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Abstract: Understanding the relationship between human activity patterns and urban spatial struc-
ture planning is one of the core research topics in urban planning. Since a building is the basic
spatial unit of the urban spatial structure, identifying building function types, according to human
activities, is essential but challenging. This study presented a novel approach that integrated the
eigendecomposition method and k-means clustering for inferring building function types according
to location-based social media data, Tencent User Density (TUD) data. The eigendecomposition
approach was used to extract the effective principal components (PCs) to characterize the temporal
patterns of human activities at building level. This was combined with k-means clustering for
building function identification. The proposed method was applied to the study area of Tianhe
district, Guangzhou, one of the largest cities in China. The building inference results were verified
through the random sampling of AOI data and street views in Baidu Maps. The accuracy for all
building clusters exceeded 83.00%. The results indicated that the eigendecomposition approach
is effective for revealing the temporal structure inherent in human activities, and the proposed
eigendecomposition-k-means clustering approach is reliable for building function identification
based on social media data.

Keywords: social media data; building function; eigendecomposition; k-means clustering; Guangzhou

1. Introduction

The relationship between human activity patterns and urban spatial structure has been
a key research topic in urban geography and urban planning [1,2]. As the fundamental
structural elements of urban physical space [3], buildings are the basic spatial unit for urban
spatial structure and urban form studies [4,5]. Buildings are also the important carries of
human activities (e.g., living, working, and entertainment) in the urban socioeconomic
space [5], which can serve as the basic unit for analyzing human socioeconomic activities
and urban functional areas. Identifying building functions is significant for understanding
urban spatial structure and urban functional areas, which can assist urban management
and future smart city planning.

Traditional methods for identifying functional urban areas rely on land use maps
and questionnaire data, which are not time-effective and tend to be subjective in classi-
fication [6–8]. Recently, remote sensing data, such as high-resolution images and light
detection and ranging (LiDAR) data were widely used to identify building types based on
the physical information such as the outline, spectrum, and texture of the buildings [9–13].
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However, such methods lack sufficient socioeconomic attributes. The socioeconomic func-
tions of buildings are often closely related to human activities [3]. As network information
technology has continued to develop in recent years, massive data about individuals’ real-
time mobile trajectory are generated through location-based services (LBS) such as mobility
trajectory data [14–17] and social media data [1,2,18–21]. As these LBS data are usually
collected from individuals, they have shown advantages in and potential for reflecting
human activities at fine spatiotemporal resolutions [19,22–27]. Recently, attempts have been
made to identify building functions by using these LBS datasets. For example, Chen et al.
(2017) assumed that social media activities in buildings of similar functions have similar
temporal patterns and applied a dynamic time warping distance based k-medoids method
to delineate urban function areas from building level social media data [1]. Niu et al. (2017)
integrated multisource big data (taxi trajectory data, social media data, and point of interest
(POI) data) and proposed a density-based method to infer urban building functions [19].
Zhuo et al. (2019) identified building functions based on the population density and
interactions of people among buildings [3].

In conclusion, on the one hand, these studies have revealed the relationship between
the temporal patterns of human activities and building types and proved that LBS datasets,
which reflect individual behaviors, are effective in building function inference. On the
other hand, these existing studies applied various types of clustering methods to delineate
building functions based on massive volume and high dimensional data ignoring the data
dimensionality reduction. However, reducing high dimensions is a necessary step of data
preprocessing in geospatial big data analysis due to the following reasons. Firstly, facing
the massive volume and high dimensional data, dimensionality reduction, through the
eigendecomposition approach, is helpful to avoid data redundancy; then, one can use
fewer variables to explain most of the information in the original data and transform many
highly correlated variables into independent and irrelevant variables. Finally, modeling or
clustering results would be more stable by reducing the data dimension. Second, only the
original temporal patterns of the raw data (e.g., hourly population activity of a building)
were presented and explored in previous studies.

Little is known, however, about the hidden characteristics of the temporal patterns of
population activity at building scale from the literature. The eigendecomposition method
is capable to construct new features, that is, uncover the hidden structures of population
activity temporal patterns by disclosing how they resemble or deviate from the base mode
(average pattern) of the study area. How dynamic population activity changes over time
within different buildings and how these temporal patterns vary among buildings and the
base mode of the study area still remains unknown.

Therefore, to fill the research gap of previous studies, we proposed a novel method,
an integrated method of the eigendecomposition approach and k-means clustering, to infer
building functions based on location-based social media data, Tencent user density (TUD)
data. The eigendecomposition approach has been employed to uncover human activity
patterns [28–30]. For example, Eagle and Pentland (2009) used the eigendecomposition
method to identify the structure inherent in human daily behavior, and they demonstrated
that this dimensionality reduction technique can be used to represent behavioral structures
in related research [28]. This method was employed by Gong et al. (2017) to capture the
common patterns of passengers’ variation over time from a metro smart card dataset to
explore the spatiotemporal structure of dynamic urban space [29]. In Xu et al. (2019)’s
recent study, the eigendecomposition method was proposed to unravel the landscape
and pulses of cycling activities from a dockless bike-sharing system [30]. In our study,
the eigendecomposition method was employed to capture the hidden structures of the
temporal patterns of human activities using TUD data at building level. By using the
eigendecomposition method, we can extract the principal components (PCs) from a 48 h
TUD index on weekdays and weekends and characterize the temporal patterns of human
activities for each building with low dimensional structures to remove data redundancy.
The k-means clustering method was then used to classify the buildings according to the
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extracted PCs. The proposed method was illustrated with a case study of Tianhe district,
Guangzhou. This study aims to examine the integration of eigendecomposition approach
and k-means clustering in inferring building function types. The remainder of this paper is
organized as follows. Section 2 presents the study area and dataset. Section 3 introduces
the methods used in this study, and Section 4 presents the results. The discussion and
conclusions are summarized in Section 5.

