdown period, 53.9% in the lockdown period
and 15.4% in the post-pandemic period. The average PM2.5 concentration and average
SO2 concentration also were the lowest in the 2020 and highest in the 2019. In contrast,
the average O3 concentration increased in 2020 and dropped in 2021.

2. Different air pollutants mechanisms were implied during the four periods. In the pre-
pandemic and post-pandemic period, meteorological conditions (wind speed), human
mobility (Within-City Migration Index) and emissions from industry and households
played a more important role in the simulation of air pollutants. However, road
traffic decreased sharply in the pre-lockdown and lockdown period and so they were
excluded from the stepwise multiple linear model.
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3. Road traffic dominated the reduction in the NO2 concentration in the lockdown
period, with 73.3% reduction caused by human mobility, only 10.0% by meteorological
conditions, and 16.7% by emissions from industry and households.

4. When it comes to making policies on road traffic for reducing air pollution, placing
an appropriate restriction on human mobility within the city is the most effective way
to reduce the air pollution. It functions better when the restriction is below 40% and
reaches a cap when the level of human mobility is restricted to 70% or more.
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