2. Study Area and Data
2.1. Study Area

Tianhe district, which is located in the downtown area of Guangzhou, China, was
selected as our study area (Figure 1). Tianhe covers an area of 96.33 km2 and had
a residential population of 1,545,700 in 2015 (Bureau of Statistics of Guangzhou 2015,
http://www.gzstats.gov.cn/tjgb/qstjgb/, accessed on 15 December 2015). The area has
highly concentrated and diverse resources in housing, commerce, transportation, and
education. In particular, more than 20 colleges and universities are located in this area.
After 40 years of reform and opening up, China has seen rapid growth in urbanization and
modernization. Tianhe District has transformed from a group of traditional villages to the
new central business district (CBD) of Guangzhou City. In recent years, its economy has
been at the forefront of China’s CBDs. Compared with other districts and counties, Tianhe
District has a wider variety of buildings. The classification of building functions in the dis-
trict, especially the analysis of the functions of mixed-use buildings, can provide scientific
evidence and a valuable reference for urban planning and decision making in government.

Figure 1. Study area.

2.2. Data

Four different datasets, including building footprint data, TUD dataset, POIs data,
and 0.55 m high-resolution remote sensing images in Tianhe, were used in this study.

The TUD dataset includes data about Tencent EasyGo (EasyGo, http://ur.tencent.
com/articles/100, accessed on 15 June 2015) obtained via the Internet for a continuous
week (15–21 June 2015) with temporal and spatial resolutions of 1 h and 25 m, respec-
tively. The dataset records location information of users of smart terminal devices for
Tencent’s LBS apps such as Tencent QQ, WeChat, and Tencent Maps. Tencent is one of the
largest platforms for instant messaging and social networking in China. Guangzhou is
one of China’s first-tier cities, and more than 93% of its population uses Tencent products
(http://bigdata.qq.com, accessed on 15 January 2016). Moreover, TUD is a type of aggre-
gated dataset, which can avoid the risk of user privacy. Without any private information
on users, TUD records the coordinates, the number of active users, and the recording time
stamp of the sample points, which can be regarded as dynamic population density grid data.

http://www.gzstats.gov.cn/tjgb/qstjgb/
http://ur.tencent.com/articles/100
http://ur.tencent.com/articles/100
http://bigdata.qq.com
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Given the huge user coverage of TUD in China and its high spatial-temporal resolution,
the data quality of TUD is enough to help perform geospatial analysis at fine scale, and it
can well represent realtime and dynamic information of human activities in the city [20,21].
Therefore, this study aims to infer building functions based on the daily rhythms of human
activity intensity within buildings at a fine spatial and temporal scale. Firstly, we assumed
that the human activity intensity of different functional buildings varies greatly at different
times. For example, office buildings in CBD usually have the highest people flow during
working hours (daytime) and the least at night, with the characteristics of morning peak
and night decline. On the contrary, the flow of people in residential buildings usually starts
to decrease in the morning and increase in the evening, and it is relatively stable at night.

Building footprint data were obtained from Amap images in 2017 (http://ditu.amap.
com/, accessed on 15 January 2017) through web crawler technology. In total, 24,064 build-
ing outlines were captured, including the information on height. The POIs dataset was
obtained via Baidu Map API (https://lbsyun.baidu.com/, accessed on 15 January 2015)
in 2015, including more than 100,000 items including information on name, address, and
category. Considering the purpose of this research, the POIs data were grouped into 20 cat-
egories such as colleges and universities, residential areas, office buildings, and shopping
malls. The 0.55 m remote sensing images from April 2015 were obtained from the official
website of bigemap (http://www.bigemap.com/, accessed on 15 January 2015.

3. Methodology

Previous study has shown that buildings with different functions have different TUD
temporal patterns, and human activities in buildings of similar functions have similar
spatiotemporal patterns [1]. As the TUD data exhibited a strong periodic regularity over
one week, we aggregated the TUD dataset at building level per hour and averaged the
TUD data for weekdays and weekends. Hence, we obtained the average TUD data of 48 h
for each building. To reveal the hidden structures of the temporal patterns of building level
TUD data, an eigendecomposition was performed to extract the effective PCs to remove
data redundancy from a large set of 48 indicators. The PCs were used to characterize the
underlying temporal patterns of human activities for each building. Furthermore, the
k-means clustering, an unsupervised iterative clustering algorithm that is simple, efficient,
and easy to implement, was employed to perform a cluster analysis of buildings based
on the extracted PCs. Then, the POI density index was employed to help interpret the
building function types of different clusters. The overall workflow of the study is presented
in Figure 2. More details about each method are presented in the following sections.

3.1. The Eigendecomposition Method

In this study, an eigendecomposition method was used to obtain the effective PCs
from a total of 48 variables of TUD data, which were most consistent with the inherent
variation of the TUD dataset. The application of the eigendecomposition method in this
study had the following advantages. First, the resulting PCs, ranked according to the scores
of the eigenvalues or the explained variance, represent the basic structure of the TUD
dataset. That is to say, the extracted PCs can indicate the underlying temporal patterns
of human activities of buildings. Second, there may be correlation between the obtained
48 TUD variables. The eigendecomposition method can transform a set of correlated
variables into several uncorrelated orthogonal variables [31]. We can represent the human
activity temporal patterns with the extracted PCs, the lower dimensional, and uncorrelated
variables. Third, the eigendecomposition method is a widely used method for removing
data redundancy due to its simplicity and straightforward interpretation.

http://ditu.amap.com/
http://ditu.amap.com/
https://lbsyun.baidu.com/
http://www.bigemap.com/
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Figure 2. Workflow of the study.

Eigencomposition is a method to decompose a matrix into its eigenvalues and eigen-
vectors. Let X be a vector of n random variables and C be the covariance or correlations
matrix of X. In this study, X is a vector of 48 variables obtained from hourly TUD data. The
symmetric matrix C can be expressed as follow,

C =

 r1,1 · · · r1,48
...

. . .
...

r48,1 · · · r48,48

 (1)

In matrix C, ri,j(i, j = 1, . . . . . . 48) refers to the correlation coefficient of the original
variables xi and xj. The matrix C can be decomposed into eigenvalues and eigenvectors
according to the following equation,

ACAT = V (2)

where V is the diagonal matrix of eigenvalues, A = {α1, α2, . . . , αn } is the matrix of
eigenvectors, and T is the transposition function. The eigenvalues of the matrix C are λ1,
λ2, . . . , λn, where λ1 ≥ λ2 ≥ λ3 ≥ . . . . . . ≥ λn.

As the eigenvector of C is a transformation of X into the corresponding PC, we can
obtain the PCs Z from the original dataset X. The transformation is based on the following
equation [29]:

Z = {Xα1, Xα2, . . . , Xαn} = XA (3)

A can also represent the loadings of X with its PCs, and its columns are the eigenvec-
tors. The larger the eigenvalue is, the larger the variance of the matrix on the corresponding
eigenvector is, and the more information there is. Thus, we can evaluate the importance
of each PC according to the eigenvalue that reflects the variance of the original variables.
Generally, the first PC with the maximum eigenvalue, Z1 obtains the maximum variance
of the n original variables, indicating that Z1 contains the maximum information of the
original variables. In the same way, Zi contains the ith maximum information of the
original variables. Based on the empirical rules, we can extract the first few PCs whose
variances reach 85% to 95% of the original dataset, to represent the original dataset. More-
over, we can use the extracted effective PCs to unravel the underlying temporal patterns of
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human activities of buildings by analyzing the coefficients of these PCs. In summary, the
function of the eigendecomposition method in this study is to first remove redundancy
in the original dataset of 48 TUD indicators, then to transform correlated 48-variables
into several uncorrelated orthogonal components to uncover the hidden human activity
temporal patterns with low dimension structures in a unified manner.

3.2. k-Means Clustering

The k-means and K-mediods algorithm have been widely applied in the identifica-
tion of urban function [32–34]. Previous studies on urban problems show that k-means
clustering has a good performance in clustering index variables after dimensionality re-
duction [35–37]. In this study, k-means clustering was employed to perform a cluster
analysis of buildings according to the extracted PCs, which reflected the temporal patterns
of human activities [33].

The k-means algorithm, which is an unsupervised clustering algorithm, is usually used
to classify a sample set of objects into k different clusters according to the similarity of their
attributes [34]. The sample set is divided into i clusters according to the distance between
the samples [32]. The purpose of clustering is to minimize the distance of samples within
the same cluster and maximize the distance between clusters. The cluster is assumed to be
divided into (C1, C2, . . . , Ck), then, the ultimate goal is to minimize the sum of squared
error (SSE), as calculated below [32],

E =
k

∑
i=1

∑
x∈Ci

|x− µi|2 (4)

where x represents the value of the sample object, and µi is the mean value of the cluster Ci
calculated as follows:

µi =
1
|Ci| ∑

x∈Ci

x (5)

3.3. Identification of Building Function

The types of building functions were determined by observing and analyzing the
characteristics of time series of human activities on weekdays and weekends in various
clusters based on changes in frequencies and patterns of TUD in different types of buildings
on weekdays and weekends. Then, a POI dataset was introduced to help interpret the
clustering results. The density index of POI, Fi,l was adopted to indicate the richness of
land-use types [37], which was represented as follows,

Fi,l =
nl,i/ni

Nl/N
(6)

where Fi,l denotes the degree of richness of Type l POIs in i number of buildings, nl,i
represents the number of Type l POIs in the buffer zone of the i-th building, ni is the total
number of all POIs in the buffer zone of i number of buildings, Nl is the total number of
Type I POIs in the buffer zones of all buildings, and N denotes the total number of POIs in
the entire study area (with a 10 m buffer zone). The greater the density index, the larger
the number of types in the cluster, and the more concentrated the distribution.

4. Results
4.1. The Temporal Structures of Human Activities

We first performed the eigendecomposition to extract the effective PCs to remove data
redundancy from a large set of 48 TUD indicators, including 24 h on weekdays and week-
ends. Table 1 presents the percentage of variance explained by the top few PCs. According
to the results, PC1 accounted for 77.92% of the total variance, PC2 accounted for 11.51%
of the total variance, and PC3 accounted for 2.47%. The first three PCs with eigenvalues
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greater than one were extracted, which explained about 91.90% of the total variance, in
combination, indicating a good approximation of the original 48 TUD indicators. Hence,
the first three PCs were taken as the effective comprehensive indicators to characterize the
human activities patterns of buildings in this study.

Table 1. Variance explained by the principal components.

Principal
Component (PC) Eigenvalue Variance Explained

by (%)
Accumulative Variance

Explained by (%)

1 37.40 77.92 77.92
2 5.52 11.51 89.43
3 1.19 2.47 91.90

We further explored the hidden temporal structures of human activities at build-ing
level from the eigendecomposition (Figure 3). PC1, which explained the largest percentage
of the original dataset (77.92%), had very large positive values during early morning
(1:00–4:00), morning peak (7:00–9:00), and evening after work (22:00–24:00) on weekdays
(Figure 3a). This indicated that the amount of human activity during these periods differed
among different buildings. For weekends, PC1 had large positive values during 8:00–24:00
(Figure 3b), indicating a large spatial variation of human activity at building level for this
period. PC2 explained a lower but still significant amount of the total variance (11.51%) and
exhibited notable peaks during working hours on weekdays (Figure 3a). This means it was
more distinguishable among different buildings during this period. Regarding weekends,
the PC2 showed a small peak during 14:00 to 19:00, which is leisure time (Figure 3b). PC3,
which explained the lowest amount of the total variance (2.47%) among the three extracted
PCs, showed a peak value at 6:00 (the starting point for the increase in Tencent users in
one day) on both weekdays and weekends (Figure 3). This indicated the significant spatial
variation of human activity among buildings at this time.

Figure 3. Results of the eigendecomposition. (a) PCs on weekdays, (b) PCs on weekend.

The resultant PCs, ranked by the fraction of the variance explained, indicated the
hidden structure of the TUD dataset. The corresponding coefficients associated with a
particular entity (e.g., temporal population activity pattern in a building) demonstrate its
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deviation from the norm (i.e., average pattern of the study area). Hence, the eigendecom-
position method can be adopted to answer our research question—how do the temporal
patterns of population activity within different buildings resemble or deviate from the base
mode of the study area?

4.2. Results of Building Function Inference and the Spatial Patterns

As the top three PCs approximated the original TUD data, the temporal patterns of
human activities at building level can be characterized by the linear combination of the
original variables (X) and the corresponding coefficients (A) based on Equation (3). Based
on the three extracted PCs, the k-means clustering was employed to cluster the buildings
into K types, and the POI density index was used to help identify the building functions.

The optimal number of clusters was determined by the sum of squared errors (SSE,
Equation (4)). The smaller the SSE, the better the cluster effect. As Figure 4 shows, the SSE
decreased rapidly as the number of clusters increased, and its value appeared to stabilize
when k≥ 8. To ensure the reliability of results, clustering experiments were conducted with
k = 6–15. It was found that clustering with k = 8 can represent cases with k > 8. Therefore,
k = 8 was selected for the cluster analysis in this study.

Figure 4. The relationship between Clustering number and the SSE.

It was found that the TUD curves of some building categories were relatively close,
from the results of k = 8. Hence, the similar categories were merged, and six categories of
buildings were obtained. Figure 5 shows the average hourly TUD on the weekdays and
weekends for the six clusters. Then, the POI density index was employed to help interpret
the building function types of different clusters. We calculated the density index of POI,
Fi,l , (Equation (6)) for all buildings and calculated the average of each building cluster
(Table 2) to help interpret the building functions. Currently, no unified standards exist for
the classification of building functions. This study classified the functions of buildings as
residential buildings; commercial buildings; and buildings for wholesale and retail, work,
and science and education. The spatial distributions of the building clusters are shown in
Figure 6.

Cluster 1 (commercial/wholesale and retail): This cluster was characterized by high
POI density values for the CP (commercial plaza) and the WR (wholesale and retail) type
(Table 2). In terms of the TUD curve (Figure 5a), the morning peak was between 9:00
and 10:00 and continued to fall after the evening peak. The TUD during the daytime on
weekends was slightly higher than that on weekdays, suggesting that more people came
then for entertainment and shopping. The overall temporal profiles matched the opening
times (9:00–22:00) of CP and WR. This type of building was concentrated on one side of
the street. This cluster included large commercial plazas such as Grandview Plaza and the
Tianma Clothing Wholesale Market on Shahe Street (Figure 6a,b).
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Figure 5. The average hourly TUD for the six clusters on weekdays and weekends.

Cluster 2 (urban village/residential district): Regarding the TUD curve (Figure 5b),
the TUD value increased significantly between 6:00 and 9:00 as well as 19:00 to 23:00, and
it was low on weekdays between 10:00 and 19:00. On weekends, the TUD values were
much higher than weekdays. This is a typical temporal pattern of a residential building,
which refers to the population’s outflow during working hours on weekdays and staying
home during the daytime on weekends. In terms of the POI density index (Table 2), SHS
(scenic and historic spots), CS (catering services), HA (hotels and apartments), and LS
(living services) had high values. Note that most SHS in this category were ancestral halls
in urban villages. This cluster consisted of many urban villages in Tianhe District (e.g.,
Tangxia, Shipai, and Chebei) and other nearby residential districts. This cluster had obvious
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features of residential functions (Figure 6a,c). Urban villages usually have low rent, so they
attract a large number of migrants and have many living facilities. These results indicate
that the TUD time series can also well capture the specific pattern of human activities in
urban villages.

Table 2. Density index values of POIs in different categories grouped by clusters.

POIs
Density Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

CS 0.98 1.42 1.03 0.56 0.58 0.87
IP 0.07 0.07 0.83 3.89 0.00 0.99

SHS 0.41 2.57 0.75 1.16 0.00 0.25
HEI 0.03 0.02 0.52 5.05 0.00 0.87
EP 0.49 0.33 0.93 2.47 0.00 1.18
CP 3.13 0.57 0.57 0.57 2.80 1.18
TF 0.88 0.28 1.01 1.52 0.50 1.42
FIS 0.57 0.12 0.44 0.69 0.47 2.87
HA 0.74 1.27 0.74 0.63 0.70 1.44
SRI 0.16 0.06 0.39 5.05 0.00 0.96
WR 1.43 0.97 1.01 0.95 1.72 0.81
OB 0.55 0.29 0.69 1.15 0.72 2.14
DB 0.40 0.25 0.79 0.45 0.69 2.45
LS 0.71 1.21 1.04 0.82 0.86 0.98
SR 0.89 0.62 0.90 1.29 0.61 1.38
MS 0.77 1.16 1.05 0.92 0.00 1.00
GA 0.33 0.58 1.20 1.81 0.25 0.99
VTS 0.42 0.10 0.84 3.77 0.00 0.88
PSS 0.00 0.14 1.43 3.78 0.00 0.20
RC 0.48 0.74 1.36 1.55 0.27 0.71

Note: CS = catering services; IP = industrial parks; SHS = scenic and historic spots; HEI = higher education
institutions; EP = enterprises; CP = commercial plaza; TF = transportation facilities; FIS = financial and insurance
services; HA = hotels and apartments; SRI = scientific research institutions; WR = wholesale and retail; OB = office
buildings; DB= dual-purpose buildings (commercial and residential); LS = living services; SR = sports and recre-
ation; MS = medical services; GA = government agency; VTS = vocational and technical schools; PSS = primary
and secondary schools; and RC = residential community.

Cluster 3 (residential district/urban village): This cluster was characterized by high
POI density values for the RC (residential community) and LS (living services) (Table 2).
This cluster had comprehensive community facilities and was a mature residential area.
House prices in this cluster were generally higher than in Cluster 2, but it had a lower
density. The overall characteristics of the temporal profiles were similar to that of Cluster
2 (Figure 5b,c). This cluster spatially surrounded Cluster 2 and consisted of residential
districts on both sides of the streets and a small number of buildings in urban villages
(Figure 6a,d). The biggest difference between Cluster 3 and Cluster 2 was the different ratio
of urban villages to residential districts in the cluster.

Cluster 4 (science and education/work): This type of building was the most widely
distributed and the most numerous in the study area. Relatively high values on the
POI density index were found for HEI (higher education institutions), SRI (scientific
research institutions), IP (industrial parks), VTS (vocational and technical schools), and EP
(enterprises) (Table 2). The TUD value increased from 6:00 and peaked at 10:00. Its values
on weekdays between 13:00 and 24:00 were higher than on weekends (Figure 5d). This
indicates that more people flow into this cluster on weekdays than weekends. Workplaces
usually have fewer people on weekends, and students in colleges and universities have
more freedom in their activities and tend to go out for entertainment. In terms of spatial
distribution, this cluster was closely connected with Cluster 3. It consisted of a large
number of scientific and educational institutions as well as industrial parks including
South China University of Technology, Guangdong Academy of Agricultural Sciences,
National Software Industry Bases, and Guangxin Creative Industry Park (Figure 6a,e).
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Figure 6. The spatial distribution of the building clusters.

Cluster 5 (wholesale and retail): In the ranking of the POI density index values, WR
had high ranks in Cluster 5 (Table 2). Regarding the TUD temporal profiles, the population
was concentrated on weekdays between 10:00 and 22:00 and peaked at around 17:00. This
is usually the peak time for buyers to purchase goods and for logistics companies to receive
and ship items, which is also close to dinner time; in addition, similar patterns of activities
were also observed on weekends. Despite the above, the TUD value was relatively low in
general. As one of the first-tier cities in China, Guangzhou has a strong ability to collect and
distribute a wide range of goods and services. Low-level cities or regions often purchase
goods on weekdays, while weekends are the best times for sub-merchants to return to the
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place of sale to sell goods. This cluster mainly consisted of buildings for electronic WR
(e.g., Pacific Digital Plaza) and buildings for clothing WR on Shahe Street (Figure 6a,f).

Cluster 6 (work/residential district): This type of building was concentrated in the
southern part of Tianhe District (Figure 6a,g). The cluster consisted of many office buildings
as well as dual-purpose buildings with both residential and commercial components. These
parts of the buildings, with Clusters 3 and 4, constitute the CBD in Tianhe District. In terms
of the POI density index (Table 2), high values were observed for buildings for FIS (finan-
cial and insurance services), DB (dual-purpose buildings (commercial and residential)),
OB (office building), HA (hotels and apartments), and RC (residential community). On
weekdays, the TUD value was very high with obvious peaks in the morning and evening.
The value dropped slightly at lunch time and was higher on weekdays between 10:00 and
20:00 than on weekends (Figure 5f). These temporal patterns of human activities are the
opposite of the patterns observed in Clusters 2 and 3. During the weekend, the distribution
of commercial and residential buildings and residential districts show that this type still
has a certain level of TUD value. This may be due to working overtime on weekends or
the residential population resting at home.

4.3. Accuracy Verification

To verify the clustering results, 11,800 samples were randomly selected from 24,600
buildings in the study area. The selected samples were very representative in number and
spatial distribution (Figure 7a). Figure 6b shows that Cluster 2 had the highest accuracy
(92.76%) and Cluster 1 the lowest (83.36%). Clusters 3, 4, 5, and 6 had accuracy rates
of 86.97%, 87.20%, 84.38%, and 87.47%, respectively. The classification accuracy for all
clusters exceeded 83.00%. Typical buildings were selected from each cluster. The results
were compared with the attribute information in the AOIs data and the spatial location of
building units. In addition, the results were verified according to the street views in Baidu
Maps (Table 3). It was confirmed that the extracted typical buildings were all aligned with
the clustering results. Thus, it can be concluded that the clustering results of this study
demonstrate good reliability.

Figure 7. The Spatial distribution of validation samples and the accuracy of the clustering results. (a) Sample buildings
(b) Accuracy of the results.
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Table 3. Comparison analysis of clustering results and current situation of Baidu street view map.

Cluster Classification
Results Spatial Position Baidu Street View Maps Building Selection Fit

Cluster 1
commercial/

wholesale and
retail

Fit: Zhengjia Square is a
famous shopping mall.

Cluster 2 urban village/
residential district

Fit: The building in
Tangxia Urban Village is
one of the places where

migrants gather in
Guangzhou.

Cluster 3
residential

district/urban
village

Fit: Poly heart language
garden residence is a

typical real estate
residential area.

Cluster 4 science and
education/work

Fit: South China Normal
University is located in
Wushan Street, where

higher learning centers are
clustered.

Cluster 5 wholesale and
retail

Fit: Pacific Digital Plaza is
an electronic products
wholesale and retail
distribution center.

Cluster 6 work/residential
district

Fit: Goldland Plaza is a
typical business office

building in Zhujiang New
Town.

5. Conclusions

This study presented a comprehensive method that integrated the eigendecompo-
sition approach and k-means clustering for inferring building function types based on
location-based social media data, Tencent user density (TUD) data. We employed the
eigendecomposition method to extract the effective principal components (PCs) and char-
acterized the temporal patterns of human activities for each building with low dimensional
comprehensive variables. The k-means clustering method was used to classify the build-
ings, which was combined with a POI density index to interpret the building function types
of different clusters. The building functions in the study area, Tianhe district, Guangzhou,
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were classified into six clusters, and the results were verified through the random sampling
of AOI data and street views in Baidu Maps. The accuracy of the classification for all clus-
ters exceeded 83.00%. The accuracy assessment demonstrated that the proposed method is
reliable to identify building function types based on location-based social media data.

The results of this study might shed light on urban planning and management. First,
this study proved that the eigendecomposition approach can effectively characterize the
temporal patterns of building-level human activities reflected by social media data. This
can maximize the usage of social media data in urban studies. Second, the proposed
eigendecomposition–k-means clustering method can address the difficulty of identifying
buildings with mixed functions. Some mixed function buildings, such as commercial and
residential dual-purpose buildings were identified in this study. Last, the proposed method,
which is an easy-to-use method with social media data, has great potential for various
applications. The building function inference results reflect the inherent heterogeneity
of urban functional areas, which can help understanding the urban spatial structure at
fine scale and assist urban planning and management. In particular, the urban village
buildings, which are rarely identified in other studies, were identified in our study. The
spatial distributions of urban villages can provide decision support for urban planning and
management, such as urban renewal, infrastructure planning, urban village population
management, etc.

This study also points to future study directions that need further research. First, by
using the eigendecomposition method, the coefficients of the effective PCs for different
types of buildings can be further used to explore the relationship between human activities
and the urban spatial structures. Second, other big data that can reflect the interaction
between different buildings, such as taxi data [3,19] and mobile phone data [38,39], can
be further combined with TUD data, to further improve the building function inference
method. In addition, the bias and limits of social media data should also be recognized.
First, though the user coverage of TUD is high in China, it still has gaps such as the elderly
and young children who rarely use smartphones [40]. In the future, other data sources on
urban population and mobility should be incorporated to supplement the gap in social
media big data.

Author Contributions: Conceptualization, Shaoying Li; methodology, Guanping Huang and Feng
Gao; software, Guanping Huang and Feng Gao; validation, Guanping Huang and Feng Gao; formal
analysis, Guanping Huang and Feng Gao; investigation, Guanping Huang, Feng Gao, Ziwei Huang,
Lei Chai; resources, Shaoying Li; data curation, Shaoying Li; writing—original draft preparation,
Feng Gao and Guanping Huang; writing—review and editing, Feng Gao, Shaoying Li; visualization,
Guanping Huang and Feng Gao; supervision, Shaoying Li; project administration, Shaoying Li;
funding acquisition, Shaoying Li and Feng Gao. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China [grant
number 41871290, 41401432], Guangdong Enterprise Key Laboratory for Urban Sensing, Monitoring
and Early Warning (No. 2020B121202019), The Science and Technology Foundation of Guangzhou
Urban Planning & Design Survey Research Institute (RDI2210205064).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, Y.; Liu, X.; Li, X.; Liu, X.; Yao, Y.; Hu, G.; Xu, X.; Pei, F. Delineating urban functional areas with building-level social media

data: A dynamic time warping (DTW) distance based k-medoids method. Landsc. Urban Plan. 2017, 160, 48–60. [CrossRef]
2. Zhi, Y.; Li, H.F.; Wang, D.S.; Deng, M.; Wang, S.W.; Gao, J.; Duan, Z.Y.; Liu, Y. Latent spatio-temporal activity structures: A new

approach to inferring intra-urban functional regions via social media check-in data. Geo-Spat. Inf. Sci. 2016, 19, 94–105. [CrossRef]

http://doi.org/10.1016/j.landurbplan.2016.12.001
http://doi.org/10.1080/10095020.2016.1176723


ISPRS Int. J. Geo-Inf. 2021, 10, 834 15 of 16

3. Zhuo, L.; Shi, Q.; Zhang, C.; Li, Q.; Tao, H. Identifying Building Functions from the Spatiotemporal Population Density and the
Interactions of People among Buildings. ISPRS Int. J. Geo-Inf. 2019, 8, 247. [CrossRef]

4. Hecht, R.; Meinel, G.; Buchroithner, M. Automatic identification of building types based on topographic databases—A comparison
of different data sources. Int. J. Cartogr. 2015, 1, 18–31. [CrossRef]

5. Chen, W.; Zhou, Y.Y.; Wu, Q.S.; Chen, G.; Huang, X.; Yu, B.L. Urban Building Type Mapping Using Geospatial Data: A Case
Study of Beijing, China. Remote Sens. 2020, 12, 2805. [CrossRef]

6. Heiden, U.; Heldens, W.; Roessner, S.; Segl, K.; Esch, T.; Mueller, A.J.L.; Planning, U. Urban structure type characterization using
hyperspectral remote sensing and height information. Landsc. Urban Plan. 2012, 98, 361–375. [CrossRef]

7. Tian, G.J.; Wu, J.G.; Yang, Z.F. Spatial pattern of urban functions in the Beijing metropolitan region. Habitat Int. 2010, 34, 249–255.
[CrossRef]

8. Van de Voorde, T.; Jacquet, W.; Canters, F. Mapping form and function in urban areas: An approach based on urban metrics and
continuous impervious surface data. Landsc. Urban Plan. 2011, 102, 143–155. [CrossRef]

9. Belgiu, M.; Tomljenovic, I.; Lampoltshammer, T.J.; Blaschke, T.; Höfle, B. Ontology-Based Classification of Building Types Detected
from Airborne Laser Scanning Data. Remote Sens. 2014, 6, 1347–1366. [CrossRef]

10. Lu, Z.Y.; Im, J.; Rhee, J.; Hodgson, M. Building type classification using spatial and landscape attributes derived from LiDAR
remote sensing data. Landsc. Urban Plan. 2014, 130, 134–148. [CrossRef]

11. Huang, Y.H.; Zhuo, L.; Tao, H.Y.; Shi, Q.L.; Liu, K. A Novel Building Type Classification Scheme Based on Integrated LiDAR and
High-Resolution Images. Remote Sens. 2017, 9, 679. [CrossRef]

12. Li, M.; Stein, A.; Bijker, W.; Zhan, Q. Urban land use extraction from Very High Resolution remote sensing imagery using a
Bayesian network. ISPRS J. Photogramm. Remote Sens. 2016, 122, 192–205. [CrossRef]

13. Gilani, S.A.N.; Awrangjeb, M.; Lu, G.J. An Automatic Building Extraction and Regularisation Technique Using LiDAR Point
Cloud Data and Orthoimage. Remote Sens. 2016, 8, 258. [CrossRef]

14. Liu, Y.; Seah, H.S. Points of interest recommendation from GPS trajectories. Int. J. Geogr. Inf. Sci. 2015, 29, 953–979. [CrossRef]
15. Gong, L.; Liu, X.; Wu, L.; Liu, Y. Inferring trip purposes and uncovering travel patterns from taxi trajectory data. Cartogr. Geogr.

Inf. Sci. 2016, 43, 103–114. [CrossRef]
16. Gao, F.; Li, S.; Tan, Z.; Zhang, X.; Lai, Z.; Tan, Z. How Is Urban Greenness Spatially Associated with Dockless Bike Sharing Usage

on Weekdays, Weekends, and Holidays? ISPRS Int. J. Geo-Inf. 2021, 10, 238. [CrossRef]
17. Gao, F.; Li, S.; Tan, Z.; Wu, Z.; Zhang, X.; Huang, G.; Huang, Z. Understanding the modifiable areal unit problem in dockless bike

sharing usage and exploring the interactive effects of built environment factors. Int. J. Geogr. Inf. Sci. 2021, 35, 1–21. [CrossRef]
18. Crooks, A.; Pfoser, D.; Jenkins, A.; Croitoru, A.; Stefanidis, A.; Smith, D.; Karagiorgou, S.; Efentakis, A.; Lamprianidis, G.

Crowdsourcing urban form and function. Int. J. Geogr. Inf. Sci. 2015, 29, 720–741. [CrossRef]
19. Niu, N.; Liu, X.P.; Jin, H.; Ye, X.Y.; Liu, Y.; Li, X.; Chen, Y.M.; Li, S.Y. Integrating multi-source big data to infer building functions.

Int. J. Geogr. Inf. Sci. 2017, 31, 1871–1890. [CrossRef]
20. Li, S.; Lyu, D.; Huang, G.; Zhang, X.; Gao, F.; Chen, Y.; Liu, X. Spatially varying impacts of built environment factors on rail transit

ridership at station level: A case study in Guangzhou, China. J. Transp. Geogr. 2020, 82, 102631. [CrossRef]
21. Li, S.; Lyu, D.; Liu, X.; Tan, Z.; Gao, F.; Huang, G.; Wu, Z. The varying patterns of rail transit ridership and their relationships

with fine-scale built environment factors: Big data analytics from Guangzhou. Cities 2020, 99, 102580. [CrossRef]
22. Huang, W.; Li, S.; Liu, X.; Ban, Y. Predicting human mobility with activity changes. Int. J. Geogr. Inf. Sci. 2015, 29, 1569–1587.

[CrossRef]
23. Song, C.M.; Qu, Z.H.; Blumm, N.; Barabasi, A.L. Limits of Predictability in Human Mobility. Science 2010, 327, 1018–1021.

[CrossRef]
24. Shen, Y.; Karimi, K. Urban function connectivity: Characterisation of functional urban streets with social media check-in data.

Cities 2016, 55, 9–21. [CrossRef]
25. Chen, W.; Huang, H.; Dong, J.; Zhang, Y.; Tian, Y.; Yang, Z. Social functional mapping of urban green space using remote sensing

and social sensing data. ISPRS J. Photogramm. Remote Sens. 2018, 146, 436–452. [CrossRef]
26. Tu, W.; Cao, J.Z.; Yue, Y.; Shaw, S.L.; Zhou, M.; Wang, Z.S.; Chang, X.M.; Xu, Y.; Li, Q.Q. Coupling mobile phone and social

media data: A new approach to understanding urban functions and diurnal patterns. Int. J. Geogr. Inf. Sci. 2017, 31, 2331–2358.
[CrossRef]

27. Song, Y.M.; Huang, B.; He, Q.Q.; Chen, B.; Wei, J.; Mahmood, R. Dynamic assessment of PM2.5 exposure and health risk using
remote sensing and geo-spatial big data. Environ. Pollut. 2019, 253, 288–296. [CrossRef] [PubMed]

28. Eagle, N.; Pentland, A.S. Eigenbehaviors: Identifying structure in routine. Behav. Ecol. Sociobiol. 2009, 63, 1057–1066. [CrossRef]
29. Gong, Y.; Lin, Y.; Duan, Z. Exploring the spatiotemporal structure of dynamic urban space using metro smart card records.

Comput. Environ. Urban Syst. 2017, 64, 169–183. [CrossRef]
30. Xu, Y.; Chen, D.C.; Zhang, X.H.; Tu, W.; Chen, Y.Y.; Shen, Y.; Ratti, C. Unravel the landscape and pulses of cycling activities from a

dockless bike-sharing system. Comput. Environ. Urban Syst. 2019, 75, 184–203. [CrossRef]
31. Xia, L.; Yeh, G.O. Integration of principal components analysis and cellular automata for spatial decisionmaking and urban

simulation. Sci. China 2002, 45, 521–529. [CrossRef]
32. Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [CrossRef]

http://doi.org/10.3390/ijgi8060247
http://doi.org/10.1080/23729333.2015.1055644
http://doi.org/10.3390/rs12172805
http://doi.org/10.1016/j.landurbplan.2012.01.001
http://doi.org/10.1016/j.habitatint.2009.09.010
http://doi.org/10.1016/j.landurbplan.2011.03.017
http://doi.org/10.3390/rs6021347
http://doi.org/10.1016/j.landurbplan.2014.07.005
http://doi.org/10.3390/rs9070679
http://doi.org/10.1016/j.isprsjprs.2016.10.007
http://doi.org/10.3390/rs8030258
http://doi.org/10.1080/13658816.2015.1005094
http://doi.org/10.1080/15230406.2015.1014424
http://doi.org/10.3390/ijgi10040238
http://doi.org/10.1080/13658816.2020.1863410
http://doi.org/10.1080/13658816.2014.977905
http://doi.org/10.1080/13658816.2017.1325489
http://doi.org/10.1016/j.jtrangeo.2019.102631
http://doi.org/10.1016/j.cities.2019.102580
http://doi.org/10.1080/13658816.2015.1033421
http://doi.org/10.1126/science.1177170
http://doi.org/10.1016/j.cities.2016.03.013
http://doi.org/10.1016/j.isprsjprs.2018.10.010
http://doi.org/10.1080/13658816.2017.1356464
http://doi.org/10.1016/j.envpol.2019.06.057
http://www.ncbi.nlm.nih.gov/pubmed/31323611
http://doi.org/10.1007/s00265-009-0739-0
http://doi.org/10.1016/j.compenvurbsys.2017.02.003
http://doi.org/10.1016/j.compenvurbsys.2019.02.002
http://doi.org/10.3969/j.issn.1674-7313.2002.06.005
http://doi.org/10.1016/j.patrec.2009.09.011


ISPRS Int. J. Geo-Inf. 2021, 10, 834 16 of 16

33. Rahman, M.A.; Islam, M.Z. A hybrid clustering technique combining a novel genetic algorithm with K-means. Knowl. Based Syst.
2014, 71, 345–365. [CrossRef]

34. Chang, D.-X.; Zhang, X.-D.; Zheng, C.-W. A genetic algorithm with gene rearrangement for K-means clustering. Pattern Recognit.
2009, 42, 1210–1222. [CrossRef]

35. Wu, P.; Zhang, S.; Li, H.; Dale, P.; Ding, X.; Lu, Y. Urban parcel grouping method based on urban form and functional connectivity
characterisation. ISPRS Int. J. Geo-Inf. 2019, 8, 282. [CrossRef]

36. Gutiérrez, A.; Domènech, A. Identifying the Socio-Spatial Logics of Foreclosed Housing Accumulated by Large Private Landlords
in Post-Crisis Catalan Cities. ISPRS Int. J. Geo-Inf. 2020, 9, 313. [CrossRef]

37. Verburg, P.H.; Nijs, T.; Eck, J.; Visser, H.; Jong, K.D. A method to analyse neighbourhood characteristics of land use patterns.
Environ. Urban Syst. 2004, 28, 667–690. [CrossRef]

38. Zhang, X.; Gao, F.; Liao, S.; Zhou, F.; Cai, G.; Li, S. Portraying Citizens’ Occupations and Assessing Urban Occupation Mixture
with Mobile Phone Data: A Novel Spatiotemporal Analytical Framework. ISPRS Int. J. Geo-Inf. 2021, 10, 392. [CrossRef]

39. Deng, X.; Liu, Y.; Gao, F.; Liao, S.; Zhou, F.; Cai, G. Spatial Distribution and Mechanism of Urban Occupation Mixture in
Guangzhou: An Optimized GeoDetector-Based Index to Compare Individual and Interactive Effects. ISPRS Int. J. Geo-Inf. 2021,
10, 659. [CrossRef]

40. Li, S.; Huang, Z.; Gao, F.; Wang, F.; Lin, J.; Tan, Z. Evaluating the performance of LBSM data to estimate the gross domestic
product of China at multiple scales: A comparison with NPP-VIIRS nighttime light data. J. Clean. Prod. 2021, 328, 129558.
[CrossRef]

http://doi.org/10.1016/j.knosys.2014.08.011
http://doi.org/10.1016/j.patcog.2008.11.006
http://doi.org/10.3390/ijgi8060282
http://doi.org/10.3390/ijgi9050313
http://doi.org/10.1016/j.compenvurbsys.2003.07.001
http://doi.org/10.3390/ijgi10060392
http://doi.org/10.3390/ijgi10100659
http://doi.org/10.1016/j.jclepro.2021.129558

	Introduction 
	Study Area and Data 
	Study Area 
	Data 

	Methodology 
	The Eigendecomposition Method 
	k-Means Clustering 
	Identification of Building Function 

	Results 
	The Temporal Structures of Human Activities 
	Results of Building Function Inference and the Spatial Patterns 
	Accuracy Verification 

	Conclusions 
	References

